• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field?

    2017-08-30 08:25:44ChangWang王暢HonglinWu吳紅琳YunfeiSong宋云飛andYanqiangYang楊延強(qiáng)
    Chinese Physics B 2017年9期

    Chang Wang(王暢),Hong-lin Wu(吳紅琳),Yun-fei Song(宋云飛),and Yan-qiang Yang(楊延強(qiáng))2,,?

    1 College of Science,Heilongjiang Bayi Agricultural University,Daqing 163319,China

    2 Department of Physics,Harbin Institute of Technology,Harbin 150001,China

    3 National Key Laboratory of Shock Wave and Detonation Physics,Institute of Fluid Physics,China Academy of Engineering Physics,Mianyang 621900,China

    Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field?

    Chang Wang(王暢)1,2,Hong-lin Wu(吳紅琳)3,Yun-fei Song(宋云飛)3,and Yan-qiang Yang(楊延強(qiáng))2,3,?

    1 College of Science,Heilongjiang Bayi Agricultural University,Daqing 163319,China

    2 Department of Physics,Harbin Institute of Technology,Harbin 150001,China

    3 National Key Laboratory of Shock Wave and Detonation Physics,Institute of Fluid Physics,China Academy of Engineering Physics,Mianyang 621900,China

    The structural deformation of NO2group induced by an intense femtosecond laser field of liquid nitromethane(NM) molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS)technique with the intense pump laser.Here,we present the mechanism of molecular alignment and deformation.The CARS spectra and its FFT spectra of liquid NM show that the NO2torsional mode couples with the CN symmetric stretching mode and that the NO2group undergoes ultrafast structural deformation with a relaxation time of 195 fs.The frequency of the NO2torsional mode in liquid NM(50.8±0.3 cm?1)at room temperature is found.Our results prove the structural deformation of two groups in liquid NM molecule occur simultaneously in the intense laser field.

    coherent anti-Stokes Raman spectroscopy(CARS)spectra,structural deformation,intense laserfield,liquid nitromethane

    1.Introduction

    The photodynamics of molecules under the influence of femtosecond,strong,and nonresonance laser pulses is now becoming a topic of wide interest.[1,2]Pulses with peak intensities of~1013W/cm2generate an electric field of 1 V/?A, causing significant changes in the electronic energy level of the molecule.[3]The corresponding physical phenomena,including high-order harmonic generation,above threshold ionization,double ionization,Coulomb explosion(CE),and dissociative double ionization(DDI),have been investigated.[4]Gas NM under femtosecond laser pulses with intensities of~1013W/cm2and~1014W/cm2was investigated by time of flight mass spectrometer(TOFMS).NM is liquid at room temperature and atmospheric pressure.The reaction dynamics of liquid phase NM under different conditions is important for the use of NM as a detonating homogeneous liquid explosive. However,most of these experiments mentioned above have focused on gas phase NM but provided insufficient information on liquid NM.Few studies of NM in liquid phase induced by intense nonresonant femtosecond laser field have been done. This is mainly due to the restriction of experimental methods. Mass spectrometry and ion imaging have been used to determine the dissociation pathway by detecting the major,submajor,and minor products’fragment ions produced after CE. These methods require the sample to be in a gas phase.

    Research from our group has been taking advantage of the coherent anti-Stokes Raman spectroscopy(CARS)technique to provide a nondestructive and nonintrusive method to detect the ultrafast dynamic process induced by nonresonance laser field in real time.The CARS technique is modified by using an intense nonresonant femtosecond pump laser(1011–1012W/cm2),which has been used to drive the liquid methyl iodide(CH3I)and NM molecules and simultaneously track their relaxation process.[5,6]In previous research,the structural deformation of CH3group has been detected.[6]However,the structural deformation of the NO2group of NM has not been detected.In fact,the structural deformation of the NO2group should also occur in an intense laser field.Our study has attempted to probe the evolution of ultrafast dynamic processes of the NO2group in liquid phase NM induced by intense femtosecond laser.

    In this work,we performed the intense pumping and time and frequency-resolved CARS on liquid NM and successfully tracked the structural deformation of the NO2group induced by intense nonresonant femtosecond laser pulse in real time. Additionally,we measured the value of the torsional mode of the NO2group in liquid NM from the process of molecular deformation.We found that the structural deformation of the two groups in the NM molecule occurred simultaneously in the intense laser field.

    2.Theoretical description

    Molecules orientate randomly in the liquid phase.The polarization of the electric field of laser can create an induceddipole moment when the molecule is in the intense laser field. A nonresonant laser field applies forces and torques to align molecules.[7]A linear molecule with a simple structure is taken as an example.When the laser interacts with the matter,the electric field component of the laser field plays a main role.To simplify the problem,the laser field is equalized in an alternating electric field along the x-axis.As shown in Fig.1, the ellipsoid represents the linear molecule,and E is the alternating electric field of nonresonant laser field along the x-axis. The direction of E changes rapidly,and the nucleus cannot keep up with the change of E.As the direction of E changes, the average effect of the intrinsic dipole moment P and E is offset.The quality of electrons is very small,so the direction of the E has an effect on the distribution of electron cloud. This will change the relative position of the molecular skeleton,and the molecule will produce the induced dipole moment ΔP which is proportional to E

    where α is the polarizability.The torque M=ΔP×E aligns the molecule along the direction of E.

