• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Odd–even harmonic emission from asymmetric molecules: Identifying the mechanism?

    2017-08-30 08:25:46JianguoChen陳建國(guó)ShujuanYu于術(shù)娟YanpengLi李雁鵬ShangWang王賞andYanjunChen陳彥軍
    Chinese Physics B 2017年9期

    Jianguo Chen(陳建國(guó)),Shujuan Yu(于術(shù)娟),Yanpeng Li(李雁鵬), Shang Wang(王賞),and Yanjun Chen(陳彥軍)

    College of Physics and Information Technology,Shaan’xi Normal University,Xi’an 710119,China

    Odd–even harmonic emission from asymmetric molecules: Identifying the mechanism?

    Jianguo Chen(陳建國(guó)),Shujuan Yu(于術(shù)娟),Yanpeng Li(李雁鵬), Shang Wang(王賞),and Yanjun Chen(陳彥軍)?

    College of Physics and Information Technology,Shaan’xi Normal University,Xi’an 710119,China

    We study odd–even high-order harmonic generation(HHG)from oriented asymmetric molecules HeH2+numerically and analytically.The variational method is used to improve the analytical description of the ground-state wave function for the asymmetric system,with which the ground-state-continuum-state transition dipole is evaluated.The comparison between the odd–even HHG spectra and the improved dipoles allows us to identify and clarify the complex generation mechanism of odd–even harmonics from asymmetric molecules,providing deep insights into the relation between the odd–even HHG and the asymmetric molecular orbital.

    odd–even harmonics,asymmetric molecules,dipoles,variational method

    1.Introduction

    In recent years,high-order harmonic generation (HHG)[1,2]has been a subject of great research interest in strong laser–matter interactions.The HHG has important applications in attosecond science.[4]It can be well described by a three-step model,[5,6]in which harmonics are emitted through the processes of tunneling ionization,propagation,and recombination of the electron with the nuclei.For atoms and symmetric molecules,the emission of harmonics includes only the odd component due to the central symmetry of the atomic and molecular potentials.[7–13]For asymmetric molecules,[14–18]due to the absence of the inversion symmetry,both odd and even harmonics are emitted.[19–24]

    Present studies show that odd and even harmonics from asymmetric molecules possess different spectral properties[25–27]and carry different information of the target.[28–33]They therefore need to be studied separately.A simple model[28]has been proposed to describe the generation mechanism of the odd and even harmonics,where the emissions of odd(even)harmonics from asymmetric HeH2+molecules are considered to be closely associated with the socalled odd(even)transition dipole between the even(odd) component of the asymmetric orbital and the continuum state.This model has been applied to tomographic reconstruction of the asymmetric orbital of the CO molecule with HHG,[33]the analysis of two-center-interference-induced minima in the odd–even HHG spectra,[34]the polarization properties of the odd–even harmonics,[35]the time-resolved study of the odd–even HHG process,[36]and attosecond probing of the vibrational dynamics of asymmetric molecules with odd– even HHG,[37]etc.This model works better for asymmetric molecules with small internuclear distances.For large ones, the resonance between the ground state and the first excited state of the asymmetric system also plays an important role in the HHG process.[38]In this situation,to describe the odd–even HHG,a more complex model which considers this resonance effect is needed.

    On the other hand,the HHG spectra from symmetric molecules show a striking minimum,[39]which has been identified as arising from the effect of two-center interference and has attracted broad interest in recent years.[40–44]It has been shown that this minimum in the HHG spectrum corresponds to the minimum in the bound-continuum transition dipole and therefore has important applications in molecular high-order harmonic spectroscopy(HHS).For example,this minimum in the HHG spectrum can be used to read the bond length of the molecule[40,41]and judge the phase of the dipole which is important in the molecular orbital tomography procedure.[45]

    For asymmetric molecules,however,in many cases,the striking minimum disappears in the odd or even HHG spectrum and the reason has been attributed to the interplay of different recombination routes originating from the asymmetry of the molecular orbital.[34]Fortunately,with the simple odd–even-HHG model,[28]it is shown that when the minimum cannot be read from the odd–even HHG spectra directly,it can be probed[35]through the polarization measurement[46–53]of the odd–even HHG.Specifically,the position of the minimum in the odd or even dipole corresponds to the harmonic order for the maximal ellipticity of the odd or even harmonics.This polarization measurement of odd–even HHG alreadyshows promise for use in probing the vibrational motion of the asymmetric molecule.[37]However,the prediction of the dipole minimum by the polarization measurement does not always agree well with the theoretical evaluation.In some cases,a remarkable difference is also observed.[35]It is then natural to ask whether this remarkable difference arises from other mechanisms that go beyond the description of the simple model,or if it arises from only the inaccurate evaluation of the dipole in relevant theoretical treatments where some rough approximations are used?

    In this paper,we answer the question with improving the evaluation of the dipole.We choose the simplest asymmetric diatomic molecule HeH2+as the target molecule,with varying molecular parameters such as the effective charge and the internuclear distance.In the frame of linear combination of atomic-orbitals-molecular-orbitals(LCAO-MO)approximation,we use the variational method to obtain the analytical expression for the ground-state wave function of model HeH2+.Using the developed ground-state wave function,we calculate the transition dipole between the ground state and the continuum state.Then we compare the calculated odd–even dipoles with the spectra and ellipticity of odd–even harmonics from the three-dimensional(3D)model HeH2+obtained through numerical solution of the time-dependent Schr?dinger equation(TDSE).

    Our simulations show that the use of the variational method to the ground-state wave function remarkably improves the evaluation of the odd–even dipoles,in comparison with the exact ones obtained through diagonalizing the field free Hamiltonian in one-dimensional(1D)cases.In particular,the minimum in the improved odd–even dipoles agrees well with that predicted by the polarization measurements of odd–even harmonics for different molecular parameters.This agreement also holds as we compare the improved dipoles with the spectra,which are obtained with considering the transition of the continuum electrons back to only the ground state where a striking minimum also emerges.Our results verify the one-to-one matching between the odd–even HHG spectra and the odd–even dipoles,and give important suggestions on the generation mechanism of the odd–even harmonics.

