• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ionizing radiation effect on single event upset sensitivity of ferroelectric random access memory

    2017-08-30 08:26:10JiaNanWei魏佳男HongXiaGuo郭紅霞FengQiZhang張鳳祁YinHongLuo羅尹虹LiLiDing丁李利XiaoYuPan潘霄宇YangZhang張陽andYuHuiLiu劉玉輝
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張陽紅霞

    Jia-Nan Wei(魏佳男),Hong-Xia Guo(郭紅霞),Feng-Qi Zhang(張鳳祁),Yin-Hong Luo(羅尹虹), Li-Li Ding(丁李利),Xiao-Yu Pan(潘霄宇),Yang Zhang(張陽),and Yu-Hui Liu(劉玉輝)

    1 School of Material Science and Engineering,Xiangtan University,Xiangtan 411105,China

    2 Northwest Institute of Nuclear Technology,Xi’an 710024,China

    Ionizing radiation effect on single event upset sensitivity of ferroelectric random access memory

    Jia-Nan Wei(魏佳男)1,?,Hong-Xia Guo(郭紅霞)1,2,Feng-Qi Zhang(張鳳祁)2,Yin-Hong Luo(羅尹虹)2, Li-Li Ding(丁李利)2,Xiao-Yu Pan(潘霄宇)2,Yang Zhang(張陽)1,and Yu-Hui Liu(劉玉輝)1

    1 School of Material Science and Engineering,Xiangtan University,Xiangtan 411105,China

    2 Northwest Institute of Nuclear Technology,Xi’an 710024,China

    The impact of ionizing radiation effect on single event upset(SEU)sensitivity of ferroelectric random access memory (FRAM)is studied in this work.The test specimens were firstly subjected to60Co γ-ray and then the SEU evaluation was conducted using209Bi ions.As a result of TID-induced fatigue-like and imprint-like phenomena of the ferroelectric material,the SEU cross sections of the post-irradiated devices shift substantially.Different trends of SEU cross section with elevated dose were also found,depending on whether the same or complementary test pattern was employed during the TID exposure and the SEU measurement.

    ferroelectric random access memory,ionizing radiation effect,single event upset

    1.Introduction

    Ferroelectric random access memory(FRAM)is a type of nonvolatile memory that reads and writes like a standard static random access memory(SRAM).It is nonvolatile due to its unique ferroelectric thin-film process.The binary information is stored as a polarization state of the ferroelectric material.FRAM features multiple advantages such as high-speed read/write(<50 ns),high switching endurance(≥1013),and low power consumption in comparison with the conventional FLASH and EEPROM.[1]Moreover,several research studies have shown that the ferroelectric material has superior radiation hardness,which makes FRAM attractive for the storage of key information in civilian satellite applications.[2–6]

    Long-life and highly reliable aerospace devices in the space environment are affected by many kinds of radiation effects simultaneously,including total ionizing dose(TID)and single event upset(SEU),which are two of the most common effects.Some researchers investigated the impact of ionizing radiation on SEU sensitivity of complementary metal oxide semiconductor(CMOS)devices and found that the SEU cross section can be substantially shifted by ionizing radiation.[7–9]Preliminary works about the TID and SEU effects on FRAM have been done separately in the past few decades.The results of TID experiments showed that the radiation tolerance of FRAM is much higher at static mode than that at dynamic mode[10]and the radiation response is dominated by the CMOS circuits.[11,12]Zanata[13]investigated FRAMs subjected to x-ray and proton irradiation with doses up to 9 Mrad(Si)and detected only stuck bits without data corruption in the unpowered devices.SEU information of FRAM is very limited but existing data still marks a lower saturated SEU cross section than that of SRAM.[14]However,few reports about the synergistic effects of TID and SEU on FRAM are available.

    The purpose of this work is to analyze the ionizing radiation effect on SEU sensitivity of commercial 90 nm FRAM. The devices were firstly irradiated unpowered with60Co γray and then the SEU evaluation was conducted on both the heavy-ion accelerator and the pulsed laser microbeam facility. TID-induced variations of the SEU sensitivity are presented and the related mechanisms are discussed.

    2.Experiment details

    The parameters of the test devices are listed in Table 1.The TID experiment was performed with60Co source at Northwest Institute of Nuclear Technology and the dose rate was 70 rad(Si)/s.18 samples were investigated,15 of which were split into 5 groups and irradiated to 0.5 Mrad(Si), 1 Mrad(Si),2 Mrad(Si),3 Mrad(Si)and 4 Mrad(Si),respectively,and the remaining devices were used as the control group.Before exposure,all bytes of the devices were set to a checkerboard pattern(55H).All devices were unpowered with terminals grounded during the irradiation.We chose this bias condition because in space applications,when the nonvolatile memory is not accessed,it is kept in a power-off state to enhance the ability to resist SEU.Meanwhile,the samples were decapped from the frontside in order to carry out the following heavy ion experiment.