    When the laser interacts with the molecule,the Hamiltonian of the molecule can be written as

    where Hmolis the Hamiltonian of the molecule without an external field,and Hindis the interaction of the laser and the induced dipole moment

    where ρ and ρ′are space fixed Cartesian coordinate system.

    The laser field can be expressed as

    where ε(t)is the envelope of electric field,and ω is angular frequency of laser.For the linear molecule

    where α‖is the projection of polarizing onto the molecular axis.

    民國時期項(xiàng)氏三十代懿孫項(xiàng)乃斌為重振家聲,輯錄《嘉善項(xiàng)氏支譜》,但描述的多是清代項(xiàng)氏家族情況,其時已無人再像其先輩那樣在鑒藏上有卓越貢獻(xiàn),他們不在本文討論范圍之內(nèi),故略去不述。

    where α⊥is the projection of polarization onto the molecular axis.

    When the laser field is polarized the interaction of the linear molecule and laser field depends on the angle between ΔP and E.Equation(3)can be simplifi ed into

    where θ is the angle between ΔP and E.Under the effect of the electric field component of the laser,the molecule tends to move to the position with the lowest energy.According to Eq.(8),the position with the lowest energy corresponds to θ=0.This means that molecular axis will be the same as the direction of electric field component of the laser.

    Fig.1.(color online)The alignment of linear molecule induced by the intense laser field.

    The intense nonresonant laser field can also induce the molecular structural deformation.As shown in Fig.2,the NO2group of the NM molecule is taken to show the principle of structural deformation induced by the intense nonresonant laser field.The torque M=ΔP×E can align the N–O bond to the direction of E.Therefore,the O–N–O angle decreases within the pulse duration as shown in Fig.2.After the pump pulse passes by,the structure relaxes gradually to the equilibrium conformation.

    The mechanism of molecular deformation induced by the nonresonant intense laser field can also be explained by the quantum mechanism.In a typical Raman process,the interaction of pump pulse and Stokes pulse at the zero time leads to an additional interaction.This can be expressed as[8]

    where εpis the envelope of pump pulse,εSis the envelope of Stokes pulse,and ωpsis the difference frequency.Equation(9) can be written as

    where Vpis the additional interaction of the intense pump laser, VSis the additional interaction of Stokes laser,and VpSand VSpare the interaction of coherent vibrational energy lever.

    Fig.2.(color online)Schematic of the mechanism for molecular deformation of NO2 group.The blue and red balls denote nitrogen and oxygen atoms,respectively.

    3.Experiment

    The overall experimental setup used for the femtosecond CARS is given in Fig.3.A 110 fs,1.0 mJ,and 800 nm pulse from a 1 kHz Ti:sapphire amplifier was focused on the sample of liquid NM filling a quartz glass cuvette of 1 mm thickness. The laser pulse is divided into three parts by two beam splitters(BS).Two parts were used as the pump and probe pulses. The third one produced a super continuum(SC)pulse as the Stokes pulse by passing an Al2O3crystal.[9]The SC pulse had an ultra broad band spectral profile,ranging from 400 nm to 1100 nm.The pump pulse was controlled by an optical attenuator to adjust the pump pulse energy.The intensity of pump energy was chosen to be 0.33,0.66,1,2,3,and 5μJ. The pump pulse was focused by a 175 mm focal length lens. By assuming a Gaussian spatial profile,the spot size of the laser beam was estimated to be 70μm in diameter.Therefore,the power densities are 7.9×1010,1.6×1011,2.4×1011, 4.8×1011,7.2×1011,and 1.2×1012W/cm2,respectively.The probe pulse was chosen to be femtosecond pulse.The intensities of Stokes and probe were set much lower than that of the pump pulse.Two delay lines were motorized by a motion controller.One delay line was used to produce the temporal overlap of the pump and Stokes pulse by changing the delay time between the pump and SC pulse.Another one provided the variable time delay for the probe pulse.All three beams were sent through a lens focused onto the sample,and a collecting lens sent the signal to the CCD spectrometer.The folded BOXCARS geometry was used,in which angles,properly chosen between the beams,were determined by the four wave-mixing phase-matching condition.The signal generated in a direction kCARS=kpu?kSt+kpr.[10]The CN symmetric stretching mode,which is the characteristic vibrational mode, of the NM molecule(917 cm?1),was chosen to be excited. All measurements were taken at room temperature.

    Fig.3.(color online)Schematic diagram of the experimental setup for the intense pumping and time-and frequency-resolved CARS.BOXCARS configuration was used in the experiment.

