• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orbital angular momentum density and spiral spectra of Lorentz–Gauss vortex beams passing through a single slit?

    2017-08-30 08:25:36ZhiYueJi季志躍andGuoQuanZhou周國(guó)泉
    Chinese Physics B 2017年9期

    Zhi-Yue Ji(季志躍)and Guo-Quan Zhou(周國(guó)泉)

    School of Sciences,Zhejiang Aamp;F University,Lin’an 311300,China

    Orbital angular momentum density and spiral spectra of Lorentz–Gauss vortex beams passing through a single slit?

    Zhi-Yue Ji(季志躍)and Guo-Quan Zhou(周國(guó)泉)?

    School of Sciences,Zhejiang Aamp;F University,Lin’an 311300,China

    Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function,an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived.By using the obtained analytical expressions,the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated.According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam,one can judge whether the topological charge is positive or negative.The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively.The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.

    Lorentz–Gauss vortex beam,single slit,orbital angular momentum density,topological charge

    1.Introduction

    The spreading of the Lorentzian distribution is proved to be higher than that of the Gaussian one.[1–4]Therefore, the combination of Lorentzian and Gaussian distributions, namely,the Lorentz–Gauss beam,can be used to describe the radiation emitted by a single mode laser diode.[5,6]The Lorentz–Gauss beam is the lowest–order mode of a super–Lorentz–Gauss beam family.[7,8]The properties of Lorentz–Gauss beams,including the beam propagation factor,[9]the focal shift,[10]the Wigner distribution,[11]the tight focusing,[12]and the radiation force,[13]have been extensively investigated. Also,the propagation of Lorentz–Gauss beams has been widely examined in various media such as free space,[2,14]a turbulent atmosphere,[15]a uniaxial crystal,[16,17]a Kerr medium,[18]and a strongly nonlocal nonlinear medium.[19]

    When the radiation emitted by a single mode diode laser goes through a spiral phase plate,the output is called the Lorentz–Gauss vortex beam.Its properties including the beam propagation factor,the kurtosis parameter,the focusing,the tunable optical gradient force,and the Wigner distribution have been studied.[20–25]Propagations of Lorentz–Gauss vortex beams in free space,in a turbulent atmosphere,and in a uniaxial crystal have also been demonstrated.[26–28]However,the major advantage of a Lorentz–Gauss vortex beam is that it carries the orbital angular momentum.In other words, the Lorentz–Gauss vortex beam carries a topological charge. Therefore,one tends to focus on the study of the topological charge or the orbital angular momentum of the Lorentz–Gauss vortex beam.The pioneering work reported the orbital angular momentum density of a general Lorentz–Gauss vortex beam in free space.[29]Nevertheless,a more effective method to measure the orbital angular momentum is the diffraction of the vortex beam by an obstacle.[30–34]The typical and simplest obstacle is the single slit.In the remainder of this paper,the diffraction of the Lorentz–Gauss vortex beam by a single slit is studied.

    2.Orbital angular momentum density and spiral spectra of Lorentz–Gauss vortex beams passing through a single slit

    In the Cartesian coordinate system,the z axis is taken to be the propagation axis.The single slit is located at the x axis as shown in Fig.1.The width of the single slit is a.The incident optical beam is a Lorentz–Gauss vortex beam,which is described by

    where w0is the waist of the Gaussian part,and w0xand w0yare the width parameters of the Lorentzian part in the x and y directions,respectively.Here,the Lorentz–Gauss vortex beam carries one topological charge.E+1(x0,y0,0)denotes that the topological charge is 1.E?1(x0,y0,0)means that the topological charge is?1.The Lorentz–Gauss vortex beam passing through the single slit obeys the well known Collins integralformula[35]

    where k=2π/λ is the wave number,λ is the optical wavelength in free space,and M is the topological charge.To obtain the analytical expression of EM(x,y,z),the Lorentz distribution should be expanded into the linear superposition of Hermite–Gaussian functions[36]

    where N is the term number of the expansion,and H2mis the 2m-th order Hermite polynomial.The expanded coefficient σ2mis given by[36]

    where erfc is the complementary error function.The value of σ2mdramatically decreases with increasing even number 2m. Here σ0=0.7399,σ2=0.9298×10?2,and σ6=1.112× 10?4.Then we introduce the aperture function circ(ζ),which is defined by

    Moreover,the aperture function is expanded as a finite sum of complex Gaussian functions

    where the complex expanded and the Gaussian coefficients αland βlcould be obtained by the optimization computation.[37]The expansion of the aperture function into 15 terms of complex Gaussian functionsisshown in Fig.2.The dotted curve in Fig.2 is added to demonstrate Eq.(5).Only at the edge of the aperture,the difference between Eqs.(5)and(6)is apparent.

    Fig.1.The single slit in the Cartesian coordinate system.

