• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states?

    2017-08-30 08:25:40QianKunGong龔乾坤DongLi李棟ChunHuaYuan袁春華ZeYuQu區(qū)澤宇andWeiPingZhang張衛(wèi)平
    Chinese Physics B 2017年9期
    關(guān)鍵詞:春華乾坤

    Qian-Kun Gong(龔乾坤),Dong Li(李棟),Chun-Hua Yuan(袁春華),4,?, Ze-Yu Qu(區(qū)澤宇),3,and Wei-Ping Zhang(張衛(wèi)平)

    1 Quantum Institute for Light and Atoms,School of Physics and Material Science,East China Normal University,Shanghai 200062,China

    2 Department of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    3 Department of Physics,Indiana University–Purdue University Indianapolis,Indianapolis 46202,USA

    4 Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states?

    Qian-Kun Gong(龔乾坤)1,Dong Li(李棟)1,Chun-Hua Yuan(袁春華)1,4,?, Ze-Yu Qu(區(qū)澤宇)1,3,and Wei-Ping Zhang(張衛(wèi)平)2,4

    1 Quantum Institute for Light and Atoms,School of Physics and Material Science,East China Normal University,Shanghai 200062,China

    2 Department of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    3 Department of Physics,Indiana University–Purdue University Indianapolis,Indianapolis 46202,USA

    4 Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    We theoretically study the quantum Fisher information(QFI)of the SU(1,1)interferometer with phase shifts in two arms by coherent?squeezed vacuum state input,and give the comparison with the result of phase shift only in one arm. Different from the traditional Mach–Zehnder interferometer,the QFI of single-arm case for an SU(1,1)interferometer can be slightly higher or lower than that of two-arm case,which depends on the intensities of the two arms of the interferometer. For coherent?squeezed vacuum state input with a fixed mean photon number,the optimal sensitivity is achieved with a squeezed vacuum input in one mode and the vacuum input in the other.

    phase estimation,quantum Fisher information,SU(1,1)interferometer

    1.Introduction

    Quantum enhanced metrology which has received a lot of attention in recent years is the use of quantum measurement techniques to obtain higher statistical precision than purely classical approaches.[1–16]Mach–Zehnder interferometer(MZI)and its variants were used as a generic model to realize highly precise estimation of phase.In order to achieve the ultimate lower bounds,[17,18]much work has been devoted to finding the methods to improve the sensitivity of phase estimation,such as(i)using the nonclassical input states(quantum resources):squeezed states[3,19,20]and NOON states,[21,22](ii)using the new detection methods:homodyne detection[23,24]and parity detection,[25–28]and(iii)using the nonlinear processes:amplitude amplification[29]and phase magnification.[13]Here we focus on the nonlinear amplitude amplification process to improve the sensitivity.In 1986,Yurke et al.[29]introduced a new type of interferometer where two nonlinear beam splitters(NBSs)take the place of two linear beam splitters(BSs)in the traditional MZI.It is also called the SU(1,1)interferometer because it is described by the SU(1,1)group,as opposed to the traditional SU(2)MZI for BS.The detailed quantum statistics of the two mode SU(1,1)interferometer was studied by Leonhardt.[30]The SU(1,1)phase states were also studied theoretically in quantum measurements for phase-shift estimation.[31,32]Furthermore,the SU(1,1)-type interferometers have been reported by different groups using different systems in theory and experiment,such as allopticalarms,[33–36]allatomic arms,[37–39]atom–light hybrid arms,[40–45]light–circuit quantum electrodynamics system hybrid arms,[46]and all mechanical modes arms.[47]These SU(1,1)-type interferometers provide different methods for basic measurement.

    At present,many researchers are focusing on how to measure the phase sensitivities,where several detection schemes have been presented.[23,28,36]In general,it is difficult to optimize all the detection schemes to obtain the optimal estimation protocol.However,the quantum Fisher information (QFI)[4,5]characterizes the maximum amount of information that can be extracted from quantum experiments about an unknown parameter(e.g.,phase shiftφ)using the best(and ideal) measurement device.Therefore,the lower bounds in quantum metrology can be obtained by using the method of the QFI. In recent years,many efforts were made to obtain the QFI of different measurement systems.[48–66]For the SU(1,1)interferometers with phase shift only in one arm,the QFI with coherent states input was studied by Sparaciari et al.,[60,62]and the QFI with coherent?squeezed vacuum state input was presented by some of us.[28]Nevertheless in some measurement schemes,phase shifts in two arms are required to measure. For example,the phase sensitivity of phase shifts in two arms for the SU(1,1)interferometer with coherent states input was experimentally studied by Linnemann et al.[37]Jarzyna et al. studied the QFIs of phase shifts in the two-arm case for a MZI, and presented the relationship with the result of phase shift inthe single-arm case.[52]Since phase shift in the single arm is not simply equivalent to the phase shifts in two arms where one phase shift of them is 0,the QFIs of phase shifts in two arms for an SU(1,1)interferometer needed to be researched.In this paper,we study the QFI of SU(1,1)interferometer of phase shifts in two arms with two coherent states input and coherent?squeezed vacuum state input,and give the comparison with the result of phase shift only in one arm.These results should be useful for some phase measurement processes.

