• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and magneto transport properties of Bi2Se3 nanowires?

    2017-08-30 08:26:08KangZhang張亢HaiyangPan潘海洋ZhongxiaWei魏仲夏MinhaoZhang張敏昊FengqiSong宋風麒XuefengWang王學鋒andRongZhang張榮
    Chinese Physics B 2017年9期
    關鍵詞:仲夏海洋

    Kang Zhang(張亢),Haiyang Pan(潘海洋),Zhongxia Wei(魏仲夏),Minhao Zhang(張敏昊), Fengqi Song(宋風麒),Xuefeng Wang(王學鋒),?,and Rong Zhang(張榮)

    1 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Physics,Nanjing University,Nanjing 210093,China

    Synthesis and magneto transport properties of Bi2Se3nanowires?

    Kang Zhang(張亢)1,Haiyang Pan(潘海洋)2,Zhongxia Wei(魏仲夏)2,Minhao Zhang(張敏昊)1, Fengqi Song(宋風麒)2,Xuefeng Wang(王學鋒)1,?,and Rong Zhang(張榮)1

    1 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2 National Laboratory of Solid State Microstructures,Collaborative Innovation Center of Advanced Microstructures, School of Physics,Nanjing University,Nanjing 210093,China

    Bi2Se3,as a three-dimensional topological insulator,has attracted worldwide attention for its unique surface states which are protected by time-reversal symmetry.Here we report the synthesis and characterization of high-quality singlecrystalline Bi2Se3nanowires.Bi2Se3nanowires were synthesized by chemical vapor deposition(CVD)method via goldcatalyzed vapor-liquid-solid(VLS)mechanism.The structure and morphology were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),x-ray photoelectron spectroscopy(XPS),and Raman spectroscopy.In magnetotransport measurements,the Aharonov–Bohm(AB)effect was observed in a nanowire-based nanode-vice,suggesting the existence of surface states in Bi2Se3nanowires.

    topological insulators,nanowires,chemical vapor deposition,Aharonov–Bohm effect

    1.Introduction

    Topological insulators(TIs)possess a bulk bandgap and gapless surface states protected by time-reversal symmetry, which has been observed directly by angle-resolved photoemission spectroscopy(ARPES).[1–6]By doping magnetic impurities,the surface states would be gapped,resulting in many exotic topological phenomena.[7–12]For example,a quantum anomalous Hall effect(QAHE)was observed in Cr-doped (Bi,Sb)2Te3films.[12,13]Bismuth selenide(Bi2Se3),which was identified as one of three-dimensional TI materials,has attracted a great deal of attention and been widely studied. Electronic transport experiments were often carried out to study the surface states of TIs.[14–19]However,the surface states were readily buried by the bulk contribution because of the abundant crystal defects.[20,21]One of the solutions is to synthesize nanomaterials with a large surface-to-volume ratio,which can magnify the surface states’contribution ratio in electronic transport experiments.[16,22,23]Besides,nanostructures of TIs are considered as critical materials for spintronic applications and quantum computers.[24,25]Therefore, it is urgently needed to synthesize high-quality Bi2Se3nanostructures.One of the most prominent methods is the chemical vapor deposition(CVD)technique,which has been reported by variousgroups.[14,16,18,25]Besides,a series of quantum phenomena related to the surface states have been observed in TIs nanostructures prepared by CVD,including weak antilocalization(WAL),[26]Aharonov–Bohm(AB)interference,[14,16]Shubnikov–de Haas(SdH)oscillations,[27–30]and universal conductance fluctuations(UCF).[14,31]

    In this work,we have synthesized high-quality Bi2Se3nanowires by a simple CVD approach.Different characterization methods were used to investigate the structural characteristics and verify the high quality of the nanowires,such as scanning electron microscope(SEM),transmission electron microscopy(TEM)with energy dispersive x-ray spectroscopy (EDS),x-ray photoelectron spectroscopy(XPS),and Raman spectroscopy.We also investigated the transport properties of as-grown nanowires by fabricating nanowire-based nanodevices.The measured magnetoresistance of Bi2Se3nanowires under a magnetic field up to 9 T showed the clear WAL effect and AB oscillations.

    2.Experiment method

    Bi2Se3nanowires were synthesized in a single heat zone tube furnace,and the quartz tube was 70 cm in length and 30 mm in diameter.Bi2Se3powder(99.999%)was used as the precursor,and Bi2Se3nanowires were grown on silicon substrates covered with a 10 nm gold layer as the catalyst via the vapor-liquid-solid(VLS)mechanism.In the growth process,Bi2Se3powder was placed at the central heat zone in a quartz boat,while the Si substrates in another quartz boat were placed downstream in the low-temperature region,which was 9–15 cm away from the source.In order to remove air and water in the quartz tube,the system was pumped and flushed with Ar gas flow several times prior to the growth.Then the temperature was raised to 560°C in 30 min and main-tained at 560°C for 60 min at a constant Ar gas flow rate of 20 sccm as the carrier gas and protective gas.During the whole growth process,the pressure in the tube was kept at 25 Pa. Then the nanowires were transfered onto the surface of clean SiO2/Si substrates.The single nanowire devices were fabricated by the photolithography technique and standard lift-off processes,in which Ti(5 nm)/Au(70 nm)alloy was evaporated by electron-beam evaporation(EBE).The transport properties of the Bi2Se3nanowire were measured in a Quantum Design PPMS-9(physical property measurement system).