    2.Theoretical descriptions

    2.1.TDSE simulations of odd–even HHG

    The Hamiltonian of the model HeH2+studied here is H(t)=P2/2+V(r)+r·E(t)(in atomic units ofˉh=e= me=1).We assume that the molecular axis is located in the xoy plane and the laser field is linearly polarized along a direction parallel to the x axis.The potential used here has the formHere(r?R2)2=(x+R2cosθ)2+(y+R2sinθ)2+z2.Z1and Z2are the effective charges.R1and R2are the positions of the He and H nuclei to the origin,respectively,with R1= Z2R/(Z1+Z2)and R2=Z1R/(Z1+Z2).R is the internuclear separation.ξ=0.5 is the smoothing parameter,and θ denotes the angle between the molecular axis and the laser polarization.For different R,the effective charges Z1and Z2are adjusted in such a manner that the ionization potential of model HeH2+reproduced in our 3D simulations is 1.1 a.u. E(t)=exE(t),where E(t)=f(t)E sinω0t is the external electric field,and exis the unit vector along the x axis.f(t)is the envelope function.E and ω0are the amplitude and the frequency of the external electric field,respectively.In our calculations,we use trapezoidally shaped laser pulses with a total duration of 10 optical cycles and linear ramps of three optical cycles.Numerically,the above Schr?dinger equation is solved by the spectral method.[54]We work with a grid of sizes Lx×Ly×Lz=409.6 a.u.×51.2 a.u.×51.2 a.u.for the x,y,and z axes,respectively.The laser wavelength used here is λ=800 nm and the laser intensity is I=8×1014W/cm2. In each time step,the TDSE wave function ψ(t)of H(t)is multiplied by a mask function to absorb the continuum wave packet at the boundary.The mask function along the x axis has the form F(x)=cos1/8[π(|x|?x0)/(Lx?2x0)]for|x|≥x0and F(x)=1 for|x|<x0.Here,x0is the boundary of the absorbing procedure along the x axis.For the accurate simulations,we have used x0=Lx/8.The situation is similar for other dimensions of y and z.With the present laser parameters, the maximal classical displacement[5]of the electron along the laser polarization is xmax=2E/w20≈93 a.u.,which can easily be represented in our numerical grids.The absorbing procedure of x0=Lx/8 is also sufficient to retain the contributions of long–short trajectories and multiple returns[6]to HHG.

    Alternatively,we can set the boundary of the absorbing procedure along the x direction(i.e.,the direction of the laser polarization)as x0=1.2E/w20with y0=Ly/8 and z0=Lz/8 in the y and z directions unchanged.This treatment removes the contributions of the long trajectory and multiple returns,and the short-trajectory contributions are not influenced.We therefore can analyze the ellipticity of harmonics only arising from the short trajectory.The value of x0=1.2E/w20corresponds to the maximal displacement of the electron as it travels in the laser field following the short trajectory.

    According to the three-step model,it is well known that in each laser cycle,the long and the short electron trajectories contribute significantly to the HHG,which can be modulated through the propagation effect[55]or using phase-stabilized driving pulses.[56]It has been shown that the interference of the long and short electron trajectories[57]greatly influences the ellipticity of the harmonics.[58]As a result,the ellipticity of odd or even harmonics from asymmetric molecules shows strong oscillation and it is difficult to identify the angle dependence of the ellipticity.[35]For these reasons,in this paper,we consider only the short-trajectory TDSE results,for which the elipticity of the odd–even HHG spectra shows a clear dependence on the orientation angle.

    Once the TDSE wave function ψ(t)is obtained,the coherent part of the HHG spectrum,parallel or perpendicular to the laser polarization,can be evaluated using

    where ω is the emitted-proton frequency.To study the influence of the excited states on the HHG,the following expression is also used in the evaluation of the HHG spectrum:

    which denotes the transition of the continuum electron back to the ground state|0〉with the amplitude a0(t)=〈0|ψ(t)〉. Here,the contributions of the excited states are excluded.

    The ellipticity of HHG is determined by the amplitude ratio and the phase difference of the parallel and perpendicular harmonics

    whereμ=S⊥/S‖and δ=φ⊥?φ‖.The intensity and phase of the harmonic components are given by S‖(⊥)=|F‖(⊥)(ω)|2and φ‖(⊥)(ω)=arg[F‖(⊥)(ω)].The range of the ellipticity is 0≤ε≤1.The linear,elliptical,and circular polarizations correspond to ε=0,0<ε<1,and ε=1,respectively.

    2.2.Analytical description of odd–even HHG

    According to the simple model,[28]the dipole Dodd(ω,θ) that is mainly responsible for the emission of odd harmonics from HeH2+along the laser polarization e‖can be written as

    with Godd(ω,θ)=a1cos(pkR1cosθ)+a2cos(pkR2cosθ). Similarly,the dipole Deven≡Deven(ω,θ)that is related to the emission of even harmonics along the laser polarization can be written as

    with Geven(ω,θ)=a1sin(pkR1cosθ)?a2sin(pkR2cosθ). Here,R1=Z2R/(Z1+Z2)and R2=Z1R/(Z1+Z2).R is the internuclear separation.Z1and Z2are the effective changes of the He and H nuclei.Ipis the ground-state ionization potential of HeH2+.pkis the effective momentum of the continuum state,|p〉∝|eipk·r〉,with pk=|pk|=[2(Ip+Ep)]1/2that considers the Coulomb acceleration.[45]Epis the energy of the continuum state|p〉,agreeing with the energy conservation relation Ep=ω?Ip.In the expressions of Eqs.(4)and (5),the ground-state wave function φ1σ(r)of HeH2+in the mass-center coordinate is roughly approximated by φ1σ(r)= Nf[a1e?κra+a2e?κrb].Here,Nfis the normalization factor, ra=|r?R1|,and rb=|r?R2|.