    2.The QFI of phase shifts in two arms for an SU(1,1)interferometer

    The QFI ? is the intrinsic information in the quantum state and is not related to actual measurement procedure as shown in Fig.1.It establishes the best precision that can be attained with a given quantum probe.[4,5]In this section,we study the QFIs of SU(1,1)interferometer of phase shifts in two arms,and compare them with the results of phase shift only in one arm.

    2.1.NBS and phase shifts

    In an SU(1,1)interferometer,the NBSs take the place of the BSs in the traditional MZI shown in Fig.1.Firstly,we theoretically describe the NBS briefly,which can be completed by the optical parameter amplifier(OPA)or four-wave mixing (FWM)process.The annihilation operators of the two modes a,b,and the pump field arerespectively.The interaction Hamiltonian for NBS is

    Because the pump field is very strong and the intensity of the pump field is not significantly changed in the mixing process, the initial and final states of the pump field are the same as the coherent state|αpump〉.Under the undepleted pump approximation,the Hamiltonian is written as

    Fig.1.(color online)Schematic diagram of the parameter estimation process based on the SU(1,1)interferometer.g and θg describe the strength and phase in the first NBS process,respectively.a and b denote two light modes in the interferometer.In the Schr?dinger picture,the initial state |Ψin〉injecting into a NBS results in the output|Ψ〉,and the state is transformed as|Ψφ〉after phase shifts.NBS:nonlinear beam splitter.φ1,φ2: phase shifts.M:mirrors.

    The corresponding time-evolution operator is=is the two-mode squeezing parameter.In the Schr?dinger picture,the initial state|Ψin〉injecting into an NBS results in thewhere the transformation of the annihilation operators is

    Secondly,we describe the phase shifts process.Different from the BS,the NBS involves three light fields where the pump field is classical and with a classical reference phase. The uncertainty of classical pump fieldis very small and the phase uncertainties are from the modes a and b. After the first NBS,as shown in Fig.1,the two beams sustain phase shifts,i.e.,the mode a and mode b undergo the phase shifts of φ1and φ2,respectively.Then we may write

    2.2.QFI

    The QFI ? is defined as[4,5]

    where the Hermitian operator Lφ,called symmetric logarithmic derivative,is defined as the solution of the equation?φρ(φ)=[ρ(φ)Lφ+Lφρ(φ)]/2.In terms of the complete basis{|k〉}such that ρ(φ)=∑kpk|k〉〈k|with pk≥0 and∑kpk=1,the QFI can be written as[4,5,48–50]

    Under the condition of lossless,for a pure state the QFI is reduced to[49,52]

    Fig.2.(color online)Different phase delay ways of the interferometer. (a)Phase shift in the single arm is divided into single upper arm and single lower arm due to the fact that the intensities of the two arms are not equal. (b)Phase shifts in the two arms.

    Now,we give the QFIs with different input states under the condition of phase shifts in two arms.From Eq.(5),|Ψφ〉is the state vector just before the detection process of the SU(1,1) interferometer andThen from Eq.(8),the QFI can be worked out as

    When θα+θβ?θg=π,the maximal QFIis reduced to

    When Nα=Nβ=0(vacuum input)and Nα0,Nβ=0(one coherent state input),from Eq.(11)the corresponding QFIs are given by=sinh2(2g)and=Nαcosh4g+ sinh2(2g),respectively.

    Next,we consider a coherent light combined with a squeezed vacuum light as the input|ψin〉=|α〉a?|0,?〉b(α=|α|eiθα,Nα=|α|2,and|0,?〉b=?Sb(r)|0〉bis the singlemode squeezed vacuum state in the b-mode wherewith ?=r exp(iθ?)the single-mode squeezing parameter),and the QFI can be worked out as

    So far,we have given the QFI of SU(1,1)interferometer where the phase shifts in the two arms,and they as well as the QFIs with phase shift in the one arm case are summarized in the Table 1.The QFIs of phase shift in upper arm and in lower arm are also slightly different because the intensities in two arms of the interferometer are unbalanced.The QFI of single-arm case for an SU(1,1)interferometer can be slightly higher or lower than that of double arms case,which depends on the intensities of the two arms of the interferometer.Different from the SU(1,1)interferometer,the QFIs of the phase shifts in single upper arm and in single lower arm are the same due to the intensity balance of the two arms for the MZI.[52]

    Table 1.The maximal QFIs of the SU(1,1)interferometer for different phase delay ways with different input states.