    3.Results and discussion

    The morphology of the as-grown Bi2Se3nanostructures was analyzed by SEM images,as shown in Fig.1.Figure 1(a) shows the nanostructures on the Si substrate,suggesting that most of the synthesized products are straight nanowires with an average length of about 15μm.It is seen in Fig.1(a)that there are Au particles at the tip end of most nanowires.Figure 1(b)shows the magnified SEM image of a single Bi2Se3nanowire with a diameter of about 200 nm.The Au tip at the end of the nanowire can be observed obviously,clearly indicating the VLS growth mechanism.[16,26,32]In addition to the nanowires,the strip-shaped Bi2Se3nanoribbons are obtained at the same time,as shown in Fig.1(c).The nanoribbon shows a width of over 500 nm,and Au is also seen at the tip end of the nanoribbon,also suggesting the VLS growth mechanism of nanoribbon.The EDS spectrum of a single Bi2Se3nanowire is shown in Fig.1(d),and the quantitative analysis suggests an atomic ratio of Bi/Se close to 1:1,which indicates that there exist Se vacancies in Bi2Se3nanowires.Because of the low formation energy of the native defects,[33]the as-grown crystals of Bi2Se3always accompany a lot of Se vacancies(usually~1019cm?3)that act as electron donors.[20,34]As a result, Bi2Se3usually displays a metallic behavior and the residual bulk carriers hinder the transport studies of the surface states of Bi2Se3.

    Fig.1.The SEM images of(a)as-grown Bi2Se3 nanowires on substrates,(b)a single nanowire,and(c)a single nanoribbon.(d)The EDS spectrum of a single Bi2Se3 nanowire.

    In the initial stage of growth,when the furnace temperature was raised to 560°C,the temperature of the Si substrates was about 350°C,far below the melting point of Au (1063°C).In fact,Au is nonreactive but at the nanoscale it becomes a catalyst for reactions.[35–37]The size of Au particle we used is about 5 nm,so the Au particle could melt and form Au droplets on the Si substrates at 350°C.Then the Au droplets absorb the evaporated Bi2Se3molecules carried by Ar gas flow to form a liquid solution.Along with the increase of dissolved quantity,the solution soon turns to a supersaturated solution and serves as nucleation sites.Further source molecules lead to the Bi2Se3crystallization and the uniaxial growth of Bi2Se3nanowires or nanoribbons.Throughout the entire growth process,it contains three states of matter:vapor (evaporated source),liquid(supersaturated solution),and solid (crystallizing),and it exactly complies with the VLS growth mechanism.[38–40]We notice that the Au particle moves from Si substrates surface to the top of nanowires or nanoribbons during growth,which proves the catalysis of Au in the VLS growth process.However,there should be something different in the detailed growth processes of nanowires and nanoribbons even though they share the same growth mechanism.Compared with thin nanowires,flat nanoribbons like the one shown in Fig.1(c)indicate the obvious lateral growth,which usually dominates in the absence of a catalyst.It contains three growth processes:evaporation,crystallization,and epitaxial growth. We call this growth mode the vapor-solid(VS)mechanism since there is no liquid substance formed during the whole growth process.We conclude that the formation of nanoribbons includes two mechanisms:uniaxial VLS growth and epitaxial VS growth.When we increase the pressure in the tube or Ar flow rate during growth,the quantity of nanoribbons increases gradually,which is associated with the flow rate of the evaporated source material.Higher pressure or Ar flow rate will increase the mass flow rate of the source material,and VS growth dominates over VLS growth for a large mass flow rate.[38]

    Figure 2(a)shows the typical TEM image of a single Bi2Se3nanowire with a width of 150 nm.The good crystallinity of the synthesized nanowire is verified by the high resolution TEM(HRTEM)image shown in Fig.2(b).The lattice spacing of 0.21 nm in the inset agrees well with the previous reports,indicating that the nanowires grow along the[110] direction.[25,41]The chemical composition of our samples was analyzed by the EDS attached in the TEM.Figure 2(c)shows the EDS spectrum collected from the center of the nanowire, which confirms the compositions of Bi and Se.Further quantitative analysis reveals that the atomic ratio of Bi and Se is about 46:54,also indicating the existence of Se vacancies in Bi2Se3nanowires.The EDS spectrum collected from the head of the short nanowire is shown in Fig.2(d),suggesting that the particle on the head only contains Au,verifying the VLS growth mechanism.The C and Cu peaks come from the carbon-supported copper grid.

    Fig.2.(color online)(a)TEM and(b)HRTEM images of a typical nanowire.The inset in panel(b)shows the lattice spacing of 0.21 nm.(c),(d)EDS spectra collected from the body and head of a single Bi2Se3 nanowire,respectively.

    Fig.3.(color online)XPS spectra of Bi2Se3.(a)Se 3d peaks of the nanowires and the bulk(the inset).(b)Bi 4f peaks of the nanowires(black line)and the bulk(red line).