    In this paper,we improve the description of φ1σ(r)with the variational method.According to the LCAO-MO approximation,we assume that the ground-state wave function φ1σ(r)of HeH2+in the mass-center coordinate has the form φ1σ(r)=α?a+β?b.Here,α and β are the coefficients.?a=are the wave functions of He+ion and H atom,respectively,with κ1=Z1and κ2=Z2.We approximate the continuum state|p〉by the plane wave as in Eqs.(4)and(5).Then the dipole Dodd(even)(ω,θ) can be written as

    2.3.Application of variational method to HeH2+

    The Hamiltonian of the asymmetric molecule HeH2+is

    Here,V(r)=?Z1/ra?Z2/rbis the coulomb potential with raand rbbeing the positions of the electron to the two nuclei as defined following Eq.(5).Z1and Z2are the effective charges,and R is the internuclear separation.In the frame of LCAO-MO approximation,the bound wave function of HeH2+in the mass-center coordinate can be written as

    The energy of the asymmetric system can be evaluated using

    Substituting Eqs.(8)and(9)into Eq.(10),we have

    with

    where Ea=?Z12/2 and Eb=?Z22/2 are the ground-state energies of He+ion and H atom,respectively.According to the normalization condition for ?aand ?b,we have Saa=Sbb=1 and Sab=Sba.Taking the derivative of α or β in Eq.(11),we obtain the following equations:

    The secular equation for Eq.(12)is

    To solve the secular equation,we have AE2+BE+C=0, withandThe solutions of the above equation are the energies of the 1σ and 2σ states

    According to the normalization condition of Eq.(9),we have

    Then we arrive at

    Substituting Eqs.(12)and(13)(Eq.(14))into Eq.(15),we have

    3.Results and discussion

    In the following,we apply the variational method to model HeH2+with different molecular parameters such as the effective charges Z1and Z2and the internuclear distance R. We make comparisons between the previous dipoles and the improved dipoles.Then we use these dipoles as a benchmark to analyze the HHG mechanism of odd–even harmonics from asymmetric molecules.

    3.1.1σ-state and 2σ-state energy curves and improved ground-state wave function

    In Fig.1,we compare the R-dependent ground-state energy of HeH2+obtained by the variational method(blacktriangle)with that obtained by the exact numerical simulations (red-circle).The results of the two different methods show good agreement with each other.

    In Table 1,we show the coefficients of α and β obtained with the variational method for HeH2+at different R. As shown in Table 1,the parameter α1is much larger than β1,implying that for the 1σ state of HeH2+,the probability density distribution around the helium nucleus is much higher than that around the hydrogen nucleus.In contrast,for the 2σ state,the electron is mainly located around the H nucleus(the parameter α2is smaller than β2).

    Fig.1.(color online)R-dependent 1σ-state(a)and 2σ-state(b)energy of model HeH2+with Z1=2 and Z2=1 obtained by two different methods:the variational method with Eqs.(13)and(14)(black-triangle)and the exact numerical simulation(red-circle).

    Table 1.Coefficients of the wave functions of Eq.(18)for HeH2+obtained using the variational method with Z1=2 and Z2=1 at different internuclear separations R.α1 and β1 obtained using Eq.(16)are the coefficients for the 1σ state.α2 and β2 obtained using Eq.(17)are the coefficients for the 2σ state.

    These coefficients also show that the 1σ wave function φ1σ(r)=α?a+β?bobtained with the variational method differs remarkably from the previous one φ1σ(r)=Nf[a1e?κra+ a2e?κrb].One can expect that this difference will play an important role in the calculation of the odd–even dipoles,as shown below.

    The accurate calculation of the bound-continuum transition dipole〈0|r|p〉in 3D cases is difficult,as it needs the knowledge of both the bound state|0〉and the continuum state|p〉.Here,we evaluate the exact dipole in 1D cases where all of the bound and continuum states of the system can be obtained by diagonalizing the field-free Hamiltonianat the fixed-nuclei approximation.The 1D asymmetric Coulomb potential used here has the form V(x)=with ξ=0.5 and Z2=Z1/2.R1=Z2R/(Z1+Z2)and R2=Z1R/(Z1+Z2). For different internuclear distances R,we adjust the parameter Z1in such a manner that the ionization potential of the 1D asymmetric system reproduced in our numerical simulations equals 2.25 a.u.(the ionization potential of).When the calculated continuum state has an odd-like(even-like)parity, through the expression〈0|r|p〉,we obtain the corresponding odd(even)exact dipole,[28]as shown in Figs.2(a)and 2(b). The parameters Z1and Z2used in the numerical simulations are also used in evaluating the analytical dipoles with Eqs.(4)–(7)in Fig.2.

    Fig.2.(color online)Comparisons of odd(solid-black)and even (dashed-red)dipoles for HeH2+with I p=2.25 a.u.,Z1/Z2=2 at R=2 a.u.(the left column)and R=4 a.u.(right),obtained by different methods.In panels(a)and(b),we show the 1D exact dipoles |〈0|x|p〉|2/ω4 for the continuum state|p〉having the odd-like(corresponding to odd dipoles)or even-like(even dipoles)parity.The continuum state|p〉has the energy E p=ω?I p.Here,ω=nω0 is the assumed harmonic energy with ω0=0.057 a.u.(λ=800 nm).In panels(c)and(d),we show the dipoles|D odd(even)(θ,ω)|2/ω4 with θ=0° obtained using Eqs.(4)and(5)(the previous dipoles).In panels(e) and(f),we show those obtained using Eqs.(6)and(7)(the improved dipoles).The log10 scale is used here.

    One can observe from the intersections of the odd(solid black)versus even(dashed-red)dipoles in Fig.2 that the improved dipoles agree better with the exact ones.We use the vertical-dashed arrows to indicate several of these intersections.For the positions of the minima in the odd or even dipoles,the improved ones are also closer to the exact ones, especially for the minima in the odd dipoles,as indicated by the vertical-solid arrows in the right column of Fig.2.These results verify the applicability of the ground-state wave function obtained with the variational method in calculating the odd–even dipoles for HeH2+.

    It should be stressed that although the use of the variational method improves the agreement between the exact and the analytical odd–even dipoles.There are still some differences between them,both in the positions of the minima in the dipoles and the intersections of the odd versus even dipoles. These differences can arise from the plane-wave approximation with the effective momentum pk[59]for the continuum electron in calculating the dipoles,where the Coulomb effect is not well described.One can expect that this Coulomb effect is stronger for molecules with larger ionization potentials.