    The SEU measurement was conducted with209Bi ions on the Heavy Ion Research Facility in Lanzhou(HIRFL).Thepenetrating depth of209Bi in silicon is 69.8μm.The test board was mounted 4 cm away from the extraction window, where the linear energy transfer(LET)of209Bi was about 99.8 MeV·mg?1·cm2.The flux varied from 4×103cm?2·s?1to 6×103cm?2·s?1and the fluence was about 1×106cm?2for each test cycle.In this experiment,two test patterns(55H and AAH)were used and the devices under test operated in dynamic mode.Data was read out in a circular manner and then compared with the correct test pattern in real time to count upsets.Due to the limits of funds and experimental time of the accelerator,only the two groups of samples that were exposed to 2 Mrad(Si)and 4 Mrad(Si)as well as the control group were irradiated with heavy ions.

    The pulsed laser microbeam facility of Northwest Institute of Nuclear Technology was also used to obtain the complete SEU cross section curve.Pulsed laser with a wavelength of 1064 nm was used and the test patterns and operating mode were identical to those used in the heavy-ion test.It was difficult for the pulsed laser to reach the sensitive volume from the front side due to the block of the metal layers,so the backside testing method was used.The devices were deluded from the back side and the metallic die pad was removed.Then a polishing machine was employed to polish the silicon substrate.

    Table 1.Parameters of test devices.

    3.Experiment results

    3.1.TID results

    Functional verification was done immediately after TID irradiation.All devices could operate normally with no read/write errors.Figure 1 shows the currents of two sample devices(SA1 and SA2)as a function of dose and annealing time.The standby current increases rapidly before 0.5 Mrad(Si)and then becomes saturated at 2 Mrad(Si).Recovery is significant with room temperature annealing in the first day but becomes slight from the second day to the 10thday.The dose and annealing time have very limited impact on the active current and the biggest change is less than 0.03%of the initial value.

    Fig.1.(color online)Standby and active currents as a function of irradiation dose and annealing time.

    3.2.SEU results

    Figure 2 shows the SEU results measured with209Bi ions. The SEU cross sections obtained with both 55H and AAH patterns decrease notably at the dose level of 2 Mrad(Si).For the 55H test pattern,the SEU cross section decreases from 5.5×10?3cm2to 2.8×10?3cm2,and for the AAH pattern,the SEU cross section decreases from 5.9×10?3cm2to 2.5×10?3cm2.When the total irradiation dose reaches 4 Mrad(Si),the SEU cross section measured with 55H pattern reduces to 2.3×10?3cm2,while the cross section measured with AAH pattern increases to 4.2×10?3cm2.

    Fig.2.(color online)SEU cross sections as a function of irradiation dose with different test patterns.

    Another noteworthy phenomenon is related to the SEU cross sections of“0”to“1”upsets(σ0→1)and“1”to“0”upsets(σ1→).Table 2 shows a set of σ0→1and σ1→0results measured using209Bi ions.A coefficient k is defined to characterize the decrease amplitude of the SEU cross sections and it is obtained by dividing the SEU cross section of the unirradiated device by that of the device irradiated to the given dose level.We can see that k0→1is always larger than k1→0,independent of dose and test patterns,which indicates that the TID-induced restraint of SEU is more significant for the bits that store the binary information“0”.

    The SEU cross section curve obtained using the pulsed laser microbeam facility is shown in Fig.3.At the dose level of 2 Mrad(Si)(Fig.3(b)),the deviation between the SEU cross sections with 55H and AAH patterns is not obvious and there seems to be no change of the saturated cross section compared with that of the unirradiated device(Fig.3(a)).While at the dose level of 4 Mrad(Si)(Fig.3(c)),the SEU cross section with AAH pattern is significantly larger than that with 55H. Furthermore,we investigated the SEU of the memory array and detected no upset as the energy rose to 2 nJ.Therefore we believe that the SEU we detected in the pulsed laser experiment results from the periphery CMOS circuits.

    Table 2.Comparison between σ0→1 and σ1→0 with two different test patterns.

    Fig.3.(color online)SEU results measured by the pulsed laser facility with different test patterns:(a)Mrad(Si),(b)2 Mrad(Si),(c)4 Mrad(Si).

    4.Discussion

    4.1.TID-induced degradations in periphery circuits

    According to the manufacturing process and the internal structure,the conventional FRAM can be divided into two parts:periphery circuits in the CMOS process and memory cells in the ferroelectric process.As a consequence,the degradation caused by the ionizing effect should be discussed separately.When the device is in standby,the memory cells are always at a high impedance state,independent of the bias conditions.So the increase of the standby current is mainly caused by the degradation of the periphery CMOS circuits.Ionizing radiation introduces a large amount of electron–hole pairs into the gate oxide and field oxide.However,in the unpowered devices used in our experiment,the ionization-induced electron–hole pairs will recombine to a large extent and contribute very little to trapped charges.So a constant increase of the standby current accompanied with a burst of read errors in powered devices is not found here.The rapid recovery of the standby current in the first day probably results from the annealing of the shallow levels and metastable state oxide trapped charges. After 10 days of room temperature annealing,the standby current is still larger than the initial value,which can prove the existence of deep level oxide trapped charges.High temperature annealing may be effective to eliminate these charges.The ionizing radiation effect on the active current is more complex and the degradation of the periphery circuits and memory cells should be considered together.However,the change of the active current after irradiation is so small compared with the initial value that it can be ignored.Hence,the mechanism is not discussed here and we think that the TID-induced degradation in the periphery circuits has little impact on the SEU results, especially when the device is in the dynamic mode.