    3.Quantum Cramér–Rao bound(QCRB)

    Whatever the measurement chosen,the QCRB can give the lower bound for the phase measurement[4,5,48–50]

    To describe the effect on the QCRB from the unbalanced input state,we introduce a parameter η defined by[24]

    For the two coherent states input,η is equal to Nβ/Nin(Nin= Nα+Nβ),and the optimal phase sensitivities ΔφQCRBas a function of η are shown in Fig.3(a).When η is small, ΔφQCRBfrom the single upper arm case is the best.But when η is large,ΔφQCRBfrom the single lower arm case is the best.ΔφQCRBfrom the two-arm case is always an intermediate value.For a given fixed Ninand the two coherent states input case,the optimal value η is 0.5.Thus for the two coherent states input,the optimal input state isand the corresponding optimal QFI isThe optimal QFIas a function of the total input mean photon number Ninis shown in Fig.4(the blue dotted-dashed line).

    Fig.3.(color online)The QCRB versus the η for(a)two coherent states input and(b)coherent?squeezed state input.The inset in panel(b) shows a zoom of the graph for small values of η.Here,N in=200 and g=1.5.

    For coherent?squeezed vacuum state input,η is equal to sinh2r/Nin(Nin=Nα+sinh2r),where the parameter η can be used to label the squeezing fraction of the mean photon number.When η=0 or η=1,the input state is only a coherent state|α〉aor only a squeezed vacuum state|0,ζ〉b.When 0<η<1,the input state is a coherent?squeezed vacuum state. For coherent?squeezed vacuum state input case,only the squeezed vacuum light as input and without the coherent state, the phase sensitivity is the highest shown in Fig.3(b).The optimal input state is|0〉?|0,ζ〉,and the corresponding optimal QFI is=(1+Nin)[2Nincosh2(2g)+sinh2(2g)], which is different from the commonly used optimal input state within MZI.[55,67,68]The reason is the number fluctuations and Pasquale et al.[69]have given the same result for generic two-mode interferometric setup recently.The optimal QFIas a function of Ninis shown in Fig.4(the red dashed line).For a fixed mean photon number(with number fluctuations),Hofmann suggested the form of Heisenberg limit is,which indicates averaging over the squared photon numbers.[70]In our proposalis defined asIn Fig.4,the black solid line is the Hofman limit for coherent?squeezed vacuum state input under the optimal condition.

    Fig.4.(color online)The optimal QFIs versus the total input mean photon number N in.The dotted-dashed line and the dashed line are the two coherent states input and coherent?squeezed state input,respectively.The solid line is the Hofmann limit with coherent?squeezed state input g=1.5.

    For the lossy interferometers,the pure states evolve into the mixed states and the QFI will be reduced.However,the QFI of pure state puts an upper bound on that of mixed state. Here,we focus on the maximal QFI of the SU(1,1)interferometer,and then we ignore the losses in the interferometer.

    4.Conclusion

    The analytical expressions of QFI for an SU(1,1)interferometer with two coherent states and coherent?squeezed vacuum state inputs have been derived.For single-arm case, the QCRBs of phase shift in upper arm and in lower arm are slightly different because the intensities in two interferometric arms are asymmetric.The phase sensitivities of phase shifts between the single-arm case and two-arm case are also compared.The QCRB of single-arm case can be slightly higher or lower than that of two-arm case,which depends on the intensities of the two arms of the interferometer.For coherent state?squeezed vacuum state input with a definite input number of photons,the optimal condition to obtain the highest phase sensitivity is a squeezed vacuum in one mode and the vacuum state in the other mode.

    [1]Helstrom C W 1976 Quantum Detection and Estimation Theory(New York:Academic)

    [2]Holevo A S 1982 Probabilistic and Statistical Aspect of Quantum Theory(Amsterdam:North-Holland)

    [3]Caves C M 1981 Phys.Rev.D 23 1693

    [4]Braunstein S L and Caves C M 1994 Phys.Rev.Lett.72 3439

    [5]Braunstein S L,Caves C M and Milburn G J 1996 Ann.Phys.247 135

    [6]Lee H,Kok P and Dowling J P 2002 J.Mod.Optic.49 2325

    [7]Giovannetti V,Lloyd S and Maccone L 2006 Phys.Rev.Lett.96 010401

    [8]Zwierz M,Pérez-Delgado C A and Kok P 2010 Phys.Rev.Lett.105 180402

    [9]Giovannetti V,Lloyd S and Maccone L 2004 Science 306 1330

    [10]Giovannetti V,Lloyd S and Maccone L 2011 Nat.Photonics 5 222

    [11]Ou Z Y 2012 Phys.Rev.A 85 023815

    [12]Abbott B P,et al.2016 Phys.Rev.Lett.116 061102

    [13]Hosten O,Krishnakumar R,Engelsen N J and Kasevich M A 2016 Science 352 1552

    [14]Xiang G Y and Guo G C 2013 Chin.Phys.B 22 110601

    [15]Zhang L J and Xiao M 2013 Chin.Phys.B 22 110310

    [16]Wei C P,Hu XY,Yu YF and Zhang Z M 2016 Chin.Phys.B 25 040601

    [17]Zwierz M,Pérez-Delgado CAand Kok P 2012 Phys.Rev.A 85 042112

    [18]Pezzè L,Hyllus P and Smerzi A 2015 Phys.Rev.A 91 032103

    [19]Xiao M,Wu L A and Kimble H J 1987 Phys.Rev.Lett.59 278

    [20]Grangier P,Slusher R E,Yurke B and LaPorta A 1987 Phys.Rev.Lett. 59 2153

    [21]Dowling J P 2008 Contemp.Phys.49 125

    [22]Boto A N,Kok P,Abrams D S,Braunstein S L,Williams C P and Dowling J P 2000 Phys.Rev.Lett.85 2733

