• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    2017-08-30 08:26:26MehdiAhmadiSajjadRashidiDafehSamanehGhazanfarpourandMohammadKhanzadeh
    Chinese Physics B 2017年9期

    Mehdi Ahmadi,Sajjad Rashidi Dafeh,Samaneh Ghazanfarpour,and Mohammad Khanzadeh

    Department of Physics,Faculty of Science,Vali-e-Asr University of Rafsanjan,Rafsanjan,Iran

    Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2thin films as efficient electron transport layer

    Mehdi Ahmadi?,Sajjad Rashidi Dafeh,Samaneh Ghazanfarpour,and Mohammad Khanzadeh

    Department of Physics,Faculty of Science,Vali-e-Asr University of Rafsanjan,Rafsanjan,Iran

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene)P3HT: [6-6]phenyl-(6)butyric acid methyl ester(PCBM).1%vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2thinfilms were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV–visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jscof 10.7 mA/cm2compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the external quantum efficiency of vanadium-doped TiO2thin film was better in all wavelengths.

    inverted polymer solar cells,electron transport layer,vanadium-doped TiO2thin films,solvothermal

    1.Introduction

    In recent years,polymer solar cells(PSCs)gained a lot of attention because of their superior characteristics such as mechanical flexibility,low cost,low environmentalload,and their potential to be produced in large scale.[1–3]However,PSCs technology is not mature yet.PSCs,especially those with normal configuration,suffer from instability and low power conversion efficiency(PCE).[4]These photovoltaic cells have common problems in the PEDOTS:PSS layer.This layer is sensitive to ambient conditions and its acidic nature increases the degradation rate of the layer.Oxidation of low work function top metal oxide with the degradation of the PEDOT:PSS layer under UV illumination is another problem of the normal configuration of PSCs.[5–9]An inverted configuration is a common approach seeking to overcome the mentioned problems of PSCs.[3,9]In this structure,a bufferlayeris inserted between the active layers and electrodes.Different n-type metal oxides such as ZnO[9–12]and TiO2,[13–15]alkali metal oxides like LiF[16]and Cs2CO3,[17,18]and in some cases ultra thin layers of Ca[19,20]are used as the electron-selective and holeblocking layer in PSCs.

    Special qualities of TiO2cause it to be widely used in semiconductor industries such as OLEDs and organic photovoltaic cells.The TiO2thin film has high electron mobility,great optical transparency,good physical and chemical stability;and as a nontoxic material,it can be produced in large scale inexpensively.Also,TiO2has substantial oxygen and water protection because of photocatalysis combination and inherent oxygen deficiency.[21–23]Atomic layer deposition,[14,23]magnetron sputtering,[13,24]doctor blade method,[25]and spin coating[26]are some of the techniques used to fabricate TiO2thin films.Some reports show that doping TiO2can improve the performance of solar cells.For example,a Cs-doped TiO2interlayer exhibited a power conversion efficiency of 4.2%,while pure thin films of TiO2showed PCE of~2.4%.[9]Materials such as Al,Ga,and In were used as dopants in ZnO(ETLs)to enhance the electrical properties of the thin films and improve the PCE of cells.[27–30]Materials such as vanadium and niobium could be used as a dopant to improve the electrical properties of TiO2as an electron transport layer.Vanadium has a resonant level within the conduction band of Ti and it can be used as a promising dopant to create a high density of free carriers.[31–34]In this study,we investigate cells using 1%vanadium-doped TiO2thin films with different thicknesses and compare them with those using pure TiO2thin films.

    2.Experiment

    All chemicals were used as received without further purification.Titanium(IV)butoxide(TB,97%),oleic acid (OA,90%),and oleylamine(OM,70%)were purchased from Sigma-Aldrich.Absolute ethanol(anhydrous,ACS,94%–96%)and vanadium(V)oxytriethoxide(VO(OPr)3,95%) were also purchased from Sigma-Aldrich.In this work,pure and vanadium-doped TiO2nanoparticles(NPs)were prepared by the solvothermal method.[31]Typically,TB(2.27 ml, 6.7 mmol)and VO(OPr)3(0.018 g,1%V/Ti mole ratio)were added to a mixture of 10.57 ml(33.3 mmol)OA,10.97 ml (33.3 mmol)OM,5.84 ml(100 mmol)absolute ethanol,and 0.67 ml(36.7 mmol)deionized(DI)water.The obtained mixture was stirred under argon atmosphere for 10 min before being transferred into a 50 mL Teflon-lined stainless steel autoclave.The system was then heated at 180°C for 24 h. The obtained precipitates were separated by centrifugation (5000 rpm,15 min)and washed several times with ethanol and then dried at room temperature.The solvothermal synthesized vanadium-doped TiO2NPs’products were dispersed in ethanol with different ratios.The procedure of this synthesis is summarized in Fig.1.