    3.2.Comparison between dipoles and spectra

    It has been shown[35]that for model HeH2+with small internuclear distances R,the previous dipole of Eq.(4)associated with odd harmonics shows a striking minimum.However, the minimum is absent in the odd TDSE spectrum.By contrast,the ellipticity curve of odd harmonics shows a maximum at one harmonic order at which the minimum appears in the odd dipole.The ellipticity of harmonics therefore can be used as a tool to probe the position of the minimum in the dipole. This dipole minimum is important,as it encodes the information of the molecular structure and has potential applications in asymmetric molecular orbital imaging.[33]However,in some cases,the position of the minimum in the dipole does not agree well with the harmonic order for maximal ellipticity.To use the ellipticity measurement of harmonics as a tool to judge the dipole minimum,it is necessary to clarify this disagreement.

    In Fig.3,we compare the spectra,ellipticity,and dipoles of odd harmonics for a model HeH2+molecule with Ip= 1.1 a.u.,Z1/Z2=1.5,and R=1.5 a.u.at different orientation angles θ.The spectra are obtained through 3D TDSE simulations.

    Fig.3.(color online)Comparisons of(a)–(c)spectra,(d)–(f)ellipticity,and(g)–(i)relevant dipoles of odd harmonics for 3D model HeH2+ with I p=1.1 a.u.,Z1/Z2=1.5,and R=1.5 a.u.at θ=10°(the left column),θ=30°(middle),and θ=50°(right).The odd spectra are calculated using Eq.(1)(accurate spectra,solid-black)and Eq.(2)(spectra associated with the transition of the electron back to only the ground state,dashed-red)with short-trajectory 3D TDSE simulations.The odd dipoles are calculated using Eq.(4)(previous dipoles,solid-black)andEq.(6)(improved dipoles,dashed-red).The log10 scale is used to show the spectra and dipoles.

    First,one can observe that the accurate TDSE spectra of Eq.(1)(solid-black)in the first row of Fig.3 do not show a striking minimum.By contrast,the spectra approximated with Eq.(2)(dashed-red),where the transition of the continuum electron back to only the ground state is considered,show a striking minimum.The position of the spectral minimum shifts towards higher harmonic orders as the orientation angle increases.The comparisons imply that the transition of the continuum electron back to the excited states plays an important role in the HHG of asymmetric molecules,resulting in the disappearance of the minimum in the accurate TDSE spectrum of Eq.(1).

    Secondly,corresponding to the spectral minima in the first row of Fig.3,the ellipticity curves of harmonics in the second row of Fig.3 show a striking maximum.In particular, the maximal ellipticity appears at the harmonic order at which the improved dipoles of Eq.(6)(dashed-red)in the third row of Fig.3 show a striking minimum,as indicated by the vertical arrows.In contrast,the positions of the minima in the previous dipoles of Eq.(4)(solid-black)in the third row of Fig.3 differ remarkably from the improved ones and this difference is more remarkable for larger orientation angles θ.These comparisons reveal that there is a one-to-one matching between the dipole minimum and the ellipticity maximum.The previous dipoles of Eq.(4)with a rough approximation for the ground-state wave function underestimate the positions of the minima for about 10 to 30 harmonic orders here.

    To check our results,we also perform simulations at other molecular parameters,as shown in Figs.4 and 5,where wefix the value of Z1/Z2and change the value of the internuclear distance R.On the whole,in all cases,the position of the minimum in the improved dipole agrees with the harmonic order at which the maximal ellipticity emerges.By contrast,the position of the minimum in the pervious dipoles differs remarkably from the harmonic order of the maximal ellipticity in some cases.It should be mentioned that for the case of the large angle of θ=50°in Fig.4(i),the improved dipole has no minimum.The corresponding HHG spectra in Fig.4(c)also do not show a minimum.In this case,the correspondence between the improved dipole and the ellipticity is not very obvious.However,as we increase the laser wavelength(such as λ=900 nm)with extending HHG cutoff,both minima appear in the HHG spectra and the improved dipole, and the correspondence between the improved dipole and the ellipticity becomes striking.In addition,we also fix the value of R and change the value of Z1/Z2,the close relation between the dipoles,spectra,and ellipticity is also observed in our extended simulations.For simplicity,in the above discussion, we have chosen the HeH2+with an active electron as the target molecule.This close relation is also expected to appear for other asymmetric molecules such as CO with more electrons,for which the odd–even dipoles also give a good prediction of the relative yields of odd–even harmonics.[33]When applying the variational method to CO to obtain the analytical expression of the 1σ ground-state wave function,the multiple-electron effect needs to be considered.

    Fig.4.(color online)Same as Fig.3,but for modelwith R=1.7 a.u.and Z1/Z2=2.

    Fig.5.(color online)Same as Fig.3,but for modelwith R=2 a.u.and Z1/Z2=2.

    4.Conclusion

    We have studied the HHG from asymmetric molecules, focusing on the generation mechanism of odd–even harmonics.In the frame of LCAO-MO approximation,we applied the variational method to obtain the analytical expression for the ground-state wave function of model HeH2+.The obtained ground-state wave function remarkably improves the agreement between odd–even dipoles and ellipticity of odd–even harmonics.Specifically,the position of the minimum in the dipoles agrees with the harmonic order for the maximal ellipticity.As the minimum is usually absent in the HHG spectra of asymmetric molecules,our work supports the conclusion that the ellipticity measurement of harmonics can be used as a tool to probe the position of the minimum.The one-to-one matching between the dipole minimum and the ellipticity maximum for odd or even harmonics also sheds light on the complex generation mechanism of odd–even harmonics from asymmetric molecules.