    Figure 3(a)shows peaks of Bi2Se3nanowire at 53.0 eV and 54.1 eV that correspond to Se 3d5/2and 3d3/2,respectively,which are consistent with the peaks of bulk Bi2Se3prepared by the melting method at 53.1 eV and 54.0 eV,as shown in the inset.In Fig.3(b),the black line shows peaks of Bi2Se3nanowire at 157.5 eV and 162.8 eV related to Bi 4f5/2and 4f7/2,which are close to the peaks of bulk Bi2Se3at 157.9 eV and 163.2 eV illustrated by the red line.Compared with the pure bulk of Se and Bi for Bi2Se3nanowires,the binding energies of the Se 3d peaks decrease by about 1.6 eV,while the binding energies of Bi 4f peaks increase by about 0.5 eV. The changes of the binding energies are caused by the Se–Bi bond and the charge transfer from Bi to Se.In Fig.4,we show a typical Raman spectrum taken from a single Bi2Se3nanowire.Three characteristic peaks are found at the position of 71 cm?1,131 cm?1,and 171 cm?1,which are related to three vibrational modes ofandrespectively. This is consistent with the previous reports of the Bi2Se3single crystal and nanostructures.[42–45]

    Fig.4.(color online)Raman spectrum of a single nanowire.

    The SEM image of a typical nanowire device is shown in Fig.5(a).The width and thickness of the nanowire are about 130 nm and 21 nm,which are estimated by SEM and atomic force microscope(AFM),respectively,as shown in the insets of Fig.5(a).Figure 5(b)shows the temperature-dependent resistance curve of the nanowire device,which suggests a metallic behavior.As shown by the above chemical composition analysis,there are Se vacancies in our nanowires,which may lead to the metallic behavior.[14,16]The four-terminal magnetoresistance was measured on a 9 T Quantum Design PPMS system.The magnetoresistance curve of the nanowire under vertical magnetic fields at 2 K is shown in Fig.5(c).The weak anti-localization effect(WAL)with a sharp cusp is visible near the zero magnetic field,which is due to the spin–orbit coupling(SOC)effect or the surface states in Bi2Se3.[16,46]Under the parallel magnetic field along the longitudinal direction of nanowire at 2 K,the magnetoresistance curve is shown in Fig.5(d).The WAL cusp near the zero magneticfield comes from the SOC of the bulk.At low magnetic fields, the pronounced and reproducible periodic resistance oscillations with a period of ΔB=1.8 T can be observed clearly, which is attributed to the AB oscillation.[16,28,47–49]The left inset in Fig.5(d)shows the index dependence of oscillation minima of the field positions,and the period of magnetic field (ΔB=1.8 T)is obtained from the slope of the fitting straight line.The AB oscillation is caused by the quantum interference effects of phase coherent conduction electrons after completing closed trajectories which encircle a certain magnetic flux.The characteristic period of the external magnetic field could be described by ΔB=Φ0/S,where the flux quantum Φ0=h/e,h is Planck’s constant,e is the electron charge,and S is the cross-sectional area of the nanowire.Considering our sample,the width and thickness of the nanowire are 130 nm and 21 nm,respectively,giving a cross-sectional area of about 2.6×10?15m2,which is close to the estimated cross-sectional area S=Φ0/ΔB=2.3×10?15m2.The fast Fourier transform (FFT)of magnetoresistance derivative d R/d B is shown in the right inset of Fig.5(d).In addition to the prominent h/e oscillation of the AB effect,the oscillation frequency of h/2e can also be observed,which is identified as the Altshuler–Aronov–Spival(AAS)effect that originates from WAL.[50]Compared with the AB effect,the AAS effect is more robust against temperature,which has been observed and analyzed in a previous report.[51]The observation of the AB oscillation in Bi2Se3nanowire provides evidence of the existence of surface states of topological insulators.Actually,in our metallic nanowires, bulk carriers contribute to a significant portion in the electron transport.However,the phase coherence of surface states cannot be destroyed by the interaction between bulk and surface electrons,which suggests that the low-dimensional system is an ideal platform to explore the topological surface states of TI materials.

    Fig.5.(color online)Magnetoresistance properties of a single Bi2Se3 nanodevice.(a)SEM image of the Bi2Se3 nanodevice.The magnified SEM image and the AFM height diagram of the nanodevice are shown in the insets.(b)Temperature-dependent resistance curve at zero magnetic field.(c)Magnetoresistance curve in the vertical magnetic field at 2 K.(d)Magnetoresistance curve in the parallel magnetic field at 2 K.The magnetic field positions of resistance oscillation minima versus oscillation index at 2 K and the FFT of the d R/d B in?9 T to 9 T range are shown in the insets.

    4.Conclusion

    In conclusion,Bi2Se3nanowires have been synthesized through a VLS process.The good crystallinity of the nanowires is characterized by HRTEM,XPS,and Raman spectra.The analysis of the chemical composition reveals the existence of Se vacancies in our nanowires.Magnetotransport measurements show the AB effect,manifesting the surface state nature of Bi2Se3nanowires.Our results are helpful for understanding the growth mechanism and magnetoresis-tance properties of the single Bi2Se3nanowire.