    4.Results and discussion

    The analytical pure NM was used in the experiment.The CARS signal was centered at approximately 917 cm?1(the CN symmetric stretching mode)and covered the region from 700 to 1050 cm?1.Figure 4 shows the pump pulse intensity dependent frequency resolved CARS spectra at a selected delay time of 1200 fs.The pulse energies were 0.33,0.66,1, 2,3,and 5μJ.When the pump pulse energy was in the low intensity range(<3μJ),the spectral line profile was a broad envelope.These results are consistent with those of conventional CARS experiment on NM reported in the literature.[11]However,the fine structures of spectra appear when the pump pulse energy was increased to~3μJ.This is a typical feature of stimulated scattering.The signal intensity also increased with the enhancement of the pump pulse energy,which is shown in Fig.5.If the pulse energies of the Stokes and probe pulses are fixed,the signal intensity should have a linear relationship with the pump pulse energy when only the pump pulse energy is changed.However,the experimental results show a nonlinear relationship between the signal intensity and the pump pulse energy.When the pump pulse energy was more than 3μJ,the signal intensity exhibited a dramatic increase.This is also a typical feature of the simulated scattering process.At the zero delay time,the pump pulse and the broadband Stokes pulse of SC prepare coherent vibrational modes.When the pump pulse energy was intense enough,the density of the coherent vibrational mode in the vibrational excited state can be much higher than that in the ground state. The intense pump pulse produces much higher density Raman mode,which leads to stimulated Raman scattering.Thus,after the zero delay time,the scattering process for the probe laser pulse should exhibit a stimulated Raman process in essence. This is proved by the pump pulse intensity-dependent experimental results.

    Fig.4.(color online)Spectra obtained at different pump energies(0.33, 0.66,1,2,3,and 5μJ)at the delay time of 1200 fs.Fine structures of spectra appear when the pump pulse energy is increased to 3 and 5μJ. The signal intensity increases with the enhancement of the pump pulse energy.

    Fig.5.(color online)Relationship between the pump pulse energy and the signal intensity at the delay times of 250,500,1000,1500,and 2000 fs.The signal intensity of the spectra shows a dramatic increase when the pump pulse energy is increased to 3 and 5μJ.

    The contour plot of time-and frequency-resolved CARS spectra of liquid NM of pump intensity of 5μJ is depicted in Fig.6.The CARS signal intensity is formulated as[12]

    Fig.6.(color online)Contour plot of time-and frequency-resolved CARS spectra of liquid NM when the pump intensity is 5μJ.The two axes represent delay time and Raman vibrational frequency values, while contours represent the normalized intensity of the CARS signal. The peak intensity of every spectral position has been normalized to 1.

    The torsional vibration is the restricted rotation of a part of a molecule with respect to the molecular skeleton.The frequency of the torsional mode of the NO2group can be denoted by νTors(NO2).It describes the restricted rotation of the NO2group of NM about the molecular axis of the C–N bond.The intense ultrashort laser pulses can induce torsional motion in a molecule.[14]At the same time,the CN symmetric stretching mode(917 cm?1)is excited coherently by pump and Stokes pulse,and the torsion–vibration coupling occurred. In Fig.4,the converging peaks on both sides of 917 cm?1were assigned as the sum and difference combinations of the torsional mode and the CN symmetric stretching mode,i.e., νs(CN)±nνTors(NO2),where n(=0,1,2)was the quantum number of torsional vibration.The average energy interval between adjacent Raman modes represents the frequency value of the torsional mode.After the delay time of 1.1 ps,the value of νTors(NO2)was approximately 51 cm?1and kept stable.

    The value of νTors(NO2)decreased with the delay time when the structure of the NM molecule was deforming.At the zero delay time,the ultrafast structural deformation of the NO2group from the equilibrium conformation showed a decreased O–N–O angle induced by intense femtosecond pump pulse.The change of the O–N–O angle led to the change of rotational inertia along C–N bond.The deformed shape of the NO2group at the zero delay time gave the minimum rotational inertia of the C–N bond.In addition,the frequency of the NO2torsional mode reached a corresponding maximum. After the intense femtosecond pump pulse passed through the sample,the shape of the NO2group relaxed to the equilibrium state and was gradually accompanied by an increase in the rotational inertia.This caused the frequency of the NO2torsional mode to decrease with the delay time.This is why the intervals of the adjacent Raman modes decrease with the delay time starting from zero.After 1.1 ps,the interval of the adjacent Raman modes reached a stable state,indicating that the molecule structure recovered to the equilibrium state.