    Fig.2.The expansion of the aperture function into 15 terms of complex Gaussian functions.

    Finally,the following mathematical formulae are used:[38]

    where[p/2]gives the greatest integer less than or equal to p/2.After the above operations,the analytical expression of the Lorentz–Gauss vortex beam passing through a single slit reads

    where the auxiliary parameters ηland b2are defined as follows:

    The intensity distribution and the phase distribution of the Lorentz–Gauss vortex beam passing through a single slit turn out to be

    The orbital angular momentum density of the Lorentz–Gauss vortex beam passing through a single slit is given by[39]

    where ω is the circular frequency.ε0is the electric permittivity of a vacuum,and the asterisk denotes the complex conjugation.To obtain the spiral spectra of the Lorentz–Gauss vortex beam through a single slit,x and y in Eq.(9)are replaced by ρcosθ and ρsinθ,respectively.Thus,one has

    Then,the optical field of the Lorentz–Gauss vortex beam passing through a single slit can be expanded as[40]

    where anis given by

    The total power of the Lorentz–Gauss vortex beam passing through a single slit yields

    where Cnreads

    The weight coefficient of each spiral spectrum for the Lorentz–Gauss vortex beam passing through a single slit can be calculated by

    3.Numerical calculations and analyses

    Fig.3.(color online)The normalized intensity distribution of the diffracted Lorentz–Gauss vortex beam:(a)M=0,(b)M=1,(c) M=?1.

    According to the obtained analytical expressions,the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated.The calculation parameters are set as follows:λ=0.8μm,a=1 mm,and z=0.5 m.Figures 3 and 4 represent the normalized intensity and the phase distributions of the diffracted Lorentz–Gauss vortex beam with w0=w0x=w0y=1 mm,respectively.When the topological charge is equal to zero,the expansion of the beam spot in the y direction is larger than that in the x direction due to the confinement of the single slit.When the topological charge is equal to 1,the beam spot is composed of two lobes. Moreover,the orientation of the upper lobe is close to the left, and that of the lower lobe is close to the right.However,when the topological charge is equal to?1,the positions of the two lobes are just the opposite.That is,the upper lobe is located close to the right and the lower lobe is near the left.Figure 4 shows that the phase in the central region is symmetrical when the topological charge is equal to zero.When the topological charge is equal to 1,the phase in the upper central region is positive and that in the lower central region is negative.When the topological charge is equal to?1,the phase is negative in the upper central region and positive in the lower central region.The normalized intensity distribution in the case of M=1 is x-axial symmetrical to that of M=?1.So are the phase distributions in the cases of M=1 and M=?1.

    Fig.4.(color online)The phase distribution of the diffracted Lorentz–Gauss vortex beam:(a)M=0,(b)M=1,(c)M=?1.

    Here we mainly focus on the effects of the topological charge and three beam parameters on the orbital angular momentum density and the spiral spectra.The orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam with w0=w0x=w0y=1 mm is shown in Fig.5.When the topological charge is equal to zero,the orbital angular momentum density is positive in the first and the third quadrants and negative in the second and the fourth quadrants.Moreover,the area of the orbital angular momentum density in each quadrant is equivalent.Therefore,the overall orbital angular momentum is zero.The orbital angular momentum density distribution contains many lobes when the topological charge is 1 and?1.The magnitude of the negative orbital angular momentum density is far larger than that of the positive orbital angular momentum density when the topological charge is 1.Accordingly,the overall orbital angular momentum is negative,which only indicates the spiral direction. When the topological charge is?1,however,the magnitude of the positive orbital angular momentum density is far larger than that of the negative orbital angular momentum density, resulting in the positive overall orbital angular momentum. The influence of the parameter w0xon the orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam is plotted in Fig.6,where w0=w0y=1 mm and M=1.With decreasing parameter w0x,the magnitude of the orbital angular momentum density increases but the number of the lobes decreases.The shape of the orbital angular momentum density distribution also changes with decreasing parameter w0x.The influence of the parameter w0yon the orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam is shown in Fig.7, where w0=w0x=1 mm and M=1.With increasing parameter w0y,the magnitude of the orbital angular momentum density decreases,and the shape of the distribution of the orbital angular momentum density nearly keeps stable.Figure 8 presents the influence of the parameter w0on the orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam with w0x=w0y=1 mm and M=1.Both the magnitude and pattern size of the orbital angular momentum density increase with increasing parameter w0.Among the three beam parameters w0,w0x,and w0y,the shape of the orbital angular momentum density distribution is most sensitive to the parameter w0,and the magnitude of the orbital angular momentum density is most insensitive to the parameter w0.

    Fig.5.(color online)The orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam with w0=w0x= w0y=1 mm:(a)M=0,(b)M=1,(c)M=?1.

    Fig.6.(color online)The orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam with w0=w0y=1, M=1:(a)w0x=1 mm,(b)w0x=0.5 mm,(c)w0x=0.2 mm.