    [23]Li D,Yuan C H,Ou Z Y and Zhang W 2014 New J.Phys.16 073020

    [24]Hu X Y,Wei C P,Yu Y F and Zhang Z M 2016 Front.Phys.11 114203

    [25]Anisimov P M,Raterman G M,Chiruvelli A,Plick W N,Huver S D, Lee H and Dowling J P 2010 Phys.Rev.Lett.104 103602

    [26]Gerry C C and Mimih J 2010 Contemp.Phys.51 497

    [27]Chiruvelli A and Lee H 2011 J.Mod.Optic.58 945

    [28]Li D,Gard B T,Gao Y,Yuan C H,Zhang W,Lee H and Dowling J P 2016 Phys.Rev.A 94 063840

    [29]Yurke B,McCall S L and Klauder J R 1986 Phys.Rev.A 33 4033

    [30]Leonhardt U 1994 Phys.Rev.A 49 1231

    [31]Vourdas A 1990 Phys.Rev.A 41 1653

    [32]Sanders B C,Milburn G J and Zhang Z 1997 J.Mod.Optic.44 1309

    [33]Hudelist F,Kong J,Liu C,Jing J,Ou Z Y and Zhang W 2014 Nat. Commun.5 3049

    [34]Anderson B E,Gupta P,Schmittberger B L,Horrom T,Hermann-Avigliano C,Jones K M and Lett P D 2016 arXiv:1610.06891v1 [quant-ph]

    [35]Plick W N,Dowling J P and Agarwal G S 2010 New J.Phys.12 083014

    [36]Marino A M,Corzo Trejo N V and Lett P D 2012 Phys.Rev.A 86 023844

    [37]Linnemann D,Strobel H,Muessel W,Schulz J,Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys.Rev.Lett.117 013001

    [38]Gabbrielli M,Pezzè L and Smerzi A 2015 Phys.Rev.Lett.115 163002

    [39]Gross C,Zibold T,Nicklas E,Estève J and Oberthaler M K 2010 Nature 464 1165

    [40]Chen B,Qiu C,Chen S,Guo J,Chen L Q,Ou Z Y and Zhang W 2015 Phys.Rev.Lett.115 043602

    [41]Chen Z D,Yuan C H,Ma H M,Li D,Chen L Q,Ou Z Y and Zhang W 2016 Opt.Express 24 17766

    [42]Jacobson J,Bj?rk G and Yamamoto Y 1995 Appl.Phys.B 60 187

    [43]Haine S A 2014 Phys.Rev.Lett.112 120405

    [44]Szigeti S S,Tonekaboni B,Lau W Y S,Hood S N and Haine S A 2014 Phys.Rev.A 90 063630

    [45]Haine S A and Lau W Y S 2016 Phys.Rev.A 93 023607

    [46]Barzanjeh S,DiVincenzo D P and Terhal B M 2014 Phys.Rev.B 90 134515

    [47]Cheung H F H,Patil Y S,Chang L,Chakram S and Vengalattore M 2016 arXiv:1601.02324v1[quant-ph]

    [48]Toth G and Apellaniz I 2014 J.Phys.A 47 424006

    [49]Pezzè L and Smerzi A 2014 in Proceedings of the International School of Physics“Enrico Fermi”,Course CLXXXVIII“Atom Interferometry”edited by Tino G and Kasevich M(Societ`a Italiana di Fisica and IOS:Bologna),p.691

    [50]Demkowicz-Dobrzanski R,Jarzyna M and Kolodynski J 2015 Prog. Optics 60 345

    [51]Wang X B,Hiroshima T,Tomita A and Hayashi M 2007 Phys.Rep. 448 1

    [52]Jarzyna M and Demkowicz-Dorbrzanski R 2012 Phys.Rev.A 85 011801(R)

    [53]Monras A 2013 arXiv:1303.3682v1[quant-ph]

    [54]Pinel O,Jian P,Treps N,Fabre C and Braun D 2013 Phys.Rev.A 88 040102(R)

    [55]Liu J,Jing X and Wang X 2013 Phys.Rev.A 88 042316

    [56]Gao Y and Lee H 2014 Eur.Phys.J.D 68 347

    [57]Jiang Z 2014 Phys.Rev.A 89 032128

    [58]Li Y L,Xiao X and Yao Y 2015 Phys.Rev.A 91 052105

    [59]Safranek D,Lee A R and Fuentes I 2015 New J.Phys.17 073016

    [60]Sparaciari C,Olivares S and Paris M G A 2015 J.Opt.Soc.Am.B 32 1354

    [61]Ren Y K,Tang L M and Zeng H S 2016 Quantum Inf.Process.15 5011

    [62]Sparaciari C,Olivares S and Paris M G A 2016 Phys.Rev.A 93 023810

    [63]Strobel H,Muessel W,Linnemann D,Zibold T,Hume D B,Pezze L, Smerzi A and Oberthaler M K 2014 Science 345 424