    Further confirmation of the structural deformation of the NM molecules was made by fast Fourier transformation(FFT) spectra.Transforming Eq.(12)results in

    where ω gives the frequency of Raman vibrational mode at which the transient is considered,and ωFFTgives the beat frequency between two adjacent Raman vibrational modes.Considering two adjacent Raman vibrational modes j and k,the beat between them can be described as

    where(φj?φk)is the phase shift of the beat between j and k modes,ωjand ωkare frequency values of j and k,and ωFFT=|ωj?ωk|is the beat frequency.[15]If the FFT of the time domain signal is performed at every Raman spectral position,we will obtain two-dimensional FFT spectra of the coherent coupling of all the Raman vibrational modes.The peak of the spectral curve in the slice along the beat frequency axis in FFT spectra represents the coherence between two adjacent vibrational modes,and the peak value on the beat frequency axis is equal to their frequency difference.If the molecular structure does not change with time delay,the frequency difference ωj–ωkshould be constant.Therefore,the spectral band due to the coupling of modes j and k in FFT spectra is parallel to Raman vibrational frequency axis.In traditional FFT spectra of time-and frequency-resolved spectra,the band features mentioned above are often observed.[16]However,if the molecular structure is unstable,ωjand ωkare not constants, the frequency difference ωj–ωkchanges with the delay time, and the bands in the FFT spectra are not parallel to the Raman vibrational frequency axis.The FFT spectra of our CARS experiment are shown in Fig.7.In data processing,we only performed a subtraction of the exponentially decaying component of the transient signal,which retained only oscillatory components.There was no additional processing or smoothing of the data.Since the nonresonant background was not of interest to our investigation,it was ignored in the data analysis by only plotting the FFT plot obtained for delay times longer than 100 fs.Some sloping bands,which were not parallel to the Raman vibrational frequency axis,appear in Fig.7.According to the previous analysis of FFT spectra,these sloping bands indicate that the frequency of one or both adjacent vibrational modes participating in coherences is changing.This result means that the molecule structure is deformed.

    Fig.7.(color online)Two-dimension FFT spectra.The two axes represent the beat frequency and the Raman vibrational frequency values.

    The restoration time of the structural deformation of the NO2group can be obtained by the relaxation of the frequency of the torsional mode.The following empirical exponential function is used:

    where vTorsis the frequency of the torsional mode at stable molecular structure,ΔvTorsis the torsional mode frequency variation,k is the exponential rate of the torsional mode frequency changing,and τ is the delay time.The data was analyzed from the delay time t=400 fs to avoid the intense nonresonant contribution at time zero.The decay curve of the torsional mode is presented in Fig.8,and the corresponding fitted results are vTors=50.8±0.3 cm?1,ΔvTors= (36±3)×10 cm?1,and k=(51±2)×10?4fs?1.The fitted results indicate that the frequency of the torsional mode decays to~50.8±0.3 cm?1at the stable molecular structure which is consistent with the experimental value of the single crystals of solid NM by means of Raman scattering(52 cm?1).[17]Commonly,the exact value of the torsional mode of liquid NM is unknown.This is because at room temperature,the residence time becomes lower than the characteristic time linked to the phonon bands,and thus the torsional transitions are not observed in Raman experiments at room temperature.In our experiment,the torsional mode of liquid NM can be calculated. The timescale of the molecular structural restoration process is~195 fs,as obtained from k.

    Fig.8.(color online)Decay of the frequency of the torsional mode in experiment(black scatter)and the fitted curve(red solid curve).

    5.Conclusion

    In summary,the intense pumping time-and frequency resolved CARS technique with the femtosecond probe laser successfully monitors the structural deformation of the NO2group of liquid NM molecules induced by intense nonreso-nant femtosecond laser in real time.The time-and frequency-resolved CARS spectra provided information on ultrafast structural deformation of the NO2group,and the restoring time was approximately 195 fs.Further confirmation of the structural deformation of the NM molecules is made by two dimensional FFT spectra.The frequency of the NO2torsional mode in liquid NM(50.8±0.3 cm?1)atroom temperature was found.On the basis of previous studies,[15]our results prove that the structural deformation of the two groups in the NM-type molecule occurs simultaneously in the intense laser field. The CARS experiment with the intense pump pulse is a feasible method to investigate reactions of liquid phase molecules induced by femtosecond laser field without complex experimental systems.

    [1]Montero R,Conde A P,Longarte A,Castan F,Corrales M E,Nalda R and Banaes L 2010 Phys.Chem.Chem.Phys.12 7988

    [2]Yang Y,Fan L L,Sun S Z,Zhang J,Chen Y T,Zhang S,Jia T Q and Sun Z R 2011 J.Chem.Phys.135 064303

    [3]Comstock M,Senekerimyan V and Dantus M 2003 J.Phys.Chem.A 107 8271

    [4]Dey A,Fernando R,Abeysekera C,Homayoon Z,Bowman J M and Suits A G 2014 J.Chem.Phys.140 054305

    [5]Wang Y,Liu W L,Song Y F,Duo L P,Jiang L L,Yu G Y and Yang Y Q 2015 J.Chem.Phys.143 051101

    [6]Wang C,Wu H L,Song Y F,He X,Yang Y Q and Tan D W 2015 Chem. Phys.Lett.640 101

    [7]Dion C M,Keller A,Atabek O and Bandrauk A D 1999 Phys.Rev.A 59 1382

    [8]Sussman B J 2011 Am.J.Phys.79 477

    [9]Du X,Zhang M F,He X,Meng Q K,Song Y F,Yang Y Q and Han J C 2011 Chin.Phys.B 20 126301