    Fig.7.(color online)The orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam with w0=w0x= 1 mm,M=1:(a)w0y=1 mm,(b)w0y=2 mm,(c)w0y=5 mm.

    The influence of the topological charge on the spiral spectra of the diffracted Lorentz–Gauss vortex beam is demonstrated in Fig.9,where w0=w0x=w0y=1 mm.The spiral spectra of the diffracted Lorentz–Gauss vortex beam expand due to the stronger diffraction effect caused by the single slit. When the topological charge is zero,the spectra of n=0,±2, ±4,and±6 can be observed obviously.The zero-order spectrum is dominant,and the corresponding weight coefficient is close to 0.80.The weight coefficient of n=±6 is so small that it can be neglected.When the topological charge is1,the spectrum of n=1 is dominant and the corresponding weight coefficient is close to 0.72.The spectra of n=?1 and 3,n=?3 and 5,n=?5 and 7,n=?7 and 9,n=?9 and 11 appear in the spiral spectra of M=1.The weight coefficient of n=?1 and 3 is the second largest,and the weight coefficient of n=?9 and 11 is very small.The spiral spectra of M=?1 are just the parallel shift of the spiral spectra of M=1.

    Fig.8.(color online)The orbital angular momentum density distribution of the diffracted Lorentz–Gauss vortex beam with w0x=w0y= 1 mm,M=1:(a)w0=1 mm,(b)w0=2 mm,(c)w0=5 mm.

    Figure 10 presents the influence of the beam parameter w0xon the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0=w0y=1 mm and M=1.With decreasing beam parameter w0x,the weight coefficient of the dominant spectrum decreases,but the weight coefficient of the other spectra slowly increases.With decreasing beam parameter w0x,the spiral spectra slightly expand,which indicates that the expansion of the spiral spectra is not very sensitive to the beam parameter w0x.The influence of the beam parameter w0yon the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0=w0x=1 mm and M=1 is shown in Fig.11. With increasing beam parameter w0y,the weight coefficient of the dominant spectrum decreases,and the weight coefficient of the other spectra increases.With increasing beam parameter w0y,the spiral spectra expand.It is because the reverse change of the parameter w0yin the y direction is similar to the positive change of the parameter w0xin the x direction. Figure 12 shows the influence of the beam parameter w0on the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0x=w0y=1 mm and M=1.Compared with the case of beam parameters w0xand w0y,the weight coefficient of the dominant spectrum decreases much quicker with increasing beam parameter w0.The weight coefficient of other spectra in Fig.12(c)can even be detected for n=20.The spiral spectra also expand with increasing beam parameter w0due to a stronger diffraction effect.The influence of the parameter w0on the spiral spectra is not similar to that of the parameter w0x. This is because the parameter w0xin Eq.(3)appears in both the Hermite polynomial and the Gaussian function.

    Fig.9.The influence of the topological charge on the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0=w0x= w0y=1 mm:(a)M=0,(b)M=1,(c)M=?1.

    Fig.10.The influence of the beam parameter w0x on the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0=w0y= 1 mm,M=1:(a)w0x=1 mm,(b)w0x=0.5 mm,(c)w0x=0.2 mm.

    Fig.11.The influence of the beam parameter w0y on the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0=w0x= 1 mm,M=1:(a)w0y=1 mm,(b)w0y=2 mm,(c)w0y=5 mm.

    Fig.12.The influence of the beam parameter w0 on the spiral spectra of the diffracted Lorentz–Gauss vortex beam with w0x=w0y= 1 mm,M=1:(a)w0=1 mm,(b)w0=2 mm,(c)w0=5 mm.

    4.Conclusion

    Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function,an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through the single slit is derived.Due to these two expansions,the analytical expression is approximate.The normalized intensity and the phase distributions of the diffracted Lorentz–Gauss vortex beam are numerically demonstrated in the reference plane. One can judge whether one topological charge is positive or negative according to the intensity distribution or the phase distribution of the diffracted Lorentz–Gauss vortex beam.The effects of the topological charge and the three beam parameters on the orbital angular momentum density of the diffracted Lorentz–Gauss vortex beam are systematically studied.The sign of the topological charge not only affects the sign of the orbital angular momentum density,but also affects the orientation of the orbital angular momentum density distribution. With decreasing one of the parameters w0xand w0yor increasing the parameter w0,the magnitude of the orbital angular momentum density increases.The shape of the orbital angular momentum density distribution is most sensitive to the parameter w0,and the magnitude of the orbital angular momentum density is most insensitive to the parameter w0.The influences of the three beam parameters on the spiral spectra of the diffracted Lorentz–Gauss vortex beam are also investigated. When the parameter w0increases,the diffraction effect becomes stronger.As a result,the spiral spectra of the diffracted Lorentz–Gauss vortex beam expand.As the parameter w0xin Eq.(3)appears in both the Hermite polynomial and the Gaussian function,the influence of the parameter w0xon the spiral spectra is not similar to that of the parameter w0.The numerical result denotes that the spiral spectra expand slowly with decreasing parameter w0x.It seems that the expansion of the spiral spectra is not very sensitive to the parameter w0x.With increasing parameter w0y,the spiral spectra expand.The reason is that the reverse change of the parameter w0yin the y direction is similar to the positive change of w0xin the x direction.The present study is useful for the measurement of the topological charges of vortex beams.Therefore,the best choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width larger than the waist of the Gaussian part.The current research is helpful not only to deepen the recognition of the properties of Laguerre–Gaussian beams,but also to the application of the orbital angular momentum.[41–45]