    [64]Lu X M,Yu S and Oh C H 2015 Nat.Commun.6 7282

    [65]Hauke P,Heyl M,Tagliacozzo L and Zoller P 2016 Nat.Phys.12 778

    [66]Liu P,Wang P,Yang W,Jin G R and Sun C P 2017 Phys.Rev.A 95 023824

    [67]Pezzè L and Smerzi A 2008 Phys.Rev.Lett.100 073601

    [68]Lang M D and Caves C M 2013 Phys.Rev.Lett.111 173601

    [69]Pasquale A D,Facchi P,Florio G,Giovannetti V,Matsuoka K and Yuasa K 2015 Phys.Rev.A 92 042115

    [70]Hofmann H F 2015 Phys.Rev.A 79 033822

    10 March 2017;revised manuscript

    9 May 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/094205

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11474095,11654005,and 11234003)and the National Key Research and Development Program of China(Grant No.2016YFA0302000).

    ?Corresponding author.E-mail:chyuan@phy.ecnu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    春華乾坤
    壁上乾坤
    都市(2023年6期)2023-12-28 07:56:32
    乾坤令、歲朝清供
    寶藏(2022年1期)2022-08-01 02:12:56
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
    碗蓮
    肉被騙以后
    寒木守春華
    火花(2016年7期)2016-02-27 07:45:24
    山路乾坤
    讀者(2015年18期)2015-05-14 11:41:08
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    iPhone 6 Plus內(nèi)有乾坤?
    南都周刊(2014年36期)2014-04-29 00:00:00
    亚洲成a人片在线一区二区| 精品福利观看| 日本色播在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 亚洲精品456在线播放app| 99热这里只有精品一区| 男人的好看免费观看在线视频| 我要看日韩黄色一级片| 亚洲无线在线观看| 神马国产精品三级电影在线观看| 老熟妇仑乱视频hdxx| 又黄又爽又刺激的免费视频.| 乱码一卡2卡4卡精品| 国产精品久久电影中文字幕| 精品久久久久久成人av| 神马国产精品三级电影在线观看| 欧美潮喷喷水| 午夜福利在线观看吧| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 淫妇啪啪啪对白视频| 免费人成在线观看视频色| 九九爱精品视频在线观看| 少妇人妻精品综合一区二区 | 国产免费男女视频| 国内精品久久久久精免费| 亚洲,欧美,日韩| 少妇高潮的动态图| 又黄又爽又免费观看的视频| 欧美三级亚洲精品| 国内精品一区二区在线观看| 又黄又爽又免费观看的视频| 乱码一卡2卡4卡精品| 男女那种视频在线观看| 久久人人爽人人片av| 99热全是精品| 国产亚洲欧美98| 国产91av在线免费观看| 国产又黄又爽又无遮挡在线| 99热精品在线国产| 成年av动漫网址| 国内久久婷婷六月综合欲色啪| 亚洲av成人精品一区久久| 天天一区二区日本电影三级| 免费人成在线观看视频色| 麻豆国产97在线/欧美| 舔av片在线| 欧美xxxx黑人xx丫x性爽| 少妇猛男粗大的猛烈进出视频 | 国产 一区精品| 18禁黄网站禁片免费观看直播| 丰满的人妻完整版| 在线免费观看的www视频| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| 久久午夜福利片| 免费人成视频x8x8入口观看| 亚洲人与动物交配视频| 午夜激情欧美在线| 国产久久久一区二区三区| 精品乱码久久久久久99久播| 成人特级av手机在线观看| 日韩三级伦理在线观看| 村上凉子中文字幕在线| 精品熟女少妇av免费看| 亚洲熟妇熟女久久| 天美传媒精品一区二区| 国产av不卡久久| 国产 一区精品| 国产精品国产三级国产av玫瑰| 俄罗斯特黄特色一大片| 嫩草影院精品99| 免费高清视频大片| 国内精品宾馆在线| 一区福利在线观看| 成人av一区二区三区在线看| 精品国内亚洲2022精品成人| 免费观看人在逋| 成年女人永久免费观看视频| 亚洲精品色激情综合| 我要看日韩黄色一级片| 欧美性感艳星| 在线免费观看不下载黄p国产| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 