    [10]Wang Y H,Peng Y J,Wang Y,He X,Song Y F and Yang Y Q 2009 Chin.Phys.B 18 1463

    [11]McGrane S D,Scharff R J,Greenfield M and Moore D S 2009 New J. Phys.11 105047

    [12]Cui M,Joffre M,Skodack J and Ogilvie J P 2006 Opt.Express 14 8448

    [13]Shigeto S,Pang Y,Fang Y and Dlott D D 2008 J.Phys.Chem.B 112 232

    [14]Madsen C B,Madsen L B,Viftrup S S,Johansson M P,Poulsen T B, Holmegaard L,Kumarappan V,J?rgensen K A and Stapelfeldt H 2009 Phys.Rev.Lett.102 073007

    [15]Chen T,Vierheilig A,Kiefera W and Materny A 2001 Phys.Chem. Chem.Phys.3 5408

    [16]Nath S,Urbanek D C,Kern S J and Berg M A 2006 Phys.Rev.Lett.97 267401

    [17]Ouillon R,Pinan-Lucarre J P and Ranson P 2002 J.Chem.Phys.116 4611

    29 November 2016;revised manuscript

    8 April 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/094208

    ?Project supported by the National Natural Science Foundation of China(GrantNos.21673211 and 21203047),the Foundation of Heilongjiang Bayi Agricultural University,China(Grant No.XZR2014-16),and the Science Challenging Program of China(Grant No.JCKY2016212A501).