    [1]Dumke P 1975 J.Quantum Electron.11 400

    [2]Gawhary O E and Severini S 2006 J.Opt.A:Pure Appl.Opt.8 409

    [3]Zhou G Q and Chu X X 2010 Opt.Laser Technol.42 1093

    [4]Zhou G Q 2009 Opt.Laser Technol.41 953

    [5]Naqwi A and Durst F 1990 Appl.Opt.29 1780

    [6]Yang J,Chen T T,Ding G L and Yuan X 2008 Proc.SPIE 6824 68240A

    [7]Zhou G Q 2010 Chin.Phys.B 19 064201

    [8]Zhou G Q 2011 Chin.Phys.B 20 0114103

    [9]Zhou G Q 2009 Appl.Phys.B 96 149

    [10]Zhou G Q 2008 J.Opt.Soc.Am.A 25 2594

    [11]Torre A 2012 Appl.Phys.B 109 671

    [12]Saraswathi R C,Prabakaran K,Rajesh K B and Jaroszewicz Z 2014 Optik 125 5339

    [13]Jiang Y F,Huang K K and Lu X H 2011 Opt.Express 19 9708

    [14]Zhou G Q 2009 Acta Phys.Sin.58 6185(in Chinese)

    [15]Zhou G Q and Chu X X 2010 Opt.Express 18 726

    [16]Zhao C L and Cai Y J 2010 J.Mod.Opt.57 375

    [17]Wang X,Liu Z R and Zhao D M 2014 J.Opt.Soc.Am.A 31 872

    [18]Zheng H P,Chen R P and Ooi C H R 2013 Lasers Eng.24 345

    [19]Keshavarz A and Honarasa G 2014 Commun.Theor.Phys.61 241

    [20]Zhou G Q 2014 J.Opt.Soc.Am.A 31 1239

    [21]Rui F,Zhang D W,Ting M,Gao X M and Zhuang S L 2013 Optik 124 2969

    [22]Miao Y,Wang G X,Zhan Q F,Sui G R,Zhang R F,Lu X M and Gao X M 2017 Optik 128 201

    [23]Qu Q L,Lu X M,Peng J and Su W X 2017 Optik 129 50

    [24]Zeng X Y,Miao Y,Wang G X,Zhan Q F,Hong R J and Zhang R F 2017 Optik 130 481

    [25]Torre A 2016 Appl.Phys.B 122 55

    [26]Ni Y Z and Zhou G 2013 Opt.Commun.291 19

    [27]Ni Y Z and Zhou G 2012 Appl.Phys.B 108 883

    [28]Zhou G Q and Ru G Y 2013 PIER 143 143

    [29]Zhou G Q,Ji Z Y and Ru G Y 2016 Laser Phys.26 075002

    [30]Sztul H I and Alfano R R 2006 Opt.Lett.31 999

    [31]Guo C S,Yue S J and Wei G X 2009 Appl.Phys.Lett.94 231104

    [32]Tao H,Liu Y X,Chen Z Y and Pu J X 2012 Appl.Phys.B 106 927

    [33]Liu Y X,Sun S H,Pu J X and Lü B D 2013 Opt.Laser Technol.45 473

    [34]Lyubomir S,Suzana T,Ivan S,Ljiljana J and Alexander D 2015 Opt. Commun.350 301

    [35]Collins S A 1970 J.Opt.Soc.Am.60 1168

    [36]Schmidt P P 1976 J.Phys.B:At.Mol.Opt.Phys.9 2331

    [37]Wen J J and Breazeale M A 1990 Computational Acoustics(Lee D, Cakmak A and Vichnevetsky R,Ed.)(New York:Elsevier)

    [38]Gradshteyn I S and Ryzhik I M 1980 Table of Integrals,Series,and Products(New York:Academic Press)

    [39]Gao C Q,Wei G H and Webe H 2000 Sci.China Ser.A-Math.43 1306

    [40]Torner L and Torres J P 2005 Opt.Express 13 873

    [41]Ni Y Z and Zhou G Q 2015 Lasers in Eng.30 73

    [42]Zhou G Q and Ru G Y 2015 Lasers in Eng.30 159

    [43]Zhou G Q and Ru G Y 2013 PIER 141 751

    [44]Wang L,Zhao S M,Gong L Y and Cheng W W 2015 Chin.Phys.B 24 120307

    [45]Zou L,Wang L,Zhao S M and Chen H W 2016 Chin.Phys.B 25 114215

    24 March 2017;revised manuscript

    19 April 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/094202

    ?Project supported by the National Natural Science Foundation of China(Grant No.11574272)and Zhejiang Provincial Natural Science Foundation of China (Grant No.LY16A040014).