    4.2.Variations of SEU sensitivity

    4.2.1.Operating principles and SEU failure mechanisms of FRAM

    A ferroelectric memory cell with 1T-1C structure is shown in Fig.4.The cell consists of a ferroelectric capacitor that is connected to plateline(PL)at one end and to bitline(BL)via an access NMOS transistor at the other end. A hysteresis loop of the ferroelectric capacitor that displays the change of polarization as a function of the electric field is shown in Fig.5.The two remanent polarization states PRand?PRare used to store the binary data“0”and“1”,respectively. During the reading cycle,a positive electric field is applied through PL and the polarization reversal current will conduct to BL.Then the voltage developed on BL will be detected by the sense amplifier.If the capacitor is pre-poled with PR,the bitline voltage is relatively low and will be pulled down to 0 V (read“0”).However,a high bitline voltage will be generated if the capacitor is pre-poled with?PRdue to more switched electric domains and as a result the bitline voltage will be pulled up to VDD(read“1”).[15,16]

    Fig.4.Diagram of a 1T-1C ferroelectric memory cell.

    Fig.5.Hysteresis loop of the ferroelectric capacitor.

    There are two ways to cause SEU in FRAM.The first way is to trigger upsets by striking the access transistor in the memory cell.During the SEU test,readout data will appear on BL. Since the BL is shared by multiple cells,for the unselected cells,there will also be a voltage applied to the end connected with BL of the access transistor.If the ions strike the sensitive region of the access transistor,a transient impulse current will be induced due to charge collection.The current can charge or discharge the ferroelectric capacitor.Thus,PRand?PRwill be disturbed and so will the corresponding bitline voltages.Once the shifted bitline voltage is unable to be distinguished from the reference voltage by the sense amplifier, readout errors will be detected.The second way is to write the incorrect data caused by the periphery circuits into the memory cell through the write back process.The readout method of FRAM is destructive because of the polarization reversal of the ferroelectric capacitors,so a write back operation is necessary to restore the BL data to the capacitors.Before the start of the write back operation,the bitline voltage may be shifted by single event effects in the periphery CMOS circuits,such as localized latch-up and single event transient pulse.Therefore the ferroelectric capacitor storing“0”may be excessively written back and the ferroelectric capacitor storing“1”may be insufficiently written back,which is expected to cause readout errors in the next reading cycle.So the robustness of the ferroelectric capacitor has a close relationship with the SEU sensitivity.

    4.2.2.Decrease of SEU cross section at 2 Mrad(Si)

    From Figs.3(a)and 3(b),at the dose level of 2 Mrad(Si), the saturated cross sections of the upsets caused by the periphery circuits with the two test patterns are almost the same as those obtained from the unirradiated devices,so the altered sensitivity of upsets that are caused by striking the access transistor is the key factor that leads to the decrease in SEU cross section at 2 Mrad(Si)in Fig.2.During the γ-ray irradiation, a large amount of electron–hole pairs can be generated in the ferroelectric material.Under the strong local field due to the large polarization in ferroelectrics,the electron–hole pairs will be separated.On one hand,some of the separated charges will be trapped by the pre-existing defects at the domain walls and grain boundaries,which will cause the pinning of the domain walls and further lead to polarization loss.This is a fatigue like phenomenon.On the other hand,some of the charges will be swept out to the ferroelectric/electrode interface by the depolarizing field(ED)and then trapped by defects at the interface.These trapped charges can build up an internal bias field(EI)and screen ED,which will cause a shift of the coercive field.As a consequence,if the ferroelectric capacitor is pre-poled with PRbefore irradiation,the hysteresis loop shifts leftward.Similarly,the opposite shift occurs if the capacitor is pre-poled with?PR.[17–19]This is an imprint-like phenomenon.The hysteresis loops for the capacitors pre-poled with PRand?PRare presented in Fig.6,where the dotted lines represent the hysteresis loops of the irradiated capacitors and the solid lines represent those of the fresh ones.Figure 6(a) presents the capacitors storing“0”,andare the positive saturated polarization and positive rem anent polarization respectively;andare the negative saturated polarization and negative rem anent polarization respectively.Figure 6(b) presents the capacitors storing“1”,andare the positive saturated polarization and positive rem anent polarization respectively;andare the negative saturated polarization and negative rem anent polarization respectively.

    Apart from the degradation discussed above,the hysteresis loop also becomes flatter for the post-irradiated ferroelectric capacitors.In other words,the change of polarization with the electric field becomes slower than before.Thus,when the same voltage fluctuation caused by the incident ions is applied to the electrode,the remanent polarization loss may be less for the post-irradiated capacitors than the pre-irradiated ones, which can lead to the restraint of SEU sensitivity.

    Fig.6.Schematic representation of the radiation induced effects on the hysteresis loop of a ferroelectric capacitor:(a)pre-poled to P R(store“0”);(b)pre-poled to?P R(store“1”).