    ?Corresponding author.E-mail:yqyang@hit.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    18禁国产床啪视频网站| 国产精品久久久久成人av| 中文字幕av电影在线播放| 久久 成人 亚洲| 91九色精品人成在线观看| 高清欧美精品videossex| 一级a爱视频在线免费观看| 成人特级黄色片久久久久久久| 亚洲成人免费电影在线观看| 国产99白浆流出| 十八禁高潮呻吟视频| 久久国产精品男人的天堂亚洲| 丰满的人妻完整版| www.999成人在线观看| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 亚洲国产精品一区二区三区在线| 91麻豆av在线| 亚洲国产精品合色在线| 国产一区有黄有色的免费视频| 日韩欧美三级三区| 一级a爱片免费观看的视频| 人妻久久中文字幕网| 无人区码免费观看不卡| 久久久国产一区二区| 国产成人欧美在线观看 | 欧美日韩av久久| 国产在线一区二区三区精| 欧美在线黄色| 91字幕亚洲| 精品人妻1区二区| 欧美av亚洲av综合av国产av| 日韩欧美一区二区三区在线观看 | 国产色视频综合| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲精品久久久久5区| 五月开心婷婷网| 亚洲性夜色夜夜综合| 国产精品久久久久久人妻精品电影| 亚洲黑人精品在线| 满18在线观看网站| 91av网站免费观看| 中国美女看黄片| 亚洲人成电影免费在线| 性少妇av在线| 国产精品久久电影中文字幕 | 12—13女人毛片做爰片一| 国产野战对白在线观看| 久久久精品免费免费高清| 99精品欧美一区二区三区四区| 99精品欧美一区二区三区四区| 国产精品自产拍在线观看55亚洲 | 精品一区二区三卡| 亚洲av成人av| 男女免费视频国产| 性少妇av在线| 国产亚洲欧美精品永久| 50天的宝宝边吃奶边哭怎么回事| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| 夜夜爽天天搞| 人人澡人人妻人| 成人特级黄色片久久久久久久| 宅男免费午夜| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 久久精品国产a三级三级三级| 欧美日韩中文字幕国产精品一区二区三区 | 欧美+亚洲+日韩+国产| 国产午夜精品久久久久久| 99香蕉大伊视频| 高潮久久久久久久久久久不卡| 久久久久久免费高清国产稀缺| 亚洲久久久国产精品| tocl精华| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频| 久久久精品区二区三区| 女性生殖器流出的白浆| 久久草成人影院| 欧美精品啪啪一区二区三区| 一进一出好大好爽视频| 国产熟女午夜一区二区三区| 99精品在免费线老司机午夜| 超碰97精品在线观看| 午夜影院日韩av| 首页视频小说图片口味搜索| 欧美精品一区二区免费开放| 国产精品亚洲av一区麻豆| av电影中文网址| 男女午夜视频在线观看| 国产精品久久久久久人妻精品电影| svipshipincom国产片| 免费在线观看视频国产中文字幕亚洲| 99国产精品99久久久久| 男女之事视频高清在线观看| 黑丝袜美女国产一区| 欧美激情高清一区二区三区| 午夜福利在线观看吧| 亚洲成a人片在线一区二区| 制服人妻中文乱码| 咕卡用的链子| 12—13女人毛片做爰片一| 国产主播在线观看一区二区| 精品人妻熟女毛片av久久网站| 国产伦人伦偷精品视频| 欧美日韩视频精品一区| 精品欧美一区二区三区在线| 日日夜夜操网爽| 国产精品免费视频内射| 91成人精品电影| 在线天堂中文资源库| 视频区图区小说| 欧美乱码精品一区二区三区| 国产精品国产av在线观看| 男人的好看免费观看在线视频 | 淫妇啪啪啪对白视频| 亚洲全国av大片| 丝袜美腿诱惑在线| 99久久综合精品五月天人人| 黄色成人免费大全| 亚洲第一青青草原| 母亲3免费完整高清在线观看| 国产精品欧美亚洲77777| 一级毛片精品| 99国产极品粉嫩在线观看| 51午夜福利影视在线观看| √禁漫天堂资源中文www| 在线观看www视频免费| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 成人特级黄色片久久久久久久| 久久香蕉国产精品| 久久久国产一区二区| 亚洲三区欧美一区| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 午夜视频精品福利| 国产成人精品久久二区二区91| 欧美精品av麻豆av| 欧美日韩黄片免| 国产免费现黄频在线看| 法律面前人人平等表现在哪些方面| 丰满饥渴人妻一区二区三| 欧美日韩中文字幕国产精品一区二区三区 | 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 久久 成人 亚洲| 亚洲欧美色中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 50天的宝宝边吃奶边哭怎么回事| 国产一区在线观看成人免费| 亚洲五月婷婷丁香| 老司机亚洲免费影院| 一进一出好大好爽视频| 国产国语露脸激情在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久精品人妻al黑| 最新在线观看一区二区三区| 欧美日韩黄片免| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 天天影视国产精品| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 丁香欧美五月| 欧美日韩福利视频一区二区| 777久久人妻少妇嫩草av网站| 人人妻人人爽人人添夜夜欢视频| 99久久综合精品五月天人人| 天天躁夜夜躁狠狠躁躁| 一边摸一边抽搐一进一小说 | 亚洲七黄色美女视频| 亚洲欧洲精品一区二区精品久久久| 午夜视频精品福利| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| 国产成人av激情在线播放| 国产日韩欧美亚洲二区| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 80岁老熟妇乱子伦牲交| 欧美丝袜亚洲另类 | av电影中文网址| 一进一出好大好爽视频| 午夜福利在线观看吧| 国产精品 欧美亚洲| 亚洲熟女毛片儿| av欧美777| 大香蕉久久成人网| 欧美日韩瑟瑟在线播放| 国产成人精品在线电影| 最近最新中文字幕大全电影3 | 热99re8久久精品国产| 