    [1]Fu L,Kane C L and Mele E J 2007 Phys.Rev.Lett.98 106803

    [2]Kane C L and Mele E J 2005 Phys.Rev.Lett.95 226801

    [3]Koenig M,Wiedmann S,Bruene C,Roth A,Buhmann H,Molenkamp L W,Qi X L and Zhang S C 2007 Science 318 766

    [4]Moore J E and Balents L 2007 Phys.Rev.B 75 121306

    [5]Fu L and Kane C L 2007 Phys.Rev.B 76 045302

    [6]Chen Y L,Analytis J G,Chu J H,Liu Z K,Mo S K,Qi X L,Zhang H J,Lu D H,Dai X,Fang Z,Zhang S C,Fisher I R,Hussain Z and Shen Z X 2009 Science 325 178

    [7]Takagaki Y,Jenichen B,Jahn U,Ramsteiner M and Friedland K J 2012 Phys.Rev.B 85 115314

    [8]Qi X L,Hughes T L and Zhang S C 2008 Phys.Rev.B 78 195424

    [9]Qi X L,Li R D,Zang J D and Zhang S C 2009 Science 323 1184

    [10]Fu L and Kane C L 2008 Phys.Rev.Lett.100 096407

    [11]Zhang J Y,Zhao B,Zhou T and Yang Z Q 2016 Chin.Phys.B 25 117308

    [12]He K,Ma X C,Chen X,Li L,Wang Y Y and Xue Q K 2013 Chin. Phys.B 22 67305

    [13]Chang C Z,Zhang J,Feng X,Shen J,Zhang Z,Guo M,Li K,Ou Y, Wei P,Wang L L,Ji Z Q,Feng Y,Ji S,Chen X,Jia J,Dai X,Fang Z, Zhang S C,He K,Wang Y,Lu L,Ma X C and Xue Q K 2013 Science 340 167

    [14]Pan H,Zhang K,Wei Z,Wang J,Han M,Song F,Wang X,Wang B and Zhang R 2017 Appl.Phys.Lett.110 053108

    [15]Dufouleur J,Veyrat L,Teichgr?ber A,Neuhaus S,Nowka C,Hampel S,Cayssol J,Schumann J,Eichler B,Schmidt O G,Büchner B and Giraud R 2013 Phys.Rev.Lett.110 186806

    [16]Peng H,Lai K,Kong D,Meister S,Chen Y,Qi X L,Zhang S C,Shen Z X and Cui Y 2010 Nat.Mater.9 225

    [17]Qu F,Yang F,Chen J,Shen J,Ding Y,Lu J,Song Y,Yang H,Liu G, Fan J,Li Y,Ji Z,Yang C and Lu L 2011 Phys.Rev.Lett.107 016802

    [18]Yan Y,Liao Z M,Zhou Y B,Wu H C,Bie Y Q,Chen J J,Meng J,Wu X S and Yu D P 2013 Sci.Rep.3 1264

    [19]Lu H Z and Shen S Q 2016 Chin.Phys.B 25 117202

    [20]Checkelsky J G,Hor Y S,Liu M H,Qu D X,Cava R J and Ong N P 2009 Phys.Rev.Lett.103 246601

    [21]Eto K,Ren Z,Taskin A A,Segawa K and Ando Y 2010 Phys.Rev.B 81 195309

    [22]Wang L X,Yan Y,Zhang L,Liao Z M,Wu H C and Yu D P 2015 Nanoscale 7 16687

    [23]Liu Y,Ma Z,Zhao Y F,Singh M and Wang J 2013 Chin.Phys.B 22 67302

    [24]Cho S,Kim D,Syers P,Butch N P,Paglione J and Fuhrer M S 2012 Nano Lett.12 469

    [25]Kong D,Randel J C,Peng H,Cha J J,Meister S,Lai K,Chen Y,Shen Z X,Manoharan H C and Cui Y 2010 Nano Lett.10 329

    [26]Cha J J,Claassen M,Kong D,Hong S S,Koski K J,Qi X L and Cui Y 2012 Nano Lett.12 4355

    [27]Xiu F,He L,Wang Y,Cheng L,Chang L T,Lang M,Huang G,Kou X, Zhou Y,Jiang X,Chen Z,Zou J,Shailos A and Wang K L 2011 Nat. Nano 6 216

    [28]Lee S,In J,Yoo Y,Jo Y,Park Y C,Kim H J,Koo H C,Kim J,Kim B and Wang K L 2012 Nano Lett.12 4194

    [29]Safdar M,Wang Q,Mirza M,Wang Z,Xu K and He J 2013 Nano Lett. 13 5344

    [30]Hamdou B,Gooth J,Dorn A,Pippel E and Nielsch K 2013 Appl.Phys. Lett.103 193107

    [31]Li Z,Chen T,Pan H,Song F,Wang B,Han J,Qin Y,Wang X,Zhang R,Wan J,Xing D and Wang G 2012 Sci.Rep.2 595

    [32]Wei Q,Su Y,Yang C J,Liu Z G,Xu H N,Xia Y D and Yin J 2011 J. Mater.Sci.46 2267

    [33]Scanlon D O,King P D C,Singh R P,de la Torre A,Walker S M,Balakrishnan G,Baumberger F and Catlow C R A 2012 Adv.Mater.24 2154