    4.2.3.Distinction of SEU cross section with different test patterns at 4 Mrad(Si)

    As can be seen from both Figs.2 and 3(c),at the dose level of 4 Mrad(Si),the SEU cross sections of AAH and 55H are significantly different,so the sensitivity of upsets caused in the two ways should be considered together to explain this difference.On one hand,the polarization degradation in the pre-poled capacitors is asymmetric.As is shown in Fig.6,if the capacitor is pre-poled positively with PR,the negative remanent polarization?PRreduces more strongly than PR.On the contrary,the positive remanent polarization PRreduces more strongly when the capacitor is negatively pre-poled with?PR. That is to say,the noise margin of the capacitor is smaller when the data stored in it is complementary to that stored during the γ-ray irradiation.Consequently,the incident ions are more likely to cause upsets in the cells that store AAH in our experiment.Moreover,we can expect that if the dose continues to increase from 4 Mrad(Si),the SEU cross section of AAH may continue to increase,and stuck bits,which refer to some bits that are fixed at the initial data and cannot be switched during the write cycle,may occur even without incident ions due to the disappeared noise margin,as reported in Mauro Zanata’s work.[13]On the other hand,the scale of data upsets caused by the periphery circuits seems to be discrepant when different test patterns are used,as shown in Fig.3(c).It is well known that the write back operation is not indispensable for the capacitors storing“0”because the positive PL voltage can reinforce“0”during every readout operation.While a high negative voltage is essential to restore the initial data for capacitors storing“1”.As has been noted above,ionizing radiation can deform the hysteresis loop and make the polarization state unresponsive to the external field,so the voltage disturbance on the bitline is more likely to result in insufficient write back of the capacitors storing“1”and lead to“1”to“0”upsets.Meanwhile,as a consequence of the positive shift of the coercivefield,the capacitors storing“1”in the 55H pattern will not suffer so badly compared with those in the AAH pattern.In fact, the difference between the SEU cross sections in Fig.3(c)is mainly caused by the different amounts of“1”to“0”upsets. Figure 7 shows a set of pulsed laser results of σ0→1and σ1→with the two test patterns at 4 Mrad(Si).There is no obvious change in σ→1,while σ1→measured with the AAH pattern is much larger than that with the 55H pattern.

    Fig.7.(color online)Comparison between σ0→1 and σ1→0 measured by the pulsed laser facility with two different test patterns at 4 Mrad(Si).

    4.2.4.Inconformity of the variation ofand with dose

    The inconformity of the variation of σ0→1and σ1→0in Table 2 could also be explained by two factors.One is the increased“1”to“0”upsets caused by insufficient writeback at 4 Mrad(Si)discussed in the previous section,the other is the asymmetric degradation of the effective polarization reversal. In Fig.6,for the capacitors that store“0”,the change of the effective polarization reversal after irradiation(ΔP0),which will directly affect the bitline voltage,in the reading cycle of the device with 55H pattern can be given by

    while that of the capacitors that store“1”(ΔP1)can be given by

    From Eqs.(1)and(2)we can compare ΔP1with ΔP0by

    Since the ferroelectric capacitors are independent during the TID exposure,we can assume that the degradation of the capacitors storing“0”and“1”is origin-symmetric.So(+)can be considered as 0.Moreover,the first two items on the right-hand side of Eq.(3)are always less than 0.Hence, ΔP0?ΔP1<0.That is to say,after irradiation,the polarization margin is larger for the capacitors storing“0”than those storing“1”,which makes the“0”to“1”upset cross section decrease more significantly.For the devices with AAH pattern,the same equation can be derived as Eq.(3)and the same result can also be obtained.

    5.Conclusion

    The impact of ionizing radiation on SEU sensitivity of ferroelectric memory has been studied in this work.Experiment results indicate that ionizing radiation has a notable impact on the SEU sensitivity.The SEU cross section decreases at the dose level of 2 Mrad(Si)in the heavy ion experiment,independent of the applied test patterns.This should be attributed to the combined effect of the fatigue-like phenomenon,which is caused by the trapping of TID-induced charges at the domain walls and grain boundaries and the consequent domain wall pinning,and the imprint-like phenomenon,which is caused by the TID-induced internal bias field,of the ferroelectric material.This kind of synthesis can deform the P–E hysteresis loop to a flatter shape and the sensitivity of the remanent polarization to the external electric field is weakened.At the dose level of 4 Mrad(Si),the SEU cross section measured with the 55H pattern continues to decrease, while an obvious growth of the SEU cross section measured with the AAH pattern is found.One reason is that the TID-induced polarization degradation in the pre-poled capacitors is asymmetric and the noise margin decreases more strongly when the AAH pattern is applied.Another reason may be that the insufficient write back of the capacitors storing“1”in the AAH pattern is more serious than that in the 55H pattern,so more“1”to“0”upsets occur under the AAH pattern.Meanwhile,the TID-induced restraint of“0”to“1”upsets is more obvious than that of“1”to“0”upsets within the dose range studied in this work.This is mainly because the degradation of the effective polarization reversal is larger when the capacitors store“1”,which will reduce the effective polarization transition during the reading cycle and further lead to more“1”to“0”upsets.