下体分泌物呈黄色| 俄罗斯特黄特色一大片| 91老司机精品| av视频免费观看在线观看| 欧美日韩福利视频一区二区| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 日日爽夜夜爽网站| 亚洲精品一二三| 很黄的视频免费| 一级a爱视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 国产精品免费大片| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 99精品在免费线老司机午夜| 亚洲全国av大片| 国产精品一区二区在线观看99| 精品福利永久在线观看| av视频免费观看在线观看| 免费观看人在逋| 18禁黄网站禁片午夜丰满| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人免费电影在线观看| 久久中文看片网| 久久精品成人免费网站| 成人影院久久| 日本黄色视频三级网站网址 | 日本vs欧美在线观看视频| 亚洲国产欧美网| 亚洲专区中文字幕在线| 亚洲av美国av| 99香蕉大伊视频| 中文字幕av电影在线播放| 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 免费观看精品视频网站| av欧美777| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 天天操日日干夜夜撸| 看片在线看免费视频| 另类亚洲欧美激情| 99久久综合精品五月天人人| 男女午夜视频在线观看| 无人区码免费观看不卡| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 丝袜美足系列| 精品人妻熟女毛片av久久网站| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av| 99久久精品国产亚洲精品| 欧美日韩黄片免| 天天操日日干夜夜撸| 在线国产一区二区在线| 免费在线观看完整版高清| 亚洲精品乱久久久久久| 男人舔女人的私密视频| 国产欧美日韩一区二区精品| 久久久精品区二区三区| 99riav亚洲国产免费| 亚洲专区字幕在线| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 乱人伦中国视频| 青草久久国产| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 亚洲午夜理论影院| 视频区欧美日本亚洲| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 国产区一区二久久| 三上悠亚av全集在线观看| 亚洲av日韩在线播放| 夜夜躁狠狠躁天天躁| 免费黄频网站在线观看国产| 国产欧美日韩一区二区精品| 黄色成人免费大全| 久久久久久久久久久久大奶| 成年人午夜在线观看视频| 国产成人精品在线电影| 在线观看免费高清a一片| 亚洲成人国产一区在线观看| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 国产区一区二久久| 国产精品影院久久| 欧美乱妇无乱码| 国产精品98久久久久久宅男小说| 大型av网站在线播放| 香蕉久久夜色| 久久中文字幕人妻熟女| 欧美乱码精品一区二区三区| 老司机影院毛片| 久久青草综合色| 另类亚洲欧美激情| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| 高清av免费在线| 女人高潮潮喷娇喘18禁视频| 精品久久久久久电影网| 999久久久国产精品视频| 欧美乱妇无乱码| 久热爱精品视频在线9| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 一区福利在线观看| 精品久久蜜臀av无| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 国产精品影院久久| 色婷婷av一区二区三区视频| 人人妻,人人澡人人爽秒播| 青草久久国产| 超碰97精品在线观看| 电影成人av| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看| 久久国产精品人妻蜜桃| 亚洲第一青青草原| 国产精品永久免费网站| 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| av欧美777| 精品午夜福利视频在线观看一区| 99re在线观看精品视频| 成熟少妇高潮喷水视频| 午夜福利乱码中文字幕| 成熟少妇高潮喷水视频| 午夜福利乱码中文字幕| 国内久久婷婷六月综合欲色啪| 国产在线观看jvid| 自拍欧美九色日韩亚洲蝌蚪91| 91字幕亚洲| 久99久视频精品免费| 999久久久精品免费观看国产| 又大又爽又粗| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区| 精品久久久精品久久久| 中文字幕人妻丝袜制服| av电影中文网址| 日韩视频一区二区在线观看| 国产亚洲精品一区二区www | 一级黄色大片毛片| 嫁个100分男人电影在线观看| 变态另类成人亚洲欧美熟女 | 男女午夜视频在线观看| 日本欧美视频一区| 亚洲中文av在线| 国产区一区二久久| 国产精品免费视频内射| 99精国产麻豆久久婷婷| 欧美最黄视频在线播放免费 | 欧美人与性动交α欧美软件| 高清视频免费观看一区二区| 亚洲成a人片在线一区二区| av免费在线观看网站| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 国产精品自产拍在线观看55亚洲 | 国产精品国产av在线观看| 精品无人区乱码1区二区| 9热在线视频观看99| 亚洲熟妇熟女久久| 99久久综合精品五月天人人| 久久久精品区二区三区| 叶爱在线成人免费视频播放| 国产人伦9x9x在线观看| 午夜免费成人在线视频| 日韩大码丰满熟妇| 91在线观看av| 亚洲第一青青草原| 久久久久视频综合| 久久久久久久国产电影| 啪啪无遮挡十八禁网站| 精品高清国产在线一区| 亚洲,欧美精品.