    [34]Ren Z,Taskin A A,Sasaki S,Segawa K and Ando Y 2011 Phys.Rev. B 84 075316

    [35]Kratzer P,Sakong S and Pankoke V 2012 Nano Lett.12 943

    [36]Dubrovskii V G and Sibirev N V 2008 Phys.Rev.B 77 035414

    [37]Dubrovskii V G,Sibirev N V,Harmand J C and Glas F 2008 Phys.Rev. B 78 235301

    [38]Hamdou B,Kimling J,Dorn A,Pippel E,Rostek R,Woias P and Nielsch K 2013 Adv.Mater.25 239

    [39]Givargizov E I 1975 J.Cryst.Growth 31 20

    [40]Milewski J V,Gac F D,Petrovic J J and Skaggs S R 1985 J.Mater.Sci. 20 1160

    [41]Mlack J T,Rahman A,Johns G L,Livi K J T and Markovi? N 2013 Appl.Phys.Lett.102 193108

    [42]Zhang G,Qin H,Teng J,Guo J,Guo Q,Dai X,Fang Z and Wu K 2009 Appl.Phys.Lett.95 053114

    [43]Yan Y,Zhou X,Jin H,Li C Z,Ke X,Van Tendeloo G,Liu K,Yu D, Dressel M and Liao Z M 2015 Acs Nano 9 10244

    [44]Richter W and Becker C R 1977 Phys.Status Solidi B 84 619

    [45]Zhang J,Peng Z,Soni A,Zhao Y,Xiong Y,Peng B,Wang J,Dresselhaus M S and Xiong Q 2011 Nano Lett.11 2407

    [46]Huber T E,Celestine K and Graf M J 2003 Phys.Rev.B 67 245317

    [47]Zhang Y and Vishwanath A 2010 Phys.Rev.Lett.105 206601

    [48]Fu Z G,Zhang P and Li S S 2011 Appl.Phys.Lett.99 243110

    [49]Jens H B and Joel E M 2013 Rep.Prog.Phys.76 056501

    [50]Bardarson J H,Brouwer P W and Moore J E 2010 Phys.Rev.Lett.105 156803

    [51]Wang L X,Li C Z,Yu D P and Liao Z M 2016 Nat.Commun.7 10769

    6 April 2017;revised manuscript

    11 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/096101

    ?Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB921103 and 2013CB921103),the National Natural Science Foundation of China(Grant Nos.11274003 and 91421109),and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China.