    ?Corresponding author.E-mail:zhouguoquan178@sohu.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    av卡一久久| 亚洲欧洲精品一区二区精品久久久 | 黑人欧美特级aaaaaa片| 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频| 精品国产乱码久久久久久小说| 最近中文字幕2019免费版| 久久久久人妻精品一区果冻| 国产极品天堂在线| 久久人人97超碰香蕉20202| 成人无遮挡网站| 天天躁夜夜躁狠狠久久av| 成年动漫av网址| 国产黄色视频一区二区在线观看| 一区二区三区四区激情视频| 日韩不卡一区二区三区视频在线| 男女下面插进去视频免费观看 | 久久99蜜桃精品久久| 肉色欧美久久久久久久蜜桃| 成年人免费黄色播放视频| 亚洲欧美成人精品一区二区| 亚洲欧美色中文字幕在线| 久久久久久人人人人人| 欧美日韩国产mv在线观看视频| 国产精品三级大全| 制服诱惑二区| 一级毛片黄色毛片免费观看视频| 深夜精品福利| 免费少妇av软件| 中文字幕亚洲精品专区| 春色校园在线视频观看| 亚洲欧美日韩卡通动漫| 男人操女人黄网站| 成人亚洲精品一区在线观看| 国产成人精品一,二区| 日日爽夜夜爽网站| 亚洲欧美日韩卡通动漫| 一本—道久久a久久精品蜜桃钙片| 国产精品偷伦视频观看了| 中文字幕另类日韩欧美亚洲嫩草| 精品人妻熟女毛片av久久网站| 亚洲第一av免费看| 飞空精品影院首页| av女优亚洲男人天堂| 国精品久久久久久国模美| 国产国拍精品亚洲av在线观看| 免费不卡的大黄色大毛片视频在线观看| 99视频精品全部免费 在线| 国产毛片在线视频| 亚洲国产毛片av蜜桃av| 一本久久精品| 亚洲婷婷狠狠爱综合网| av片东京热男人的天堂| 五月伊人婷婷丁香| 91aial.com中文字幕在线观看| 久久久亚洲精品成人影院| 全区人妻精品视频| 亚洲经典国产精华液单| 老女人水多毛片| 成年av动漫网址| 女人被躁到高潮嗷嗷叫费观| 建设人人有责人人尽责人人享有的| videossex国产| 国产免费视频播放在线视频| 日本爱情动作片www.在线观看| av一本久久久久| 成人国产麻豆网| 中文欧美无线码| av网站免费在线观看视频| 中文字幕人妻丝袜制服| 国产高清不卡午夜福利| 宅男免费午夜| 久久人人97超碰香蕉20202| 美女视频免费永久观看网站| 日韩一区二区三区影片| 黄色视频在线播放观看不卡| 咕卡用的链子| 欧美日韩国产mv在线观看视频| 热re99久久国产66热| 精品第一国产精品| 中文字幕最新亚洲高清| 色哟哟·www| 中文精品一卡2卡3卡4更新| 免费人妻精品一区二区三区视频| 欧美精品人与动牲交sv欧美| 日本-黄色视频高清免费观看| 久久国产精品大桥未久av| 成年美女黄网站色视频大全免费| 久久亚洲国产成人精品v| h视频一区二区三区| 成年动漫av网址| 亚洲精品一区蜜桃| 国产一级毛片在线| 三级国产精品片| 亚洲五月色婷婷综合| 性色avwww在线观看| 日本与韩国留学比较| 日本-黄色视频高清免费观看| 插逼视频在线观看| 男女下面插进去视频免费观看 | 国产一区二区三区av在线| 久久免费观看电影| 91国产中文字幕| 精品人妻偷拍中文字幕| 国产永久视频网站| 男女啪啪激烈高潮av片| 国产黄频视频在线观看| 国产福利在线免费观看视频| 男女边摸边吃奶| 视频在线观看一区二区三区| 日产精品乱码卡一卡2卡三| 免费高清在线观看视频在线观看| 18在线观看网站| 亚洲av国产av综合av卡| 丝袜人妻中文字幕| 母亲3免费完整高清在线观看 | 国产精品免费大片| 久久这里只有精品19| 亚洲精品乱久久久久久| 精品午夜福利在线看| 免费观看av网站的网址| 成年人免费黄色播放视频| 一区二区日韩欧美中文字幕 | 亚洲人与动物交配视频| 中文字幕av电影在线播放| 看十八女毛片水多多多| 久久精品aⅴ一区二区三区四区 | 777米奇影视久久| 有码 亚洲区| 热re99久久国产66热| av不卡在线播放| 99久国产av精品国产电影| 最近2019中文字幕mv第一页| 丝袜在线中文字幕| 亚洲伊人色综图| 少妇被粗大的猛进出69影院 | av卡一久久| 最近2019中文字幕mv第一页| 狠狠精品人妻久久久久久综合| videos熟女内射| 欧美日本中文国产一区发布| 午夜免费观看性视频| 一级爰片在线观看| 午夜福利视频在线观看免费| 午夜免费男女啪啪视频观看| www.av在线官网国产| 美女脱内裤让男人舔精品视频| 欧美日韩成人在线一区二区| 久久久久久伊人网av| 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| 18禁在线无遮挡免费观看视频| 