    [1]McPherson A,Gibson G,Jara H,Johann U,Luk T S,McIntyre I A, Boyer K and Rhodes C K 1987 J.Opt.Soc.Am.B 4 595

    [2]L’Huillier A,Schafer K J and Kulander K C 1991 J.Phys.B 24 3315

    [3]Antoine P,Anne L and Lewenstein M 1996 Phys.Rev.Lett.77 1234

    [4]Krausz F and Ivanov M 2009 Rev.Mod.Phys.81 163

    [5]Corkum P B 1993 Phys.Rev.Lett.71 1994

    [6]Lewenstein M,Balcou P,Ivanov M Y,L’Huillier A and Corkum P B 1994 Phys.Rev.A 49 2117

    [7]Lein M,Hay N,Velotta R,Marangos J P and Knight P L 2002 Phys. Rev.A 66 023805

    [8]Lein M,Corso P P,Marangos J P and Knight P L 2003 Phys.Rev.A 67 023819

    [9]Lagmago K G and Bandrauk A D 2005 Phys.Rev.A 71 053407

    [10]Zhou X X,Tong X M,Zhao Z X and Lin C D 2005 Phys.Rev.A 72 033412

    [11]Wang B,Cheng T,Li X,Fu P,Chen S and Liu J 2005 Phys.Rev.A 72 063412

    [12]Chen J,Chu S I and Liu J 2006 J.Phys.B 39 4747

    [13]Song Y,Li S Y,Liu X S,Guo F M and Yang Y J 2013 Phys.Rev.A 88 053419

    [14]Kamta G L and Bandrauk A D 2005 Phys.Rev.Lett.94 203003

    [15]Wu J,Zeng H and Guo Cl2006 Phys.Rev.A 74 031404

    [16]Rupenyan A,Kraus P M,Schneider J and W?rner H J 2013 Phys.Rev. A 87 031401

    [17]Akagi H,Otobe T,Staudte A,Shiner A,Turner F,D?rner R,Villeneuve D M and Corkum P B 2009 Science 325 1364

    [18]Shi Y Z,Zhang B,Li W Y,Yu S J and Chen Y J 2017 Phys.Rev.A 95 033406

    [19]Etches A and Madsen L B 2010 J.Phys.B 43 155602

    [20]Augstein B B and Faria C F D M 2011 J.Mod.Opt.58 1173

    [21]Pan Y,Zhao S F and Zhou X X 2013 Phys.Rev.A 87 035805

    [22]Zhu XS,Zhang QB,Hong WY,Lan P F and Lu P X 2011 Opt.Express 19 436

    [23]Du H C,Luo L Y,Wang X S and Hu B T 2012 Phys.Rev.A 86 013846

    [24]Miao X Y and Du H N 2013 Phys.Rev.A 87 053403

    [25]Bian X B and Bandrauk A D 2010 Phys.Rev.Lett.105 093903

    [26]Etches A,Gaarde M B and Madsen L B 2011 Phys.Rev.A 84 023418

    [27]Heslar J,Telnov D and Chu S I 2011 Phys.Rev.A 83 043414

    [28]Chen Y J and Zhang B 2011 Phys.Rev.A 84 053402

    [29]Frumker E,Hebeisen C T,Kajumba N,Bertrand JB,W?rner HJ,Spanner M,Villeneuve D M,Naumov A and Corkum P B 2012 Phys.Rev. Lett.109 113901

    [30]Kraus P M,Rupenyan A and W?rner H J 2012 Phys.Rev.Lett.109 233903

    [31]Frumker E,Kajumba N,Bertrand J B,W?rner H J,Hebeisen C T, Hockett P,Spanner M,Patchkovskii S,Paulus G G,Villeneuve D M, Naumov A and Corkum P B 2012 Phys.Rev.Lett.109 233904

    [32]Kraus P M,Baykusheva D and W?rner H J 2014 Phys.Rev.Lett.113 023001

    [33]Chen Y J,Fu L B and Liu J 2013 Phys.Rev.Lett.111 073902

    [34]Zhang B,Chen Y J,Jiang X Q and Sun X D 2013 Phys.Rev.A.88 053428

    [35]Yu S J,Zhang B,Li Y,Yang S and Chen Y J 2014 Phys.Rev.A 90 053844

    [36]Zhang B,Yu S J,Chen Y J,Jiang X Q and Sun X D 2015 Phys.Rev.A. 92 053833

    [37]Li W Y,Yu S J,Wang S,and Chen Y J 2016 Phys.Rev.A.94 053407

    [38]Chen Y J and Zhang B 2012 Phys.Rev.A.86 023415

    [39]Lein M,Hay N,Velotta R,Marangos J P and Knight P L 2002 Phys. Rev.Lett.88 183903

    [40]Kanai T,Minemoto S and Sakai H 2005 Nature 435 470

    [41]Vozzi C,Calegari F,Benedetti E,Caumes J P,Sansone G,Stagira S, Nisoli M,Torres R,Heesel E,Kajumba N,Marangos J P,Altucci C and Velotta R 2005 Phys.Rev.Lett.95 153902

    [42]Le A T,Tong X M and Lin C D 2006 Phys.Rev.A 73 041402

    [43]Chen Y J,Liu J and Hu B 2009 J.Chem.Phys.130 044311

    [44]Wu Y,Zhang J,Ye H and Xu Z 2011 Phys.Rev.A 83 023417

    [45]Itatani J,Levesque J,Zeidler D,Niikura H,Pepin H,Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867

    [46]Son S K,Telnov D A and Chu S I 2010 Phys.Rev.A 82 043829

    [47]Zhang X F,Zhu X S,Liu X,Wang D,Zhang Q B,Lan P F and Lu P X 2017 Opt.Lett.42 1027

    [48]Zhou X,Lock R,Wagner N,Li W,Kapteyn H C and Murnane M M 2009 Phys.Rev.Lett.102 073902

    [49]Li L,Wang Z,Li F and Long H 2017 Opt.Quant.Electron.49 73

    [50]Levesque J,Mairesse Y,Dudovich N,Pépin H,Kieffer J C,Corkum P B and Villeneuve D M 2007 Phys.Rev.Lett.99 243001

    [51]Zhai C Y,Zhu X S,Lan P F,Wang F,He L X,Shi W J,Li Y,Li M, Zhang Q B and Lu P X 2017 Phys.Rev.A 95 033420

    [52]Ramakrishna S,Sherratt P A J,Dutoi A D and Seideman T 2010 Phys. Rev.A 81 021802

    [53]Sherratt P A J,Ramakrishna S and Seideman T 2011 Phys.Rev.A 83 053425

    [54]Feit M D,Fleck J J A and Steiger A 1982 J.Comput.Phys.47 412

    [55]Antoine P,L’Huillier A and Lewenstein M 1996 Phys.Rev.Lett.77 1234

    [56]Sansone G,Benedetti E,Caumes J P,Stagira S,Vozzi C,Silvestri S D and Nisoli M 2006 Phys.Rev.A 73 053408

    [57]Za?r A,Holler M,Guandalini A,Schapper F,Biegert J,Gallmann L, Keller U,Wyatt A S,Monmayrant A,Walmsley I A,Cormier E,Auguste T,Caumes J P and Salières P 2008 Phys.Rev.Lett.100 143902

    [58]Strelkov V V,Gonoskov A A,Gonoskov I A and Ryabikin M Y 2011 Phys.Rev.Lett.107 043902

    [59]Chen Y J and Hu B 2009 Phys.Rev.A 80 033408

    22 March 2017;revised manuscript

    25 April 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/094209

    ?Project supported by the National Natural Science Foundation of China(Grant No.11274090)and the Fundamental Research Funds for the Central Universities, China(Grant No.SNNU.GK201403002).