    [1]Ishiwara H 2012 J.Nanosci.Nanotechno.12 7619

    [2]Moore R A,Benedetto J M,Mcgarrity J M and Mclean F B 1991 IEEE Trans.Nucl.Sci.38 1078

    [3]Angadi B,VictorP,Jali V M,Lagare M T,Kumar R and Krupanidhi S B 2003 Thin Solid Films 434 40

    [4]Lee S C,Teowee G,Schrimpf R D,Birnie D P,Uhlmann D R and Galloway K F 1992 IEEE Trans.Nucl.Sci.39 2036

    [5]Liu B Ma Y Zhou Y C and Li J C 2013 Radiat Eff.Defects Solids 168 115

    [6]Zhai Y H,Li W,Li P,Hu B,Huo W R,Li J H and Gu K 2012 Mater. Rev.26 34(in Chinese)

    [7]Xiao Y,Guo H X,Zhang F Q,Zhao W,Wang Y P,Zhang K Y,Ding L L,Fan X,Luo Y H and Wang Y M 2014 Chin.Phys.B 23 118503

    [8]Xiao Y,Guo H X,Zhang F Q,Zhao W,Wang Y P,Ding L L,Fan X, Luo Y H and Zhang K Y 2014 Acta Phys.Sin.63 018501(in Chinese)

    [9]Campbell A B and Stapor W J 1984 IEEE Trans.Nucl.Sci.30 4085

    [10]Gu K,Li P,Li W and Fan X 2015 IEEE International Conference on Electron Devices and Solid-State Circuits,June 18–20,2014,Chengdu, China,p.1

    [11]Nguyen D N and Scheick L Z 2001 IEEE Radiation Effects Data Workshop,July 16–20,2001,Vancouver,Canada,p.57

    [12]Benedetto J M,De Lancey W M,Oldham T R and Mcgarrity J M 1991 IEEE Trans.Nucl.Sci.38 1410

    [13]Zanata M,Wrachien N and Cester A 2008 IEEE Trans.Nucl.Sci.55 3237

    [14]Gu K,Li P and Li W 2015 Microelectron.Compu.32 109

    [15]Sheikholeslami A and Gulak P G 2000 Proc.IEEE 88 665

    [16]Zhou Y C and Tang M H 2009 Mater.Rev.23 1(in Chinese)

    [17]Co?c Y M,Musseau O and Leray J L 1994 IEEE Trans.Nucl.Sci.41 495

    [18]Yang S A Kim B H Lee M K Lee G J Lee N H and Bu S D 2014 Thin Solid Films 562 185