淫秽高清视频在线观看| 国产精品嫩草影院av在线观看| 在线看三级毛片| 在线免费十八禁| 久久久久久国产a免费观看| 久久人人爽人人爽人人片va| 国产三级在线视频| 日本色播在线视频| 男人舔奶头视频| 亚洲av中文av极速乱| 亚洲欧美日韩无卡精品| 91av网一区二区| 精品国产三级普通话版| 女生性感内裤真人,穿戴方法视频| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 国产亚洲欧美98| 亚洲人成网站在线播| 欧美一区二区国产精品久久精品| av免费在线看不卡| 亚洲一级一片aⅴ在线观看| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 99久久无色码亚洲精品果冻| 秋霞在线观看毛片| 成人精品一区二区免费| 精品久久久久久久久亚洲| 91在线精品国自产拍蜜月| 老司机午夜福利在线观看视频| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 乱系列少妇在线播放| 老女人水多毛片| 国产老妇女一区| 免费不卡的大黄色大毛片视频在线观看 | 熟女人妻精品中文字幕| 97超碰精品成人国产| 午夜影院日韩av| 91久久精品国产一区二区成人| 亚洲久久久久久中文字幕| 国产高清不卡午夜福利| 国产精品爽爽va在线观看网站| 1024手机看黄色片| 国产麻豆成人av免费视频| 中文字幕久久专区| 色综合亚洲欧美另类图片| 最近视频中文字幕2019在线8| 免费人成视频x8x8入口观看| 俺也久久电影网| 听说在线观看完整版免费高清| 亚洲av熟女| 亚洲精品影视一区二区三区av| 俄罗斯特黄特色一大片| 三级毛片av免费| 我要看日韩黄色一级片| 成人精品一区二区免费| 伊人久久精品亚洲午夜| 日本熟妇午夜| 国产高清有码在线观看视频| 悠悠久久av| 99视频精品全部免费 在线| 黄色日韩在线| 日韩一区二区视频免费看| 午夜日韩欧美国产| 波野结衣二区三区在线| 精品人妻偷拍中文字幕| 久久久久久久久久黄片| 超碰av人人做人人爽久久| 韩国av在线不卡| 午夜久久久久精精品| 小说图片视频综合网站| 欧美性感艳星| 亚洲在线自拍视频| 久久人人精品亚洲av| 欧美性猛交╳xxx乱大交人| 综合色丁香网| 国产老妇女一区| 在线国产一区二区在线| 亚洲av二区三区四区| 亚洲国产精品sss在线观看| 亚洲美女视频黄频| 少妇的逼好多水| 久久午夜福利片| 亚洲四区av| 久久久国产成人免费| aaaaa片日本免费| 午夜视频国产福利| 伊人久久精品亚洲午夜| 在线天堂最新版资源| 婷婷六月久久综合丁香| 亚洲va在线va天堂va国产| 久久久久久久久中文| 一a级毛片在线观看| 最近手机中文字幕大全| 天堂av国产一区二区熟女人妻| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 亚洲丝袜综合中文字幕| 黄片wwwwww| 给我免费播放毛片高清在线观看| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美人成| 国产在视频线在精品| 精品熟女少妇av免费看| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆 | 午夜精品国产一区二区电影 | 国产午夜精品论理片| 91午夜精品亚洲一区二区三区| 99久久中文字幕三级久久日本| 国产精品av视频在线免费观看| 久久精品影院6| 日韩欧美精品免费久久| 国内精品宾馆在线| 嫩草影视91久久| 久久热精品热| 精品一区二区免费观看| 淫秽高清视频在线观看| 在线观看午夜福利视频| 久久久国产成人精品二区| 又黄又爽又刺激的免费视频.| 亚洲中文日韩欧美视频| 国产精品一区二区性色av| 亚洲自偷自拍三级| 毛片女人毛片| 精品人妻一区二区三区麻豆 | 精品午夜福利在线看| 欧美xxxx性猛交bbbb| 国产精品国产高清国产av| 九色成人免费人妻av| 免费看av在线观看网站| 欧美人与善性xxx| 波多野结衣高清无吗| 精品午夜福利在线看| 给我免费播放毛片高清在线观看| 国产高清三级在线| 日本黄色视频三级网站网址| 天天躁夜夜躁狠狠久久av| a级毛片a级免费在线| 狂野欧美白嫩少妇大欣赏| 真人做人爱边吃奶动态| 亚洲国产日韩欧美精品在线观看| 亚洲av五月六月丁香网| 大型黄色视频在线免费观看| 亚洲综合色惰| 日韩欧美免费精品| 欧美成人精品欧美一级黄| 成人综合一区亚洲| 日本成人三级电影网站| 国产 一区精品| 黄色视频,在线免费观看| 六月丁香七月| 高清毛片免费看| 国产精品亚洲一级av第二区| 看非洲黑人一级黄片| 久久精品综合一区二区三区| 日韩 亚洲 欧美在线| 免费人成在线观看视频色| 久久热精品热| 乱人视频在线观看| 麻豆av噜噜一区二区三区| 亚洲国产精品久久男人天堂| 亚洲国产精品合色在线| 国产不卡一卡二| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 熟妇人妻久久中文字幕3abv| 日韩人妻高清精品专区| 久久久久九九精品影院| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久| 乱码一卡2卡4卡精品| 91av网一区二区| 国产精品美女特级片免费视频播放器| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 