水蜜桃什么品种好| 精品99又大又爽又粗少妇毛片| 男人添女人高潮全过程视频| 捣出白浆h1v1| 国产av精品麻豆| 美女大奶头黄色视频| 日本午夜av视频| 极品人妻少妇av视频| 免费不卡的大黄色大毛片视频在线观看| 中文精品一卡2卡3卡4更新| 两个人看的免费小视频| 亚洲精品av麻豆狂野| 欧美人与性动交α欧美软件 | 国产男女超爽视频在线观看| 超色免费av| 一区二区av电影网| 欧美精品av麻豆av| 女性被躁到高潮视频| 国产成人欧美| 18+在线观看网站| 国产一区二区激情短视频 | 成人无遮挡网站| 亚洲四区av| 亚洲精品中文字幕在线视频| 日韩视频在线欧美| 亚洲成色77777| 亚洲天堂av无毛| 成人国语在线视频| 搡老乐熟女国产| 黄色毛片三级朝国网站| 久久综合国产亚洲精品| 久久久久视频综合| 18禁裸乳无遮挡动漫免费视频| 免费久久久久久久精品成人欧美视频 | 成人黄色视频免费在线看| 婷婷色麻豆天堂久久| av免费在线看不卡| 亚洲伊人久久精品综合| 日韩中文字幕视频在线看片| 国产亚洲午夜精品一区二区久久| 丰满乱子伦码专区| 青春草亚洲视频在线观看| av天堂久久9| 国产在视频线精品| 9热在线视频观看99| 中文字幕精品免费在线观看视频 | 亚洲性久久影院| 欧美日韩综合久久久久久| 深夜精品福利| 亚洲国产毛片av蜜桃av| 中文字幕免费在线视频6| 久久人人97超碰香蕉20202| 亚洲精品久久成人aⅴ小说| 日韩一区二区视频免费看| 亚洲精品美女久久久久99蜜臀 | 寂寞人妻少妇视频99o| 伊人亚洲综合成人网| 69精品国产乱码久久久| 日韩三级伦理在线观看| √禁漫天堂资源中文www| 久久99热这里只频精品6学生| 久久久久精品性色| 国产一级毛片在线| 欧美成人午夜免费资源| 精品国产一区二区三区四区第35| 乱码一卡2卡4卡精品| 18禁在线无遮挡免费观看视频| 午夜老司机福利剧场| 欧美日韩亚洲高清精品| 免费看不卡的av| 精品国产露脸久久av麻豆| 久久精品国产自在天天线| 国产激情久久老熟女| 一本久久精品| 18禁动态无遮挡网站| 人妻 亚洲 视频| 亚洲精品美女久久av网站| 国产精品久久久久久久电影| 亚洲欧美成人综合另类久久久| 两个人看的免费小视频| 亚洲国产精品成人久久小说| 国产高清三级在线| 国产一区有黄有色的免费视频| 国产在线视频一区二区| 成人毛片a级毛片在线播放| 最近最新中文字幕免费大全7| 一二三四中文在线观看免费高清| 欧美精品亚洲一区二区| 久久久久久人妻| 伦精品一区二区三区| 免费人妻精品一区二区三区视频| 国产精品三级大全| 中文字幕精品免费在线观看视频 | 男女边摸边吃奶| 大码成人一级视频| 精品久久久精品久久久| 亚洲精品456在线播放app| 午夜视频国产福利| 伊人亚洲综合成人网| 国产麻豆69| 9191精品国产免费久久| 国产亚洲一区二区精品| 国产亚洲精品第一综合不卡 | 国产视频首页在线观看| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 午夜日本视频在线| av免费观看日本| 大片电影免费在线观看免费| 国产1区2区3区精品| 欧美性感艳星| 国产精品久久久久成人av| 亚洲精品中文字幕在线视频| 国产乱人偷精品视频| 欧美人与善性xxx| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 丝袜美足系列| 欧美日韩亚洲高清精品| 看十八女毛片水多多多| 最新中文字幕久久久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品成人在线| 久久久精品94久久精品| 少妇猛男粗大的猛烈进出视频| 亚洲欧美中文字幕日韩二区| 亚洲图色成人| 人妻一区二区av| videosex国产| 捣出白浆h1v1| 波多野结衣一区麻豆| 丰满乱子伦码专区| 亚洲精品国产av成人精品| 国产精品久久久久成人av| 女人被躁到高潮嗷嗷叫费观| 99久久人妻综合| 欧美xxxx性猛交bbbb| 狠狠精品人妻久久久久久综合| 丝瓜视频免费看黄片| 黄色配什么色好看| 国产福利在线免费观看视频| 一区二区三区精品91| 亚洲熟女精品中文字幕| 视频区图区小说| 亚洲精品久久午夜乱码| 人妻系列 视频| av黄色大香蕉| 在线天堂中文资源库| 汤姆久久久久久久影院中文字幕| 亚洲av.av天堂| 精品第一国产精品| 在现免费观看毛片| 新久久久久国产一级毛片| 国产免费现黄频在线看| 老司机影院毛片| 哪个播放器可以免费观看大片| 青青草视频在线视频观看| 人妻系列 视频| kizo精华| 亚洲在久久综合| 91aial.com中文字幕在线观看| 国产 一区精品| 一边亲一边摸免费视频| 青青草视频在线视频观看| 99热这里只有是精品在线观看| 色5月婷婷丁香| 