    [19]Wu D Li A D Ling H Q Yu T Liu Z G and Ming N B 2001 Appl.Phys. A 73 255

    14 February 2017;revised manuscript

    3 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/096102

    ?Corresponding author.E-mail:weijianan93@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張陽紅霞
    藏在別人星星里的表白
    請你幫個忙
    長相思·江水東
    女支書三訪特困戶
    《烏鴉喝水》中的“想”
    用上禮貌用語,寫“打電話”的故事
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    讓動作“活”起來
    “光的直線傳播”“光的反射”練習
    騙壽
    国产99白浆流出| 精品国产亚洲在线| 亚洲专区中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 黄网站色视频无遮挡免费观看| 亚洲中文字幕日韩| 久久婷婷成人综合色麻豆| 久久精品亚洲精品国产色婷小说| 亚洲国产日韩欧美精品在线观看 | 亚洲免费av在线视频| 成人三级做爰电影| 国产精品久久电影中文字幕| 制服人妻中文乱码| 可以在线观看毛片的网站| 欧美乱码精品一区二区三区| 欧美国产精品va在线观看不卡| 色婷婷久久久亚洲欧美| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 国产色视频综合| 久久久久九九精品影院| 禁无遮挡网站| 国产色视频综合| 97超级碰碰碰精品色视频在线观看| 日本三级黄在线观看| 亚洲色图综合在线观看| 精品国产亚洲在线| 女生性感内裤真人,穿戴方法视频| 母亲3免费完整高清在线观看| 成年女人毛片免费观看观看9| 国产亚洲精品一区二区www| 伊人久久大香线蕉亚洲五| 一级a爱片免费观看的视频| 亚洲国产看品久久| 一区二区三区激情视频| 亚洲人成电影免费在线| 青草久久国产| 欧美人与性动交α欧美精品济南到| 国产麻豆69| 国产亚洲欧美精品永久| 欧美久久黑人一区二区| 色播在线永久视频| 手机成人av网站| 久久婷婷成人综合色麻豆| 在线视频色国产色| 91麻豆精品激情在线观看国产| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看一区二区三区| 亚洲av电影在线进入| 国产亚洲av嫩草精品影院| 日本一区二区免费在线视频| 精品久久久精品久久久| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 精品高清国产在线一区| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影| 久久久久久亚洲精品国产蜜桃av| 中文字幕精品免费在线观看视频| 在线观看免费视频网站a站| 国产伦一二天堂av在线观看| 男女午夜视频在线观看| 国产亚洲精品久久久久5区| 成人亚洲精品av一区二区| 99国产精品一区二区三区| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 在线播放国产精品三级| 一区二区三区高清视频在线| videosex国产| 欧美成人免费av一区二区三区| www日本在线高清视频| 一级a爱片免费观看的视频| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 国产真人三级小视频在线观看| 亚洲一码二码三码区别大吗| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 免费高清在线观看日韩| 午夜久久久在线观看| 成人永久免费在线观看视频| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久亚洲精品国产蜜桃av| 最近最新中文字幕大全电影3 | 久久久久九九精品影院| 老司机福利观看| 一级毛片高清免费大全| 九色亚洲精品在线播放| 亚洲自拍偷在线| 国产精品免费一区二区三区在线| 美女高潮到喷水免费观看| 麻豆av在线久日| 桃色一区二区三区在线观看| 精品第一国产精品| 中文字幕精品免费在线观看视频| 老汉色∧v一级毛片| 欧美黑人精品巨大| 国产成人精品在线电影| 一区二区三区精品91| 亚洲欧美精品综合久久99| 免费一级毛片在线播放高清视频 | 亚洲成av人片免费观看| 精品久久久久久久人妻蜜臀av | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区字幕在线| 色综合亚洲欧美另类图片| 久久久久国内视频| 99国产精品99久久久久| 国产真人三级小视频在线观看| 亚洲精华国产精华精| 久久人人爽av亚洲精品天堂| 免费看a级黄色片| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 成人三级做爰电影| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 国产片内射在线| 国产99白浆流出| 成人免费观看视频高清| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 亚洲中文av在线| 成人国语在线视频| 国产视频一区二区在线看| 免费高清视频大片| 精品午夜福利视频在线观看一区| 久久精品91蜜桃| 国产三级黄色录像| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 日本免费a在线| 色尼玛亚洲综合影院| 亚洲精品在线美女| 中文字幕另类日韩欧美亚洲嫩草| 午夜成年电影在线免费观看| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 最近最新中文字幕大全电影3 | 久久久国产欧美日韩av| 给我免费播放毛片高清在线观看| 一本综合久久免费| 亚洲成av片中文字幕在线观看| 女警被强在线播放| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 国产成人一区二区三区免费视频网站| 手机成人av网站| 亚洲久久久国产精品| 很黄的视频免费| 看黄色毛片网站| 久热爱精品视频在线9| 亚洲精品美女久久久久99蜜臀| 国产午夜精品久久久久久| 国产一区二区三区综合在线观看| 久久国产精品影院| 麻豆久久精品国产亚洲av| 一区二区日韩欧美中文字幕| 69av精品久久久久久| 久久人妻av系列| 久久久久久人人人人人| 啪啪无遮挡十八禁网站| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 亚洲国产欧美网| 一a级毛片在线观看| 欧美成狂野欧美在线观看| 