| 成年人黄色毛片网站| 亚洲精华国产精华精| 久久久国产一区二区| 999久久久国产精品视频| 欧美激情久久久久久爽电影 | 成人18禁在线播放| 91成人精品电影| 成年人黄色毛片网站| 亚洲av成人一区二区三| 国产淫语在线视频| 欧美精品一区二区免费开放| 久久精品亚洲熟妇少妇任你| 天堂动漫精品| 可以免费在线观看a视频的电影网站| 欧美日韩黄片免| 69av精品久久久久久| 看片在线看免费视频| 他把我摸到了高潮在线观看| 在线观看免费午夜福利视频| 国产精品免费视频内射| 99国产综合亚洲精品| 久久人人爽av亚洲精品天堂| 国产在线观看jvid| 久9热在线精品视频| 欧美不卡视频在线免费观看 | 人人妻,人人澡人人爽秒播| 香蕉国产在线看| 热99国产精品久久久久久7| 黄色视频,在线免费观看| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 激情视频va一区二区三区| 国产精品久久视频播放| 国产无遮挡羞羞视频在线观看| 别揉我奶头~嗯~啊~动态视频| 自线自在国产av| 国产97色在线日韩免费| 国产不卡一卡二| 伦理电影免费视频| 在线天堂中文资源库| 男男h啪啪无遮挡| 91av网站免费观看| 欧美精品亚洲一区二区| 成人手机av| 飞空精品影院首页| 精品久久久久久电影网| 久久狼人影院| 最近最新中文字幕大全电影3 | 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| av电影中文网址| cao死你这个sao货| 一区二区三区激情视频| 女警被强在线播放| 欧美av亚洲av综合av国产av| 国产片内射在线| www.999成人在线观看| 成人精品一区二区免费| 国产精品偷伦视频观看了| 又黄又爽又免费观看的视频| 超色免费av| 国产精品久久久久久精品古装| 视频区图区小说| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 一二三四社区在线视频社区8| 国产成人免费无遮挡视频| 亚洲九九香蕉| 欧美日韩精品网址| 中文欧美无线码| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| avwww免费| 最近最新中文字幕大全电影3 | 50天的宝宝边吃奶边哭怎么回事| 国产男女超爽视频在线观看| 曰老女人黄片| 午夜福利在线观看吧| 老司机靠b影院| 免费在线观看亚洲国产| 一区二区日韩欧美中文字幕| 精品少妇久久久久久888优播| 国产精品一区二区在线观看99| 757午夜福利合集在线观看| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 成熟少妇高潮喷水视频| 天堂动漫精品| 又黄又粗又硬又大视频| 18在线观看网站| 少妇粗大呻吟视频| 精品久久蜜臀av无| 亚洲av美国av| 精品久久久精品久久久| 久久精品成人免费网站| 嫩草影视91久久| 自拍欧美九色日韩亚洲蝌蚪91| 1024香蕉在线观看| 成人精品一区二区免费| 亚洲av欧美aⅴ国产| 婷婷成人精品国产| 少妇的丰满在线观看| 精品国产美女av久久久久小说| av国产精品久久久久影院| 成在线人永久免费视频| 777久久人妻少妇嫩草av网站| 欧美色视频一区免费| 村上凉子中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 日韩三级视频一区二区三区| 99国产精品一区二区三区| 桃红色精品国产亚洲av| 欧美亚洲 丝袜 人妻 在线| 免费在线观看影片大全网站| 久久草成人影院| 国产精品免费一区二区三区在线 | 99国产精品免费福利视频| 好看av亚洲va欧美ⅴa在| 老鸭窝网址在线观看| 婷婷成人精品国产| 中出人妻视频一区二区| 中文字幕人妻丝袜一区二区| 一本综合久久免费| 高清毛片免费观看视频网站 | 国产精品久久久人人做人人爽| 久久青草综合色| 日本a在线网址| 黄网站色视频无遮挡免费观看| 老司机午夜十八禁免费视频| 精品人妻在线不人妻| 免费一级毛片在线播放高清视频 | 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 国产又色又爽无遮挡免费看| 亚洲 欧美一区二区三区| 51午夜福利影视在线观看| 999久久久精品免费观看国产| 久久久久久亚洲精品国产蜜桃av| 精品乱码久久久久久99久播| 午夜91福利影院| 又大又爽又粗| 精品亚洲成a人片在线观看| 伦理电影免费视频| 极品教师在线免费播放| 国产亚洲一区二区精品| 少妇的丰满在线观看| 中文字幕人妻丝袜一区二区| 久久精品亚洲熟妇少妇任你| 波多野结衣一区麻豆| 国产xxxxx性猛交| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美一区二区三区黑人| 每晚都被弄得嗷嗷叫到高潮| 熟女少妇亚洲综合色aaa.| 亚洲精品国产精品久久久不卡| 久久久久国产精品人妻aⅴ院 | 天天影视国产精品| 免费观看精品视频网站| 天天操日日干夜夜撸| 天天躁夜夜躁狠狠躁躁| www.熟女人妻精品国产| 一个人免费在线观看的高清视频| 国产亚洲av高清不卡| 国产区一区二久久| 高清视频免费观看一区二区| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 人妻 亚洲 视频| 99久久99久久久精品蜜桃| 亚洲人成电影观看| 无遮挡黄片免费观看| 黄色怎么调成土黄色| 99国产精品一区二区蜜桃av | 熟女少妇亚洲综合色aaa.| 国产一区二区激情短视频| 9热在线视频观看99| 久久午夜亚洲精品久久| 午夜免费成人在线视频| 中出人妻视频一区二区| 久久久精品免费免费高清| 欧美大码av| 亚洲av成人不卡在线观看播放网| 国产精品二区激情视频| 法律面前人人平等表现在哪些方面| av视频免费观看在线观看| 精品第一国产精品| 手机成人av网站| 精品久久久久久久毛片微露脸| 香蕉久久夜色| 久久亚洲真实| 黑人巨大精品欧美一区二区mp4| a在线观看视频网站| 国产精品久久久久久精品古装| av福利片在线| 亚洲精品在线观看二区| 国产单亲对白刺激| 一区二区日韩欧美中文字幕| xxx96com| 国产成人精品在线电影| 欧美精品啪啪一区二区三区| 国产黄色免费在线视频| 黄色 视频免费看| 极品人妻少妇av视频| 久久精品熟女亚洲av麻豆精品| 欧美大码av| 91成年电影在线观看| 岛国在线观看网站| 在线观看免费日韩欧美大片| 自线自在国产av| 99久久综合精品五月天人人| 久久中文看片网| 一区二区三区国产精品乱码| 亚洲av第一区精品v没综合| 女同久久另类99精品国产91| 欧美人与性动交α欧美精品济南到| 亚洲伊人色综图| 国产精品久久电影中文字幕 | 亚洲七黄色美女视频| 少妇 在线观看| 中文字幕人妻熟女乱码| 在线视频色国产色| av天堂久久9| 女人久久www免费人成看片| 美国免费a级毛片| 大香蕉久久成人网| 99re在线观看精品视频| 精品卡一卡二卡四卡免费| 午夜精品在线福利| 久久久精品免费免费高清| 欧美乱色亚洲激情| 18禁黄网站禁片午夜丰满| 午夜福利,免费看| 777久久人妻少妇嫩草av网站| 亚洲一区高清亚洲精品| 美女高潮到喷水免费观看| 国产亚洲一区二区精品|