    ?Corresponding author.E-mail:chenyanjun@snnu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    日日摸夜夜添夜夜爱| av在线天堂中文字幕| 午夜免费激情av| 亚洲av不卡在线观看| 免费黄网站久久成人精品| 大香蕉久久网| 26uuu在线亚洲综合色| 久久久久久大精品| 男人和女人高潮做爰伦理| 内地一区二区视频在线| 在线观看66精品国产| 国产一区二区在线观看日韩| 亚洲18禁久久av| 亚洲国产最新在线播放| 久久精品国产亚洲av天美| 亚洲性久久影院| 亚洲精品亚洲一区二区| 天堂√8在线中文| 91在线精品国自产拍蜜月| 国产亚洲精品久久久com| 亚洲综合精品二区| 午夜福利在线观看吧| 亚洲综合精品二区| 午夜精品在线福利| 色视频www国产| 国产一区二区在线观看日韩| 村上凉子中文字幕在线| 3wmmmm亚洲av在线观看| 久久这里只有精品中国| 亚洲伊人久久精品综合 | 97超碰精品成人国产| 亚洲性久久影院| 国产精品人妻久久久久久| 亚洲欧美成人精品一区二区| 欧美激情国产日韩精品一区| 国产毛片a区久久久久| 亚洲色图av天堂| 黄色配什么色好看| 欧美最新免费一区二区三区| 永久免费av网站大全| 久久精品人妻少妇| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜撸| 久久久成人免费电影| 九九久久精品国产亚洲av麻豆| 看非洲黑人一级黄片| 国内少妇人妻偷人精品xxx网站| 永久免费av网站大全| 亚洲乱码一区二区免费版| 热99在线观看视频| 色吧在线观看| 美女xxoo啪啪120秒动态图| 日日干狠狠操夜夜爽| 能在线免费看毛片的网站| 国产麻豆成人av免费视频| 亚洲精品456在线播放app| 国产精品麻豆人妻色哟哟久久 | 黄色欧美视频在线观看| 国产伦理片在线播放av一区| 三级经典国产精品| 男的添女的下面高潮视频| 五月伊人婷婷丁香| 国产欧美另类精品又又久久亚洲欧美| 深爱激情五月婷婷| 99久国产av精品国产电影| 干丝袜人妻中文字幕| 黄色欧美视频在线观看| av天堂中文字幕网| 深夜a级毛片| 国产精品国产三级国产av玫瑰| 在线观看美女被高潮喷水网站| 日韩亚洲欧美综合| 丝袜喷水一区| 男的添女的下面高潮视频| 国产成人福利小说| 久久久国产成人精品二区| 国产成人freesex在线| av免费观看日本| 亚洲欧美日韩卡通动漫| 国产成人a区在线观看| 天堂中文最新版在线下载 | 寂寞人妻少妇视频99o| 国产成年人精品一区二区| 大香蕉97超碰在线| 久久精品熟女亚洲av麻豆精品 | 91aial.com中文字幕在线观看| 日本爱情动作片www.在线观看| 成人二区视频| 少妇高潮的动态图| 国产欧美另类精品又又久久亚洲欧美| 性插视频无遮挡在线免费观看| 亚洲国产精品国产精品| 亚洲成人av在线免费| 美女国产视频在线观看| 乱系列少妇在线播放| 亚洲丝袜综合中文字幕| 国产极品天堂在线| av视频在线观看入口| 亚洲人成网站在线播| 久久久久国产网址| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 久久久久久久久中文| 神马国产精品三级电影在线观看| 欧美激情在线99| 亚洲av电影不卡..在线观看| 国产老妇女一区| 日韩大片免费观看网站 | 久久久久九九精品影院| a级毛色黄片| 免费看光身美女| 国产不卡一卡二| 99久久无色码亚洲精品果冻| 亚洲在线自拍视频| 汤姆久久久久久久影院中文字幕 | 一个人观看的视频www高清免费观看| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 欧美性猛交黑人性爽| 在线免费观看不下载黄p国产| 欧美高清成人免费视频www| 亚洲欧美精品专区久久| 18禁在线无遮挡免费观看视频| 亚洲图色成人| 人妻夜夜爽99麻豆av| 久久久久久久午夜电影| 如何舔出高潮| 久久精品91蜜桃| 99在线人妻在线中文字幕| 午夜激情欧美在线| .国产精品久久| 国产男人的电影天堂91| 婷婷色av中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲内射少妇av| 99热这里只有是精品在线观看| 岛国毛片在线播放| 精品久久久久久久久av| 久热久热在线精品观看| 亚洲av日韩在线播放| 国产精品爽爽va在线观看网站| 男人狂女人下面高潮的视频| 国语自产精品视频在线第100页| 在线免费观看的www视频| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 看非洲黑人一级黄片| 日本一二三区视频观看| 欧美激情国产日韩精品一区| 亚洲怡红院男人天堂| 国内精品宾馆在线| 亚洲最大成人中文| 高清av免费在线| 久久精品久久久久久久性| 伦理电影大哥的女人| 久久久久久久久久黄片| 人妻系列 视频| 亚洲色图av天堂| 亚洲熟妇中文字幕五十中出| 色视频www国产| 在线观看66精品国产| 国产成人福利小说| 亚洲精品456在线播放app| 欧美区成人在线视频| 成年女人永久免费观看视频| 久久久色成人| 丝袜喷水一区| 成人高潮视频无遮挡免费网站| 国产午夜福利久久久久久| 免费播放大片免费观看视频在线观看 | 精品免费久久久久久久清纯| 精品国内亚洲2022精品成人| 亚洲欧美成人综合另类久久久 | 欧美日韩在线观看h| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 久久欧美精品欧美久久欧美| 毛片一级片免费看久久久久| 大又大粗又爽又黄少妇毛片口| 国产av在哪里看| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看| 黑人高潮一二区| 国产精品国产三级国产专区5o | 国产人妻一区二区三区在| 不卡视频在线观看欧美| 精品久久国产蜜桃| 亚洲国产精品国产精品| 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 亚洲在线自拍视频| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 不卡视频在线观看欧美| 久久精品综合一区二区三区| av黄色大香蕉| 只有这里有精品99| 欧美色视频一区免费| 特级一级黄色大片| 久久久久久国产a免费观看| 如何舔出高潮| 亚洲精品日韩在线中文字幕| 日韩高清综合在线| 人妻制服诱惑在线中文字幕| 欧美一区二区国产精品久久精品| 男女那种视频在线观看| 日本午夜av视频| 日本欧美国产在线视频| 久久久久久久久久久免费av| 国产视频首页在线观看| 午夜久久久久精精品| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 国产精品人妻久久久久久| 日韩制服骚丝袜av| 国产精品伦人一区二区| 三级国产精品欧美在线观看| 亚洲精品影视一区二区三区av| a级一级毛片免费在线观看| 热99在线观看视频| 免费看日本二区| 亚洲av日韩在线播放| av视频在线观看入口| 亚洲丝袜综合中文字幕| 我的女老师完整版在线观看| 91精品国产九色| 国产极品精品免费视频能看的| 观看美女的网站| 亚洲在线观看片| 亚洲精品成人久久久久久| 简卡轻食公司| av.