免费高清在线观看视频在线观看| 国产精品偷伦视频观看了| 久久综合国产亚洲精品| 久久久久久久精品精品| 丝袜在线中文字幕| 久久av网站| 亚洲天堂av无毛| 国产激情久久老熟女| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 欧美精品人与动牲交sv欧美| 丝瓜视频免费看黄片| 女人被躁到高潮嗷嗷叫费观| 2022亚洲国产成人精品| 亚洲精品视频女| 男女下面插进去视频免费观看 | av在线播放精品| 最近中文字幕高清免费大全6| 人妻少妇偷人精品九色| 天天影视国产精品| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| 久久综合国产亚洲精品| 日韩免费高清中文字幕av| 免费少妇av软件| av.在线天堂| 大码成人一级视频| 97在线视频观看| 99久国产av精品国产电影| 久久久国产欧美日韩av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱码久久久久久按摩| 亚洲伊人久久精品综合| 一本色道久久久久久精品综合| 亚洲国产最新在线播放| 人人澡人人妻人| 建设人人有责人人尽责人人享有的| 成人综合一区亚洲| 丝袜人妻中文字幕| 狂野欧美激情性xxxx在线观看| 国产亚洲精品久久久com| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线| 国产有黄有色有爽视频| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 侵犯人妻中文字幕一二三四区| 午夜福利乱码中文字幕| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 欧美精品av麻豆av| 欧美xxxx性猛交bbbb| 免费人成在线观看视频色| 成人免费观看视频高清| 两性夫妻黄色片 | 美女国产视频在线观看| 精品国产国语对白av| 伊人久久国产一区二区| 欧美日韩综合久久久久久| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 美女中出高潮动态图| 欧美精品一区二区大全| 国产成人91sexporn| 人妻人人澡人人爽人人| 熟妇人妻不卡中文字幕| 在线天堂中文资源库| 亚洲av男天堂| 美国免费a级毛片| 国产毛片在线视频| 日韩三级伦理在线观看| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| 国产视频首页在线观看| 亚洲第一av免费看| 日本色播在线视频| 人妻人人澡人人爽人人| 伦精品一区二区三区| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 丝袜喷水一区| 午夜av观看不卡| 免费日韩欧美在线观看| 黄色一级大片看看| 免费av中文字幕在线| 久久久久久人人人人人| 国产永久视频网站| 卡戴珊不雅视频在线播放| 亚洲av在线观看美女高潮| 国产女主播在线喷水免费视频网站| 日韩中文字幕视频在线看片| 最近的中文字幕免费完整| 久久女婷五月综合色啪小说| 观看av在线不卡| 美女内射精品一级片tv| 黄色视频在线播放观看不卡| 免费看光身美女| 亚洲色图 男人天堂 中文字幕 | 亚洲国产精品一区三区| 天堂俺去俺来也www色官网| 亚洲av电影在线进入| 一级a做视频免费观看| 久久久精品区二区三区| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| 高清不卡的av网站| 亚洲综合色网址| 啦啦啦视频在线资源免费观看| 亚洲伊人色综图| 亚洲成人av在线免费| 欧美日韩视频精品一区| av卡一久久| h视频一区二区三区| 9热在线视频观看99| 精品人妻在线不人妻| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 秋霞伦理黄片| 日本与韩国留学比较| 午夜老司机福利剧场| 欧美+日韩+精品| 成人国语在线视频| 九色亚洲精品在线播放| 亚洲欧美成人精品一区二区| 成人国产麻豆网| 国产黄色视频一区二区在线观看| 性高湖久久久久久久久免费观看| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品| 99国产综合亚洲精品| 少妇的逼好多水| 国产精品一二三区在线看| 肉色欧美久久久久久久蜜桃| 夫妻午夜视频| 国产精品久久久久久久久免| 90打野战视频偷拍视频| 一本色道久久久久久精品综合| 欧美 亚洲 国产 日韩一| 欧美性感艳星| 午夜老司机福利剧场| 美女中出高潮动态图| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 两个人免费观看高清视频| 