    ?Corresponding author.E-mail:xfwang@nju.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    仲夏海洋
    《壬寅仲夏》
    出發(fā),去看看未來的海洋
    仲夏之夜
    香格里拉(2021年2期)2021-07-28 06:50:42
    仲夏的休閑放松
    ViVi美眉(2019年8期)2019-09-10 07:22:44
    仲夏夢
    智族GQ(2019年7期)2019-08-26 09:31:36
    仲夏風箏微漾
    海洋的路
    當代音樂(2018年4期)2018-05-14 06:47:13
    大美青海,仲夏之行
    愛的海洋
    琴童(2017年7期)2017-07-31 18:33:48
    第一章 向海洋出發(fā)
    小學科學(2017年5期)2017-05-26 18:25:53
    婷婷精品国产亚洲av在线| 午夜免费激情av| av片东京热男人的天堂| 91老司机精品| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 亚洲黑人精品在线| 欧美成人免费av一区二区三区| 一区二区三区国产精品乱码| 悠悠久久av| 黄色女人牲交| 99国产精品一区二区蜜桃av| 蜜桃久久精品国产亚洲av| 91在线观看av| 又粗又爽又猛毛片免费看| 在线免费观看的www视频| 母亲3免费完整高清在线观看| 中出人妻视频一区二区| 激情在线观看视频在线高清| 草草在线视频免费看| 国产精品自产拍在线观看55亚洲| 三级毛片av免费| 国产99久久九九免费精品| 国产视频一区二区在线看| 欧美黑人精品巨大| 国产成人影院久久av| 高清在线国产一区| 国产一区二区三区视频了| 国产欧美日韩一区二区三| 免费人成视频x8x8入口观看| 国产片内射在线| 亚洲午夜精品一区,二区,三区| 午夜福利18| 天天添夜夜摸| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| 巨乳人妻的诱惑在线观看| 叶爱在线成人免费视频播放| 特大巨黑吊av在线直播| 婷婷亚洲欧美| 色综合亚洲欧美另类图片| 国产精品 国内视频| 亚洲avbb在线观看| 一边摸一边做爽爽视频免费| 免费高清视频大片| 麻豆成人午夜福利视频| 亚洲中文日韩欧美视频| 久久久国产欧美日韩av| 啪啪无遮挡十八禁网站| 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 此物有八面人人有两片| 久久精品综合一区二区三区| 老司机午夜十八禁免费视频| 无限看片的www在线观看| 村上凉子中文字幕在线| 一级片免费观看大全| 午夜成年电影在线免费观看| 熟女电影av网| 19禁男女啪啪无遮挡网站| 最近在线观看免费完整版| 国产成人av激情在线播放| 亚洲成人免费电影在线观看| 国产91精品成人一区二区三区| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 成人特级黄色片久久久久久久| 91麻豆精品激情在线观看国产| 国模一区二区三区四区视频 | 国产v大片淫在线免费观看| 国产精品亚洲美女久久久| 天天躁狠狠躁夜夜躁狠狠躁| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 可以在线观看的亚洲视频| 一级毛片精品| 国产精品99久久99久久久不卡| 欧美+亚洲+日韩+国产| 国产主播在线观看一区二区| 久久久久久国产a免费观看| 精品久久久久久久末码| 国产区一区二久久| 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区| 最好的美女福利视频网| 国产午夜精品久久久久久| 十八禁人妻一区二区| 亚洲第一欧美日韩一区二区三区| 久久精品亚洲精品国产色婷小说| 国产在线观看jvid| av超薄肉色丝袜交足视频| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 草草在线视频免费看| 丝袜人妻中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线观看二区| 免费人成视频x8x8入口观看| 久久人妻av系列| 999久久久精品免费观看国产| 国产精品一区二区三区四区久久| 97超级碰碰碰精品色视频在线观看| 欧美绝顶高潮抽搐喷水| 国产精品香港三级国产av潘金莲| 又大又爽又粗| 国产成人av激情在线播放| 国内少妇人妻偷人精品xxx网站 | 亚洲人与动物交配视频| 757午夜福利合集在线观看| 一区福利在线观看| 午夜精品久久久久久毛片777| 黄色毛片三级朝国网站| 国产精品久久久久久亚洲av鲁大| 欧美zozozo另类| 成人18禁在线播放| 国内少妇人妻偷人精品xxx网站 | svipshipincom国产片| 精品不卡国产一区二区三区| 九九热线精品视视频播放| 亚洲成a人片在线一区二区| 欧美性长视频在线观看| 色综合亚洲欧美另类图片| 两性夫妻黄色片| 亚洲av中文字字幕乱码综合| 亚洲精品久久成人aⅴ小说| 一本久久中文字幕| 亚洲av成人一区二区三| 五月伊人婷婷丁香| 欧美成狂野欧美在线观看| 国产99久久九九免费精品| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 村上凉子中文字幕在线| 欧美乱妇无乱码| 99精品在免费线老司机午夜| www日本黄色视频网| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 亚洲五月天丁香| 中文字幕久久专区| www日本黄色视频网| 这个男人来自地球电影免费观看| 人人妻人人看人人澡| 亚洲国产精品sss在线观看| 中国美女看黄片| 国内精品久久久久精免费| 嫩草影视91久久| 性色av乱码一区二区三区2| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站 | 91大片在线观看| 久久久久久人人人人人| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 69av精品久久久久久| 黑人欧美特级aaaaaa片| av国产免费在线观看| 男插女下体视频免费在线播放| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 亚洲黑人精品在线| 久久精品国产综合久久久| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品色激情综合| 免费在线观看黄色视频的| 国产伦在线观看视频一区| 99久久精品热视频| 欧美日韩福利视频一区二区| 国产精品免费视频内射| 黄色视频,在线免费观看| svipshipincom国产片| 