精品久久久噜噜| eeuss影院久久| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 色播亚洲综合网| 中文字幕av在线有码专区| 美女黄网站色视频| 亚洲第一电影网av| 亚洲乱码一区二区免费版| 国产淫片久久久久久久久| 少妇高潮的动态图| 两个人视频免费观看高清| 亚洲丝袜综合中文字幕| 国产私拍福利视频在线观看| 国产单亲对白刺激| 午夜影院日韩av| 人妻少妇偷人精品九色| 麻豆久久精品国产亚洲av| 日日摸夜夜添夜夜爱| 亚洲国产日韩欧美精品在线观看| 欧美性猛交黑人性爽| 日韩欧美国产在线观看| 色在线成人网| 少妇熟女欧美另类| 一进一出抽搐gif免费好疼| 一区二区三区免费毛片| 日韩国内少妇激情av| 国产精品爽爽va在线观看网站| 天堂网av新在线| 一区福利在线观看| 亚洲人成网站在线播| 亚洲自拍偷在线| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| 女同久久另类99精品国产91| 国产高清视频在线观看网站| 久99久视频精品免费| 国产免费男女视频| 亚洲精品一区av在线观看| 深爱激情五月婷婷| 免费看av在线观看网站| 亚洲三级黄色毛片| 亚洲乱码一区二区免费版| 日韩欧美精品免费久久| 天天一区二区日本电影三级| 校园人妻丝袜中文字幕| 99热精品在线国产| 长腿黑丝高跟| 国产精品电影一区二区三区| 97人妻精品一区二区三区麻豆| 男女边吃奶边做爰视频| 在线观看av片永久免费下载| 国产黄色小视频在线观看| 日本在线视频免费播放| 日韩欧美 国产精品| 日日摸夜夜添夜夜爱| 免费一级毛片在线播放高清视频| avwww免费| aaaaa片日本免费| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6| 国产又黄又爽又无遮挡在线| 国产一级毛片七仙女欲春2| 观看美女的网站| 男女那种视频在线观看| 97碰自拍视频| 99久久无色码亚洲精品果冻| 成人美女网站在线观看视频| 国产男靠女视频免费网站| 性插视频无遮挡在线免费观看| 亚洲丝袜综合中文字幕| 婷婷六月久久综合丁香| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 亚洲久久久久久中文字幕| 国产乱人视频| 欧美成人a在线观看| 免费一级毛片在线播放高清视频| www日本黄色视频网| 久久九九热精品免费| 麻豆一二三区av精品| av中文乱码字幕在线| 亚洲精品久久国产高清桃花| 国产在线男女| 少妇丰满av| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 国产黄色小视频在线观看| 欧美+日韩+精品| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添小说| 九色成人免费人妻av| 国产探花在线观看一区二区| 国产精品日韩av在线免费观看| 国产欧美日韩精品一区二区| 亚洲精品国产成人久久av| 亚洲在线观看片| 国产精品免费一区二区三区在线| 亚洲在线自拍视频| 有码 亚洲区| av专区在线播放| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添小说| 男女边吃奶边做爰视频| 91在线观看av| 搡老妇女老女人老熟妇| 看十八女毛片水多多多| 午夜老司机福利剧场| 99视频精品全部免费 在线| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 成年女人看的毛片在线观看| 简卡轻食公司| 婷婷精品国产亚洲av在线| 日本撒尿小便嘘嘘汇集6| 又粗又爽又猛毛片免费看| 日本一二三区视频观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品日韩在线中文字幕 | 日日摸夜夜添夜夜添av毛片| 91久久精品国产一区二区三区| 欧美色欧美亚洲另类二区| 99久久久亚洲精品蜜臀av| 免费无遮挡裸体视频| 国产精品久久久久久精品电影| 少妇熟女欧美另类| 寂寞人妻少妇视频99o| 深爱激情五月婷婷| 黄色欧美视频在线观看| 久久99热这里只有精品18| 最近的中文字幕免费完整| 亚洲精品一卡2卡三卡4卡5卡| 日日撸夜夜添| 国产精品嫩草影院av在线观看| 成人永久免费在线观看视频| 我的女老师完整版在线观看| 97超级碰碰碰精品色视频在线观看| 波野结衣二区三区在线| 久久综合国产亚洲精品| 亚洲丝袜综合中文字幕| 91麻豆精品激情在线观看国产| 久久人人爽人人片av| 亚洲欧美精品自产自拍| 91久久精品国产一区二区成人| 日韩在线高清观看一区二区三区| 久久久久久久久久黄片| 亚洲不卡免费看| 香蕉av资源在线| 国产乱人偷精品视频| 日韩欧美三级三区| 午夜视频国产福利| 天美传媒精品一区二区| av天堂中文字幕网| 97热精品久久久久久| 国产精品亚洲一级av第二区| 亚洲欧美中文字幕日韩二区| 自拍偷自拍亚洲精品老妇| 欧美成人精品欧美一级黄| 国产精品av视频在线免费观看| 老师上课跳d突然被开到最大视频| 亚洲18禁久久av| 中文字幕久久专区| 成人漫画全彩无遮挡| 免费av观看视频| 黄色视频,在线免费观看| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 精品久久久噜噜| 