欧美日韩成人在线一区二区| 国产成人a∨麻豆精品| 久久国产精品男人的天堂亚洲 | 啦啦啦在线观看免费高清www| 免费黄色在线免费观看| 亚洲成人av在线免费| 天美传媒精品一区二区| 少妇熟女欧美另类| 纵有疾风起免费观看全集完整版| 免费观看无遮挡的男女| 乱人伦中国视频| 精品福利永久在线观看| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| av片东京热男人的天堂| 人妻系列 视频| 国产在线免费精品| 午夜激情久久久久久久| 另类精品久久| 男女下面插进去视频免费观看 | 夫妻午夜视频| 亚洲精品456在线播放app| 免费观看在线日韩| 视频中文字幕在线观看| 人妻系列 视频| 免费女性裸体啪啪无遮挡网站| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 色网站视频免费| 91精品国产国语对白视频| 成人综合一区亚洲| 最新的欧美精品一区二区| 99九九在线精品视频| 蜜桃在线观看..| 一本色道久久久久久精品综合| 一边摸一边做爽爽视频免费| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 亚洲图色成人| 国产精品成人在线| 亚洲av免费高清在线观看| 大香蕉久久网| 搡老乐熟女国产| 精品一区二区三卡| 国产一区二区在线观看日韩| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片| 91aial.com中文字幕在线观看| 啦啦啦视频在线资源免费观看| 九草在线视频观看| 人人妻人人添人人爽欧美一区卜| 少妇熟女欧美另类| 亚洲一码二码三码区别大吗| 久久久久人妻精品一区果冻| 九九爱精品视频在线观看| 在线观看免费日韩欧美大片| 老司机影院成人| 性高湖久久久久久久久免费观看| 国产日韩一区二区三区精品不卡| av在线老鸭窝| 视频在线观看一区二区三区| 精品少妇内射三级| 少妇被粗大的猛进出69影院 | 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 日韩人妻精品一区2区三区| 成人无遮挡网站| 九草在线视频观看| 久久综合国产亚洲精品| 日日啪夜夜爽| 日韩av在线免费看完整版不卡| 99久久精品国产国产毛片| 成人综合一区亚洲| 欧美bdsm另类| 亚洲av综合色区一区| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| av免费在线看不卡| 久久精品国产亚洲av天美| 日韩av在线免费看完整版不卡| 美国免费a级毛片| 欧美激情 高清一区二区三区| 777米奇影视久久| 自线自在国产av| 免费观看a级毛片全部| 久久国内精品自在自线图片| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频| 男女高潮啪啪啪动态图| 久久精品国产鲁丝片午夜精品| 只有这里有精品99| 两个人看的免费小视频| 欧美变态另类bdsm刘玥| 精品久久蜜臀av无| 人妻系列 视频| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线观看一区二区三区| 精品视频人人做人人爽| 亚洲国产av影院在线观看| 国产亚洲一区二区精品| 一级片免费观看大全| 91aial.com中文字幕在线观看| 久久久久久久久久久久大奶| 在线观看免费高清a一片| 国产免费现黄频在线看| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放| 最近最新中文字幕免费大全7| 久久精品国产亚洲av天美| 亚洲欧美成人综合另类久久久| 婷婷成人精品国产| 超色免费av| 欧美成人午夜精品| 成人毛片a级毛片在线播放| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 精品第一国产精品| 日韩电影二区| 观看av在线不卡| 国产一级毛片在线| 久久精品国产自在天天线| 国产日韩欧美视频二区| 欧美精品一区二区大全| 午夜激情av网站| 大香蕉久久网| 视频中文字幕在线观看| 国产毛片在线视频| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 插逼视频在线观看| 一本大道久久a久久精品| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 国产淫语在线视频| 国产成人免费观看mmmm| 黄色 视频免费看| 久久国产精品大桥未久av| 亚洲成人手机| av有码第一页| 男男h啪啪无遮挡| 久久av网站| 有码 亚洲区| 国产在线一区二区三区精| 国产一区二区三区av在线| 下体分泌物呈黄色|