久久久久久九九精品二区国产 | 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 亚洲欧洲精品一区二区精品久久久| 久久久久久九九精品二区国产 | 亚洲中文字幕一区二区三区有码在线看 | 国产黄色小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩 | 五月玫瑰六月丁香| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 亚洲九九香蕉| 国产99久久九九免费精品| 精华霜和精华液先用哪个| 亚洲五月婷婷丁香| 国产亚洲精品一区二区www| 久久99热这里只有精品18| 久99久视频精品免费| 天天一区二区日本电影三级| av有码第一页| 日韩欧美国产在线观看| 国产av在哪里看| a在线观看视频网站| 男男h啪啪无遮挡| 亚洲片人在线观看| 国产视频内射| 身体一侧抽搐| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 搡老岳熟女国产| 亚洲成av人片免费观看| 精品福利观看| 99国产综合亚洲精品| 中文在线观看免费www的网站 | 午夜成年电影在线免费观看| 婷婷精品国产亚洲av| 国产又色又爽无遮挡免费看| а√天堂www在线а√下载| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 亚洲美女视频黄频| 亚洲精品久久国产高清桃花| 黄色a级毛片大全视频| 免费在线观看影片大全网站| 久久久国产精品麻豆| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩东京热| 国产精品久久久人人做人人爽| 亚洲五月婷婷丁香| 日日夜夜操网爽| 神马国产精品三级电影在线观看 | 特级一级黄色大片| 男女下面进入的视频免费午夜| 1024视频免费在线观看| 国产又黄又爽又无遮挡在线| av在线播放免费不卡| 国产麻豆成人av免费视频| av福利片在线观看| 18禁美女被吸乳视频| 日日夜夜操网爽| 久久精品国产亚洲av香蕉五月| aaaaa片日本免费| 亚洲熟女毛片儿| 欧美日韩亚洲综合一区二区三区_| 日本一本二区三区精品| 久久精品aⅴ一区二区三区四区| 99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 国产高清有码在线观看视频 | 亚洲av美国av| 国产成人啪精品午夜网站| 亚洲专区中文字幕在线| 青草久久国产| 久久国产精品影院| cao死你这个sao货| 欧美性长视频在线观看| 久久中文字幕人妻熟女| 一级毛片高清免费大全| АⅤ资源中文在线天堂| 伦理电影免费视频| 草草在线视频免费看| 桃色一区二区三区在线观看| 欧美一区二区精品小视频在线| 一级片免费观看大全| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 男女那种视频在线观看| 他把我摸到了高潮在线观看| 亚洲国产精品久久男人天堂| 日韩精品免费视频一区二区三区| 又爽又黄无遮挡网站| 12—13女人毛片做爰片一| 亚洲五月天丁香| 无限看片的www在线观看| 哪里可以看免费的av片| 制服人妻中文乱码| 少妇被粗大的猛进出69影院| 国产激情久久老熟女| 国产野战对白在线观看| 91国产中文字幕| 午夜激情av网站| 99国产综合亚洲精品| 成人一区二区视频在线观看| 88av欧美| 91老司机精品| 美女高潮喷水抽搐中文字幕| 正在播放国产对白刺激| 国产av一区二区精品久久| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 国产成人aa在线观看| 国产亚洲精品久久久久久毛片| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 一进一出好大好爽视频| 亚洲精品国产一区二区精华液| 最好的美女福利视频网| 国产视频内射| 最好的美女福利视频网| 两人在一起打扑克的视频| 悠悠久久av| 嫁个100分男人电影在线观看| 日韩精品中文字幕看吧| av在线天堂中文字幕| 亚洲精品av麻豆狂野| 日韩欧美三级三区| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 91麻豆av在线| 美女午夜性视频免费| av片东京热男人的天堂| 久久人人精品亚洲av| 国产成人一区二区三区免费视频网站| 欧美+亚洲+日韩+国产| 麻豆成人午夜福利视频| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 久久香蕉精品热| 亚洲国产欧美一区二区综合| 婷婷精品国产亚洲av| av视频在线观看入口| 国产伦一二天堂av在线观看| 少妇裸体淫交视频免费看高清 | 国产精品一区二区三区四区久久| 淫妇啪啪啪对白视频| 宅男免费午夜| 久久午夜综合久久蜜桃| 欧美午夜高清在线| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 日韩精品免费视频一区二区三区| 欧美中文综合在线视频| 美女午夜性视频免费| 狂野欧美激情性xxxx| 精品人妻1区二区| 国产熟女午夜一区二区三区| 国产精品亚洲一级av第二区| 十八禁人妻一区二区| 一级黄色大片毛片| 又大又爽又粗| 亚洲精品在线美女| 午夜精品在线福利| 久久久久久人人人人人| 一进一出抽搐动态| www.自偷自拍.com| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 久久亚洲真实| 麻豆成人av在线观看| 久久精品91无色码中文字幕| 久久香蕉精品热| 99riav亚洲国产免费| 一二三四在线观看免费中文在| 母亲3免费完整高清在线观看| 免费无遮挡裸体视频| 国产高清有码在线观看视频 | 精品久久久久久久毛片微露脸| 波多野结衣巨乳人妻| 九色成人免费人妻av| 精品国产乱子伦一区二区三区| 国产精品免费一区二区三区在线| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀| 久久久精品大字幕| 国产av不卡久久| 中文字幕久久专区| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| av有码第一页| 中文资源天堂在线| 精品免费久久久久久久清纯| 老司机在亚洲福利影院| 18禁裸乳无遮挡免费网站照片| 精品少妇一区二区三区视频日本电影| 青草久久国产| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| av天堂在线播放| 很黄的视频免费| 最好的美女福利视频网| 91麻豆av在线| 他把我摸到了高潮在线观看| 91老司机精品| 日韩三级视频一区二区三区| 麻豆一二三区av精品| 色综合站精品国产| 欧美乱色亚洲激情| cao死你这个sao货| 