    Fig.1.(color online)Procedure of the synthesis of TiO2 NPs.

    Fabrication of solar cells began with ultrasonic cleansing of ITO-coated glass in acetone and isopropanol for 30 min. Afterward for electron transport layer deposition,10%and 40%stable solutions of pure and vanadium-doped TiO2NPs were dissolved in 2-methoxy ethanol to be deposited using doctor blade method(4 samples with the thicknesses of 30 and 60 nm,respectively).[12]In the next step,100μL of the mentioned solutions was injected into the substrate.Finally, deposition started with a speed of 40 mm/s on the heated substrate(65°C).In order to prepare the active layer of the cells, we dissolved P3HT and PCBM in chlorobenzene separately. A 60°C hot plate was used for stirring the dissolved solutions overnight.At a weight ratio of 1:0.9 we blended the solutions. Afterward we used the 60°C hot plate to stir the solutions again.The active layer was deposited on the electron transport layer in air via doctor blade method at a speed of 30 mm/s and the temperature of 60°C.Then the thin layer of PEDOT:PSS was deposited on the active layer with a speed of 15 mm/s and the temperature of 60°C as the hole transport layer(HTL). Inert atmosphere annealing on a hot plate at 140°C was employed for 5 min.Thermal evaporation at~510?6mbar and a shadow mask were used to deposit the Ag electrode.The structure of the cells is shown in Fig.2.

    Fig.2.(color online)An inverted configuration of polymer solar cells.

    3.Characterization

    The structures of pure and vanadium-doped TiO2thinfilm NPs were analyzed using x-ray diffraction(XRD,Model Philips MPD PW 3040)over the 2θ range of 20°–80°at the scan rate of 0.02°/s.The surface morphology of pure and vanadium-doped TiO2thin film NPs was examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The optical properties of the thinfilms were investigated using a UV–VIS–IR(Perkin-Elmer-950 lambda)spectrometer.The current density–voltage characteristics of the cells were measured under AM 1.5 illumination provided by Oriel Sol 1A solar simulator.

    4.Results and discussion

    The crystalline structure of pure and vanadium-doped TiO2thin films NPs was investigated by XRD.Figure 3(a) shows the XRD pattern of pure TiO2thin film NPs.The diffraction pattern indicates the presence of eight peaks which are attributed to the anatase TiO2crystalline(JCPDS card No.89-492).The eight peaks each are presented in the fields (101),(004),(200),(105),(204),(116),(220),and(215).The XRD pattern of vanadium-doped TiO2thin film NPs is depicted in Fig.3(b).As can be seen,the diffraction peaks move gradually to lower angles due to the vanadium doping of the TiO2thin film.This slight shift towards a lower angle demonstrates doping of TiO2thin film NPs.Also,the eight peaks are attributed to the anatase phase of vanadium-doped TiO2thin films.There are no rutile peaks in both patterns of pure and vanadium-doped TiO2thin films.The peak assigned to the(101)plane is the most intense throughout the pattern, which indicates a preferential orientation of the vanadiumdoped TiO2thin film NPs along the(101)direction.The degree of orientation for the(11)plane is calculated by the relative texture coefficient(χc)[35]

    where I0is the peak intensity for a randomly oriented sample. Thus,and χc(215)are calculated to be(0.448,0.435),(0.125,0.166), (0.168,0.136),(0.108,0.117),(0.081,0.070),(0.008,0.018), (0.017,0.020),and(0.045,0.038)for pure and vanadiumdoped TiO2thin films,respectively.These results indicate a preferential orientation of the pure and doped TiO2thin film NPs along the(101)direction.

    Fig.3.XRD patterns of(a)pure anatase TiO2 and(b)vanadium-doped TiO2 NPs prepared by the solvothermal method.

    Fig.4.(color online)(a)SEM image and(b)size distribution histogram of TiO2 thin film NPs fabricated via the solvothermal method.