在线天堂| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| 国产高清视频在线观看网站| 久久精品国产鲁丝片午夜精品| 午夜日本视频在线| 在现免费观看毛片| 免费无遮挡裸体视频| 综合色av麻豆| 精品国内亚洲2022精品成人| 最近最新中文字幕免费大全7| 成人二区视频| 午夜日本视频在线| 国产片特级美女逼逼视频| 精品酒店卫生间| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品| 国产亚洲5aaaaa淫片| 毛片女人毛片| 免费av不卡在线播放| 久久久精品欧美日韩精品| 日本一本二区三区精品| 久久这里只有精品中国| 如何舔出高潮| 91aial.com中文字幕在线观看| 老司机影院成人| 看十八女毛片水多多多| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 色视频www国产| av在线蜜桃| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 久久久久久国产a免费观看| 亚洲天堂国产精品一区在线| 九九久久精品国产亚洲av麻豆| 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| av在线播放精品| 国产又色又爽无遮挡免| 国产亚洲午夜精品一区二区久久 | 欧美3d第一页| 国产精品国产三级专区第一集| 国产精华一区二区三区| 人体艺术视频欧美日本| 久久午夜福利片| 一个人看视频在线观看www免费| 亚洲国产欧美人成| 欧美潮喷喷水| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 亚洲美女视频黄频| 中文字幕免费在线视频6| 国产亚洲5aaaaa淫片| av女优亚洲男人天堂| 美女脱内裤让男人舔精品视频| 色综合站精品国产| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久| 高清毛片免费看| 精品人妻视频免费看| 能在线免费观看的黄片| 中文天堂在线官网| 1024手机看黄色片| 国产成人精品久久久久久| 欧美成人一区二区免费高清观看| 女人久久www免费人成看片 | 国产免费福利视频在线观看| 亚洲va在线va天堂va国产| 亚洲在久久综合| 国产高清国产精品国产三级 | 国产黄片视频在线免费观看| 色5月婷婷丁香| 爱豆传媒免费全集在线观看| 老女人水多毛片| 欧美bdsm另类| 欧美另类亚洲清纯唯美| www日本黄色视频网| 日本黄色片子视频| 中文欧美无线码| 99热6这里只有精品| 大话2 男鬼变身卡| 在现免费观看毛片| 两个人的视频大全免费| 99在线视频只有这里精品首页| 高清午夜精品一区二区三区| 插阴视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 高清午夜精品一区二区三区| 亚洲va在线va天堂va国产| 国产黄片美女视频| 国产精品久久视频播放| 国产高清不卡午夜福利| 97热精品久久久久久| 黄色配什么色好看| 日韩成人av中文字幕在线观看| 亚洲三级黄色毛片| 热99在线观看视频| 午夜激情欧美在线| 少妇高潮的动态图| 国产成人精品婷婷| 久久精品夜色国产| 搞女人的毛片| 日日撸夜夜添| 国产亚洲一区二区精品| 日本黄色视频三级网站网址| 日韩强制内射视频| 一级av片app| 永久网站在线| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 亚洲精品,欧美精品| 岛国在线免费视频观看| 午夜精品一区二区三区免费看| av播播在线观看一区| 欧美成人一区二区免费高清观看| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件| 国产精品久久久久久精品电影小说 | 久久欧美精品欧美久久欧美| 久久久久性生活片| 亚洲精品,欧美精品| 日韩一区二区三区影片| 欧美日本亚洲视频在线播放| 久久草成人影院| 少妇人妻一区二区三区视频| 久热久热在线精品观看| 久久久久精品久久久久真实原创| 亚洲图色成人| 丰满人妻一区二区三区视频av| 亚洲国产精品国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人舔女人下体高潮全视频| 色播亚洲综合网| 在线a可以看的网站| 中文精品一卡2卡3卡4更新| 亚洲精品456在线播放app| 在线a可以看的网站| 欧美性感艳星| 小蜜桃在线观看免费完整版高清| 26uuu在线亚洲综合色| 麻豆av噜噜一区二区三区| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 天堂网av新在线| 久久99热这里只有精品18| 国产单亲对白刺激| 亚洲av中文av极速乱| 日本免费a在线| 久久久a久久爽久久v久久| 国产av在哪里看| 国产人妻一区二区三区在| 精品国产一区二区三区久久久樱花 | 免费看a级黄色片| 国产精品熟女久久久久浪| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美一区二区三区国产| 欧美日韩一区二区视频在线观看视频在线 | 男人和女人高潮做爰伦理| 白带黄色成豆腐渣| 观看美女的网站| 亚洲丝袜综合中文字幕| 99久久中文字幕三级久久日本| 欧美成人免费av一区二区三区| 最近中文字幕2019免费版| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 黄片无遮挡物在线观看| 午夜精品在线福利| 免费无遮挡裸体视频| 中国国产av一级| 国产日韩欧美在线精品| 看非洲黑人一级黄片| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 