中文亚洲av片在线观看爽| 国产成人影院久久av| 久久精品91蜜桃| 好男人在线观看高清免费视频| 亚洲av熟女| 免费一级毛片在线播放高清视频| 免费在线观看完整版高清| 精品久久蜜臀av无| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 9191精品国产免费久久| 国产私拍福利视频在线观看| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 一本一本综合久久| 变态另类成人亚洲欧美熟女| 日本免费a在线| 一级毛片精品| 五月玫瑰六月丁香| 中文在线观看免费www的网站 | 欧美国产日韩亚洲一区| 18禁黄网站禁片免费观看直播| 亚洲成人久久爱视频| 亚洲精品在线美女| 色精品久久人妻99蜜桃| 女人爽到高潮嗷嗷叫在线视频| www.999成人在线观看| 日韩欧美国产在线观看| 99re在线观看精品视频| 很黄的视频免费| 国产爱豆传媒在线观看 | 老司机靠b影院| 99久久国产精品久久久| 丁香欧美五月| 日韩欧美国产在线观看| 国产一区二区在线av高清观看| 欧美高清成人免费视频www| 国产伦人伦偷精品视频| 欧美精品亚洲一区二区| 黄片大片在线免费观看| 伊人久久大香线蕉亚洲五| 夜夜夜夜夜久久久久| 色噜噜av男人的天堂激情| 久久伊人香网站| 亚洲精品色激情综合| 国产1区2区3区精品| 听说在线观看完整版免费高清| 国产精品野战在线观看| 国产成年人精品一区二区| 怎么达到女性高潮| 露出奶头的视频| 老司机深夜福利视频在线观看| 99久久无色码亚洲精品果冻| 精品一区二区三区视频在线观看免费| 国产成人aa在线观看| 国产野战对白在线观看| 亚洲第一电影网av| 免费高清视频大片| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品无人区| 国产精品免费视频内射| 99精品久久久久人妻精品| 国产精品影院久久| www.精华液| 国产高清视频在线观看网站| 9191精品国产免费久久| 久久久久久久精品吃奶| 国产99白浆流出| 免费在线观看亚洲国产| 国产高清激情床上av| 日本一本二区三区精品| 最近视频中文字幕2019在线8| 日本熟妇午夜| 男插女下体视频免费在线播放| 91字幕亚洲| 99久久综合精品五月天人人| 久久久久久久久久黄片| 亚洲国产日韩欧美精品在线观看 | 亚洲人成77777在线视频| 亚洲最大成人中文| 毛片女人毛片| 2021天堂中文幕一二区在线观| 成人三级做爰电影| 国产精品一区二区三区四区久久| 久久久久免费精品人妻一区二区| 夜夜爽天天搞| 悠悠久久av| 性欧美人与动物交配| 他把我摸到了高潮在线观看| 一级毛片高清免费大全| 亚洲黑人精品在线| 国产高清视频在线播放一区| 91麻豆av在线| 亚洲熟妇中文字幕五十中出| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 午夜福利在线在线| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品久久久久久| 成人永久免费在线观看视频| 午夜免费激情av| 亚洲av成人不卡在线观看播放网| 成人亚洲精品av一区二区| 日本精品一区二区三区蜜桃| 国产成+人综合+亚洲专区| 国产成人影院久久av| 波多野结衣高清无吗| 国产激情久久老熟女| 久久久水蜜桃国产精品网| 熟妇人妻久久中文字幕3abv| 日本一二三区视频观看| 午夜免费成人在线视频| 正在播放国产对白刺激| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 国产真人三级小视频在线观看| 亚洲av成人精品一区久久| 中文字幕熟女人妻在线| 日本成人三级电影网站| 久久久精品国产亚洲av高清涩受| 黄色女人牲交| 午夜日韩欧美国产| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av在线| 国产精品永久免费网站| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区三区四区免费观看 | 88av欧美| 免费在线观看视频国产中文字幕亚洲| 国产精华一区二区三区| 国产三级在线视频| 黑人欧美特级aaaaaa片| 欧美日韩乱码在线| 身体一侧抽搐| 午夜福利成人在线免费观看| 久久精品影院6| 757午夜福利合集在线观看| 1024手机看黄色片| 97人妻精品一区二区三区麻豆| 久久人妻av系列| 日韩欧美免费精品| 亚洲 欧美 日韩 在线 免费| av片东京热男人的天堂| 免费电影在线观看免费观看| 成人永久免费在线观看视频| 欧美乱妇无乱码| 搡老岳熟女国产| 看免费av毛片| 国产成人精品久久二区二区91| 黄色 视频免费看| 成人三级做爰电影| 久久久久久国产a免费观看| 国产乱人伦免费视频| 午夜老司机福利片| 一进一出好大好爽视频| 国产熟女xx| 俺也久久电影网| 久久久国产欧美日韩av| 午夜精品一区二区三区免费看| 亚洲精品中文字幕一二三四区| 久久久久久免费高清国产稀缺| 欧美黄色淫秽网站| 国产欧美日韩精品亚洲av| 757午夜福利合集在线观看| 欧美日韩一级在线毛片| 两个人免费观看高清视频| 日韩欧美在线乱码| 亚洲五月婷婷丁香| 搡老岳熟女国产| 日日爽夜夜爽网站| 精品久久久久久久末码| 免费看a级黄色片| 亚洲在线自拍视频| 69av精品久久久久久| 欧美+亚洲+日韩+国产| 亚洲欧洲精品一区二区精品久久久| 99国产综合亚洲精品| 国产午夜福利久久久久久| 欧美中文日本在线观看视频| 哪里可以看免费的av片| 欧美精品亚洲一区二区| 夜夜夜夜夜久久久久| 国产精品一区二区三区四区久久| 亚洲午夜精品一区,二区,三区| 中文字幕精品亚洲无线码一区| 国产精品,欧美在线| 国产精品亚洲美女久久久| 亚洲欧美日韩高清专用| 久久精品aⅴ一区二区三区四区| netflix在线观看网站| 高清毛片免费观看视频网站| 亚洲成人精品中文字幕电影| 99精品在免费线老司机午夜| 麻豆av在线久日| 日韩欧美精品v在线| 成人一区二区视频在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜福利18| 国产精品电影一区二区三区| av超薄肉色丝袜交足视频| 午夜影院日韩av| 国产精品电影一区二区三区| 免费看十八禁软件| 亚洲国产精品999在线| 亚洲精品av麻豆狂野| 丝袜人妻中文字幕| 精华霜和精华液先用哪个| 麻豆一二三区av精品| 亚洲五月婷婷丁香| 日韩精品免费视频一区二区三区| 亚洲成av人片在线播放无| 真人一进一出gif抽搐免费| x7x7x7水蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 天堂动漫精品| 亚洲一区二区三区不卡视频| 免费搜索国产男女视频| 亚洲一区二区三区色噜噜| 99热6这里只有精品| 国产高清激情床上av|