女人爽到高潮嗷嗷叫在线视频| 精品一品国产午夜福利视频| 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 岛国视频午夜一区免费看| 很黄的视频免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品国产精品久久久不卡| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 精品午夜福利视频在线观看一区| 成人国产一区最新在线观看| 国产成人影院久久av| 亚洲午夜理论影院| 国产成年人精品一区二区| 桃色一区二区三区在线观看| 12—13女人毛片做爰片一| 黄频高清免费视频| 看片在线看免费视频| 美女免费视频网站| 性欧美人与动物交配| 男人的好看免费观看在线视频 | 夜夜夜夜夜久久久久| 国产亚洲精品综合一区在线观看 | 久久久国产成人精品二区| 国产熟女xx| 国产欧美日韩一区二区三区在线| 久久精品aⅴ一区二区三区四区| 国产一区二区三区综合在线观看| 无人区码免费观看不卡| 一区二区三区激情视频| 久久久久久久精品吃奶| 咕卡用的链子| 亚洲精品美女久久久久99蜜臀| www国产在线视频色| 亚洲 欧美 日韩 在线 免费| 69av精品久久久久久| 黄色毛片三级朝国网站| 亚洲av美国av| 成人国语在线视频| 伊人久久大香线蕉亚洲五| av超薄肉色丝袜交足视频| 欧美一级a爱片免费观看看 | 国产亚洲精品第一综合不卡| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 热re99久久国产66热| 免费av毛片视频| 亚洲欧美激情综合另类| 女人被躁到高潮嗷嗷叫费观| 视频在线观看一区二区三区| 在线观看舔阴道视频| 黄色女人牲交| 色av中文字幕| 久久久国产欧美日韩av| 真人一进一出gif抽搐免费| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| 啦啦啦韩国在线观看视频| 久久狼人影院| 夜夜夜夜夜久久久久| 黄网站色视频无遮挡免费观看| 欧美日韩乱码在线| 久久久久久久久中文| 久热这里只有精品99| 18美女黄网站色大片免费观看| 国内精品久久久久久久电影| 中文字幕另类日韩欧美亚洲嫩草| 99久久国产精品久久久| 黑人操中国人逼视频| 国产在线观看jvid| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av | 99国产精品免费福利视频| 中文字幕人妻熟女乱码| 亚洲 欧美一区二区三区| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 亚洲av美国av| 这个男人来自地球电影免费观看| 亚洲第一电影网av| 成年版毛片免费区| 亚洲,欧美精品.| 久久久久国内视频| 九色国产91popny在线| 身体一侧抽搐| 欧美黄色片欧美黄色片| 日韩高清综合在线| 免费久久久久久久精品成人欧美视频| 又黄又粗又硬又大视频| 午夜免费成人在线视频| 女性生殖器流出的白浆| 久久久国产成人免费| 黄片播放在线免费| 欧美成人午夜精品| 在线永久观看黄色视频| 久久午夜亚洲精品久久| 亚洲精品av麻豆狂野| 村上凉子中文字幕在线| АⅤ资源中文在线天堂| 大香蕉久久成人网| 午夜久久久在线观看| 欧美日韩精品网址| 国产真人三级小视频在线观看| 99国产精品一区二区蜜桃av| 美女扒开内裤让男人捅视频| 亚洲av五月六月丁香网| 日韩精品免费视频一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲国产中文字幕在线视频| 欧美激情久久久久久爽电影 | 国产极品粉嫩免费观看在线| 国产成人精品久久二区二区免费| 黑人巨大精品欧美一区二区蜜桃| 欧美午夜高清在线| 日本黄色视频三级网站网址| 午夜影院日韩av| 免费女性裸体啪啪无遮挡网站| 夜夜夜夜夜久久久久| 国产亚洲精品av在线| 国产三级在线视频| 露出奶头的视频| 久久性视频一级片| 操出白浆在线播放| 天天一区二区日本电影三级 | 午夜久久久在线观看| 亚洲美女黄片视频| 在线av久久热| 国产野战对白在线观看| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 两性夫妻黄色片| 国产精品久久久久久精品电影 | 久久精品亚洲精品国产色婷小说| 丝袜美腿诱惑在线| 久久久久久久久免费视频了| 欧美黄色片欧美黄色片| 久久久久久久久免费视频了| 人人妻人人爽人人添夜夜欢视频| 黄色a级毛片大全视频| 精品国产美女av久久久久小说| 成人三级做爰电影| av欧美777| 精品久久蜜臀av无| 日本欧美视频一区| 欧美另类亚洲清纯唯美| 一区二区日韩欧美中文字幕| www.熟女人妻精品国产| 国产精品久久久久久精品电影 | 久久国产精品影院| 日韩高清综合在线| 精品国产亚洲在线| 精品欧美国产一区二区三| 又紧又爽又黄一区二区| 一级,二级,三级黄色视频| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 国产精品乱码一区二三区的特点 | 亚洲熟女毛片儿| 亚洲精华国产精华精| 黑人操中国人逼视频| 亚洲无线在线观看| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 国产伦一二天堂av在线观看| 亚洲欧美一区二区三区黑人| 手机成人av网站| 久久久久久久精品吃奶| 黄色成人免费大全| 日韩大码丰满熟妇| 国产午夜福利久久久久久| 国产成人影院久久av| 一边摸一边做爽爽视频免费| 嫁个100分男人电影在线观看| 在线观看免费视频日本深夜| 久久性视频一级片| 黄色 视频免费看| 国产精品久久视频播放| 在线观看舔阴道视频| 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线观看免费| 午夜免费观看网址| 真人一进一出gif抽搐免费| 精品久久久久久久人妻蜜臀av | 丁香欧美五月| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 亚洲国产精品999在线| 欧美人与性动交α欧美精品济南到| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 日日爽夜夜爽网站| 一区福利在线观看| 人人妻人人澡人人看| 久热爱精品视频在线9| 亚洲av电影在线进入| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 男人操女人黄网站| 久久久久国产精品人妻aⅴ院| 日日干狠狠操夜夜爽| 欧美精品啪啪一区二区三区| 色播亚洲综合网| 欧美不卡视频在线免费观看 | 欧美激情高清一区二区三区| 国产精品国产高清国产av| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 黄片大片在线免费观看| ponron亚洲| 国产极品粉嫩免费观看在线| 