高清日韩中文字幕在线| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 六月丁香七月| 熟妇人妻久久中文字幕3abv| 国产精品三级大全| 国产又黄又爽又无遮挡在线| 最后的刺客免费高清国语| 免费人成视频x8x8入口观看| 国产精品人妻久久久久久| 亚州av有码| 精品久久久久久久久久久久久| 久久这里只有精品中国| 啦啦啦观看免费观看视频高清| a级毛片a级免费在线| 不卡视频在线观看欧美| 久久天躁狠狠躁夜夜2o2o| 身体一侧抽搐| 国产精品一二三区在线看| 91av网一区二区| 久久久久久久久久久丰满| 亚洲av美国av| 午夜视频国产福利| 久久6这里有精品| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 午夜影院日韩av| 欧洲精品卡2卡3卡4卡5卡区| 国产av不卡久久| 国产 一区 欧美 日韩| 国产私拍福利视频在线观看| 又爽又黄a免费视频| 少妇的逼好多水| 亚洲无线观看免费| 欧美激情在线99| 全区人妻精品视频| 免费在线观看成人毛片| 色噜噜av男人的天堂激情| 十八禁国产超污无遮挡网站| 久久久精品欧美日韩精品| 国产精品国产高清国产av| 99久久精品国产国产毛片| 此物有八面人人有两片| 极品教师在线视频| 国产一区亚洲一区在线观看| 中国美白少妇内射xxxbb| 夜夜爽天天搞| ponron亚洲| 一级av片app| 婷婷六月久久综合丁香| 欧美潮喷喷水| 岛国在线免费视频观看| 三级国产精品欧美在线观看| 久久久国产成人精品二区| 久久这里只有精品中国| 欧美国产日韩亚洲一区| 久久精品国产亚洲av香蕉五月| 国产成人a区在线观看| 精品久久久久久久久av| 午夜视频国产福利| 久久久久久大精品| 亚洲最大成人中文| 老司机影院成人| 午夜福利18| 国产在视频线在精品| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 欧美国产日韩亚洲一区| 成人特级av手机在线观看| 大香蕉久久网| 成人性生交大片免费视频hd| www日本黄色视频网| 成人美女网站在线观看视频| 午夜亚洲福利在线播放| 成年女人看的毛片在线观看| 成人鲁丝片一二三区免费| 亚洲av.av天堂| 午夜日韩欧美国产| 一区二区三区四区激情视频 | 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| av专区在线播放| 国产一区二区激情短视频| av专区在线播放| 女生性感内裤真人,穿戴方法视频| 午夜精品一区二区三区免费看| 草草在线视频免费看| 国产av一区在线观看免费| 久久久成人免费电影| 欧美高清性xxxxhd video| 国产精品av视频在线免费观看| 日日摸夜夜添夜夜添小说| 免费人成视频x8x8入口观看| 天天躁夜夜躁狠狠久久av| 成年av动漫网址| 国产精品日韩av在线免费观看| 亚洲欧美成人精品一区二区| 亚洲av第一区精品v没综合| 婷婷亚洲欧美| 熟女人妻精品中文字幕| 高清午夜精品一区二区三区 | 国产一区二区三区在线臀色熟女| av天堂中文字幕网| 久久精品国产亚洲网站| 男女做爰动态图高潮gif福利片| 99久久精品一区二区三区| 亚洲七黄色美女视频| 亚洲成人久久性| 亚洲人成网站在线播| 亚洲18禁久久av| 赤兔流量卡办理| 国产精品爽爽va在线观看网站| 精品久久久久久久久久久久久| 一级毛片aaaaaa免费看小| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 成人毛片a级毛片在线播放| 69人妻影院| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 日本欧美国产在线视频| 成人亚洲欧美一区二区av| 国产成人aa在线观看| 国产av在哪里看| 最新在线观看一区二区三区| 搡老岳熟女国产| 日本三级黄在线观看| 久久人人爽人人爽人人片va| 免费一级毛片在线播放高清视频| 亚洲性夜色夜夜综合| 亚洲无线观看免费| 成年女人永久免费观看视频| 中文资源天堂在线| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 亚洲精品久久国产高清桃花| 在线观看av片永久免费下载| 韩国av在线不卡| av国产免费在线观看| 日本黄色片子视频| 日韩制服骚丝袜av| 中文字幕久久专区| 嫩草影院精品99| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看人在逋| 色5月婷婷丁香| 99热网站在线观看| 国产在视频线在精品| 久久人人爽人人爽人人片va| 国内久久婷婷六月综合欲色啪| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 日本一本二区三区精品| 国产国拍精品亚洲av在线观看| 一级毛片aaaaaa免费看小| 国产精品女同一区二区软件| 欧美人与善性xxx| 男女视频在线观看网站免费| 欧美最新免费一区二区三区| 一本一本综合久久| 神马国产精品三级电影在线观看| 欧美极品一区二区三区四区| 亚洲av免费在线观看| 国产av一区在线观看免费| 国产成年人精品一区二区| 大又大粗又爽又黄少妇毛片口| 女生性感内裤真人,穿戴方法视频| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品热视频| 啦啦啦韩国在线观看视频| 久久精品影院6|