好男人视频免费观看在线| 国产午夜精品论理片| 国产成人精品婷婷| 直男gayav资源| 联通29元200g的流量卡| 亚洲美女视频黄频| 美女高潮的动态| 中文字幕av成人在线电影| 亚洲高清免费不卡视频| 中文资源天堂在线| 久久久久久国产a免费观看| 久久久久久久久中文| 欧美一区二区亚洲| 亚洲经典国产精华液单| 2021少妇久久久久久久久久久| 边亲边吃奶的免费视频| a级毛色黄片| 欧美日韩精品成人综合77777| 日本三级黄在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近手机中文字幕大全| 成人毛片a级毛片在线播放| 99热全是精品| 色噜噜av男人的天堂激情| 又爽又黄a免费视频| av又黄又爽大尺度在线免费看 | 久久久久久久久久黄片| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 欧美+日韩+精品| av卡一久久| 全区人妻精品视频| 最近2019中文字幕mv第一页| 精品人妻视频免费看| 日本三级黄在线观看| 国产一区亚洲一区在线观看| 国产午夜精品一二区理论片| av视频在线观看入口| 国产老妇女一区| 好男人在线观看高清免费视频| 久久精品人妻少妇| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说 | 汤姆久久久久久久影院中文字幕 | 国产色婷婷99| 美女xxoo啪啪120秒动态图| 女人久久www免费人成看片 | 国产午夜精品久久久久久一区二区三区| 国产v大片淫在线免费观看| 国产成人91sexporn| 亚洲在线观看片| 国产高清国产精品国产三级 | 国内精品宾馆在线| 国产亚洲5aaaaa淫片| 成年av动漫网址| 精品午夜福利在线看| 日韩欧美在线乱码| 国产免费视频播放在线视频 | 亚洲国产欧美在线一区| 国产在线男女| 亚洲国产欧美人成| 可以在线观看毛片的网站| 亚洲av日韩在线播放| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 黄色日韩在线| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 有码 亚洲区| 免费观看精品视频网站| av又黄又爽大尺度在线免费看 | 国产午夜精品一二区理论片| 美女国产视频在线观看| 干丝袜人妻中文字幕| 国内精品一区二区在线观看| 日本爱情动作片www.在线观看| 伦精品一区二区三区| 我要搜黄色片| 亚洲性久久影院| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 欧美bdsm另类| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 成人美女网站在线观看视频| 超碰av人人做人人爽久久| 免费av不卡在线播放| 亚洲成人久久爱视频| 精品久久久久久久久亚洲| 一级爰片在线观看| 免费看美女性在线毛片视频| 全区人妻精品视频| 亚洲欧美日韩高清专用| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 成人鲁丝片一二三区免费| 久久久久国产网址| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 嘟嘟电影网在线观看| 亚洲成人精品中文字幕电影| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 最近手机中文字幕大全| 精品不卡国产一区二区三区| 色吧在线观看| 十八禁国产超污无遮挡网站| 黑人高潮一二区| 午夜精品一区二区三区免费看| 亚洲av成人av| 日韩视频在线欧美| 天堂√8在线中文| 久久久久久久国产电影| 黄片wwwwww| 老女人水多毛片| 亚洲精品乱久久久久久| 老女人水多毛片| АⅤ资源中文在线天堂| 亚洲成av人片在线播放无| 一级毛片久久久久久久久女| 97超碰精品成人国产| 亚洲av电影在线观看一区二区三区 | 国产一级毛片七仙女欲春2| 亚洲国产精品成人久久小说| 婷婷色麻豆天堂久久 | 黄色一级大片看看| 久久韩国三级中文字幕| 国产av码专区亚洲av| 成人av在线播放网站| 天天躁夜夜躁狠狠久久av| 国产人妻一区二区三区在| 在线观看66精品国产| av国产久精品久网站免费入址| 亚洲欧美日韩东京热| 欧美激情在线99| 99久久九九国产精品国产免费| 午夜福利在线观看吧| 久久精品91蜜桃| 午夜爱爱视频在线播放| 波多野结衣高清无吗| 久久人人爽人人片av| 欧美日韩在线观看h| 国产一级毛片在线| 亚洲欧洲国产日韩| 国产综合懂色| 国产一区亚洲一区在线观看| 可以在线观看毛片的网站| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看| 搡老妇女老女人老熟妇| 免费无遮挡裸体视频| 久久久久九九精品影院| 91久久精品电影网| 精品人妻熟女av久视频| av在线观看视频网站免费| 老司机福利观看| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂 | 亚洲av电影在线观看一区二区三区 | 内地一区二区视频在线| 国产视频首页在线观看| 日本免费在线观看一区| 如何舔出高潮| 一级毛片电影观看 | 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 国产高清国产精品国产三级 | 欧美xxxx性猛交bbbb| 国产成人91sexporn| 麻豆成人av视频| 日韩亚洲欧美综合| 久久精品久久久久久噜噜老黄 | 一区二区三区四区激情视频| 国内少妇人妻偷人精品xxx网站| 久久精品国产鲁丝片午夜精品| 欧美性猛交╳xxx乱大交人| 身体一侧抽搐| 免费黄网站久久成人精品| 乱人视频在线观看| 亚洲av日韩在线播放| 国产91av在线免费观看| 狂野欧美激情性xxxx在线观看| 高清午夜精品一区二区三区| 极品教师在线视频| 日本猛色少妇xxxxx猛交久久| 一级黄色大片毛片| 青春草国产在线视频| 精品午夜福利在线看| 国产白丝娇喘喷水9色精品| 久久精品夜色国产| 国产精品国产三级国产av玫瑰| 久久久久国产网址| 免费在线观看成人毛片| 国产男人的电影天堂91| 国产精品一区二区在线观看99 | 亚洲国产精品久久男人天堂| 欧美性感艳星| 成人毛片a级毛片在线播放| 级片在线观看| 日日干狠狠操夜夜爽| 日日啪夜夜撸| 欧美97在线视频| 欧美xxxx黑人xx丫x性爽| 97人妻精品一区二区三区麻豆|