国产亚洲精品第一综合不卡| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 久久青草综合色| 国产一区二区激情短视频| 成人精品一区二区免费| 日韩欧美免费精品| 9热在线视频观看99| 国产精品久久久久久人妻精品电影| 9热在线视频观看99| 麻豆av在线久日| 黄网站色视频无遮挡免费观看| 午夜精品在线福利| 成人国产一区最新在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲无线在线观看| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区精品| 人人妻,人人澡人人爽秒播| 国产97色在线日韩免费| avwww免费| 国产高清videossex| 国产成年人精品一区二区| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看 | 久久久久久久久久久久大奶| 精品国产亚洲在线| 午夜老司机福利片| 一级a爱片免费观看的视频| 国产精品久久电影中文字幕| 亚洲男人天堂网一区| 窝窝影院91人妻| 免费高清在线观看日韩| 日韩精品中文字幕看吧| 在线观看免费日韩欧美大片| 自线自在国产av| 国产亚洲欧美98| 国产真人三级小视频在线观看| 成熟少妇高潮喷水视频| 亚洲,欧美精品.| 国产精品电影一区二区三区| 香蕉丝袜av| 精品福利观看| 国产av又大| 乱人伦中国视频| 色综合欧美亚洲国产小说| 在线观看免费视频网站a站| 久久午夜综合久久蜜桃| 琪琪午夜伦伦电影理论片6080| 搡老熟女国产l中国老女人| 国产高清有码在线观看视频 | svipshipincom国产片| 国产私拍福利视频在线观看| 久久国产亚洲av麻豆专区| 天天添夜夜摸| 国产精品国产高清国产av| 日韩大码丰满熟妇| 自线自在国产av| 成年女人毛片免费观看观看9| 精品人妻在线不人妻| 91大片在线观看| 老汉色av国产亚洲站长工具| 国产精品亚洲美女久久久| 亚洲黑人精品在线| 在线观看www视频免费| 国产国语露脸激情在线看| 在线视频色国产色| 欧美大码av| 久久久久久国产a免费观看| 一本大道久久a久久精品| 国产精品久久视频播放| 日本免费一区二区三区高清不卡 | 免费在线观看完整版高清| 国产精品野战在线观看| 欧美日韩乱码在线| 亚洲熟女毛片儿| 黄色片一级片一级黄色片| 国产精品久久久av美女十八| 精品第一国产精品| 国产一区二区三区在线臀色熟女| 老熟妇乱子伦视频在线观看| 国产熟女午夜一区二区三区| 精品久久久久久,| 伦理电影免费视频| 成人亚洲精品一区在线观看| 一边摸一边抽搐一进一出视频| 两性夫妻黄色片| av中文乱码字幕在线| 法律面前人人平等表现在哪些方面| 88av欧美| 无限看片的www在线观看| 中亚洲国语对白在线视频| 成人亚洲精品一区在线观看| 超碰成人久久| 两性夫妻黄色片| 亚洲精品一区av在线观看| 国产精品久久电影中文字幕| 日韩三级视频一区二区三区| 在线十欧美十亚洲十日本专区| 桃红色精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 级片在线观看| 露出奶头的视频| 曰老女人黄片| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| 日韩欧美国产在线观看| 午夜福利免费观看在线| 国产精品98久久久久久宅男小说| 可以在线观看的亚洲视频| 国产在线观看jvid| 我的亚洲天堂| 精品免费久久久久久久清纯| 国产99白浆流出| 欧美黄色淫秽网站| 亚洲激情在线av| 精品卡一卡二卡四卡免费| 亚洲国产欧美一区二区综合| 天天躁夜夜躁狠狠躁躁| 欧美成人免费av一区二区三区| 亚洲激情在线av| 精品卡一卡二卡四卡免费| 亚洲五月天丁香| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 老汉色av国产亚洲站长工具| 女性被躁到高潮视频| 久久午夜亚洲精品久久| 国产成人系列免费观看| 亚洲欧美日韩高清在线视频| 精品免费久久久久久久清纯| 黄色 视频免费看| 99久久综合精品五月天人人| 国产精品一区二区三区四区久久 | 一区二区三区激情视频| 久久久久久亚洲精品国产蜜桃av| 在线免费观看的www视频| 精品久久久精品久久久| 黄片大片在线免费观看| 日韩成人在线观看一区二区三区| 淫妇啪啪啪对白视频| 性色av乱码一区二区三区2| 激情视频va一区二区三区| 在线av久久热| www.999成人在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成av人片免费观看| 国产又爽黄色视频| 精品国内亚洲2022精品成人| 亚洲一码二码三码区别大吗| 国产欧美日韩一区二区三区在线| 法律面前人人平等表现在哪些方面| 久久久久久国产a免费观看| 国语自产精品视频在线第100页| 黄色片一级片一级黄色片| 久久精品国产亚洲av香蕉五月| 国产成人精品久久二区二区免费| 亚洲精品久久国产高清桃花| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 色av中文字幕| 国产精品日韩av在线免费观看 | 在线观看日韩欧美| 欧美黑人精品巨大| 亚洲国产欧美网| 亚洲人成电影观看| 久久久国产欧美日韩av| 日韩大尺度精品在线看网址 | 女人被躁到高潮嗷嗷叫费观| 在线av久久热| 无遮挡黄片免费观看| 欧美中文综合在线视频| 1024香蕉在线观看| xxx96com| 变态另类丝袜制服| 咕卡用的链子| 亚洲av熟女| 亚洲 欧美 日韩 在线 免费| 久久香蕉激情| 一进一出抽搐gif免费好疼| 波多野结衣一区麻豆| 999精品在线视频| 无人区码免费观看不卡| 成人av一区二区三区在线看| 很黄的视频免费| 美女免费视频网站| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 日日夜夜操网爽| 欧美日韩亚洲综合一区二区三区_| 岛国在线观看网站| 这个男人来自地球电影免费观看| 亚洲精品中文字幕在线视频| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 成人精品一区二区免费| 18禁美女被吸乳视频| 777久久人妻少妇嫩草av网站| 欧美成狂野欧美在线观看| 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 国产私拍福利视频在线观看| 亚洲精品av麻豆狂野| 黄频高清免费视频| 国产亚洲av高清不卡| 国产精品美女特级片免费视频播放器 | 啦啦啦免费观看视频1| 男男h啪啪无遮挡| 日韩高清综合在线| 国产真人三级小视频在线观看| 亚洲中文日韩欧美视频| 久久性视频一级片| 亚洲精品久久成人aⅴ小说| 国产亚洲精品一区二区www| 别揉我奶头~嗯~啊~动态视频| 国产蜜桃级精品一区二区三区| 国产精品亚洲美女久久久| 免费在线观看黄色视频的| 国产91精品成人一区二区三区| 欧美日韩瑟瑟在线播放|