    The surface morphology of TiO2thin film NPs is depicted in Figs.4–6.Figure 4 shows(a)the SEM image and (b)the size distribution histogram of TiO2thin films NPs. These images show that TiO2thin film NPs have a size about 10 nm.Figure 5 shows(a)the TEM image and (b)the size distribution histogram of TiO2thin film NPs. The particles are round in shape with good uniform size distribution.Most of the particles have the diameter of about 8 nm.We fabricated our inverted polymer solar cell with the configuration of ITO/pure and vanadium-doped TiO2NPs/P3HT:PCBM/PEDOT:PSS/Ag.The cross-sectional SEM image of the solar cell employed TiO2thin film NPs is shown in Fig.6.This image confirms that the polymer sufficiently infiltrates the interval between nanoparticles.The thickness of the TiO2thin film is 30 nm.

    Fig.5.(color online)(a)TEM image and(b)size distribution histogram of TiO2 thin film NPs fabricated via the solvothermal method.

    Fig.6.Cross-sectional SEM image of the inverted polymer solar cell with TiO2 NPs.

    Optical properties of pure and vanadium-doped TiO2thinfilms with the thickness of 30 nm were measured by a UV–Vis–IR spectrometer,as shown in Fig.7.According to this spectrum,the vanadium-doped TiO2thin film has a high optical transmittance(>70%)in the visible spectrum.

    Fig.7.(color online)Transmittance spectra of pure and vanadiumdoped TiO2 thin films with the thickness of 30 nm.

    The visible light transmittance decreases for pure TiO2thin film.Thus,the pure TiO2thin film shows lower transmittance than the doped thin film.According to the SEM images, better transmittance might be due to the surface morphology and crystallinity of the thin film.[36–38]The energy band gap of pure and vanadium-doped TiO2thin film NPs is determined using the Tauc formula

    where A is a constant,Egis the band gap of the samples and exponent n depends on the type of transition.n=1/2,2,and 3/2 for direct allowed,indirect allowed and direct forbidden transitions,respectively.Here,the transition is direct so we take n=1/2.[39]To measure the energy band gap of pure and vanadium-doped TiO2thin films,from the absorption spectrum a graph of(αhν)2versus(hν)is plotted and extrapolating the straight line portion of(αhν)2to(αhν)2=0 is plotted in Fig.8.The directly allowed band gaps of pure and vanadium-doped TiO2thin film NPs are found to be 3.43 eV and 3.50 eV,respectively.As can be seen,the band gap increases with doping of vanadium.The band gap shift of nanostructure materials in very small NPs is due to the quantum size effect(QSE).According to this effect,with decreasing grain size,the band gap is increased.[37]

    Figure 9 shows the J–V curves of the inverted polymersolar cells employing pure and vanadium-doped TiO2thin film NPs under illumination.It shows that the cell using vanadiumdoped TiO2thin film NPs has the best J–V performance.The solar cells using vanadium-doped thin film NPs show better J–V performance compared to their thickness counterparts,and this confirms the effectiveness of using vanadium as a dopant in cells.Vocof the polymer fullerene is heavily dependent on the energy difference between the HOMO level of the donor and the LUMO level of the acceptor,so all of the cells use the same active layer,their Vocare the same.[40]Table 1 shows the extracted data of the fabricated cells.As predicted,the cells with vanadium-doped TiO2thin film NPs show higher efficiencies.The cell using vanadium-doped thin film NPs with thickness 60 nm has an efficiency~0.42%higher than its pure counterpart.The cell with 30 nm vanadium-doped TiO2thin film NPs has the highest efficiency of 3.68%,but the pure TiO2thin film with the same thickness shows an efficiency of 2.95%and this is because of the lower conductivity of the pure TiO2thin film.It is remarkable to see that even with Jscof 10.70 mA/cm2,the cell could not reach a higher efficiency.As the fill factor depends on the series resistance, for achieving higher PCEs even at this thickness,higher fill factors must be achieved.This somehow shows that at higher thicknesses,increasing the series resistance causes a loss in power conversion efficiency and in lower thicknesses while the series resistance is low,the lack of good interfacial area with active layer prevents the cell from having higher performance and this puts a higher power conversion efficiency limit in the thickness of 30 nm thin films.Also lower fill factor is another criterion affecting the performance of the cell.External quantum efficiency(EQE)of cells plays a great role in confirming the efficiency of cells and is a key parameter for characterizing solar cell performance under different conditions.[9]Figure 10 shows the EQE curves of the cells using pure and vanadiumdoped TiO2thin films NPs.Doped TiO2thin film NPs are superior to their pure counterpart.Considering that the integration of EQE should be proportional to Jsc,there is consistency between data obtained from the EQE curve and the solar simulator.Curves also show the decreases of the efficiency of these cells for wavelengths longer than 600 nm.So by enhancing the cell with materials that can absorb longer wavelengths, the cell performance can be improved.

    Fig.8.(color online)Optical band gap of(a)pure and(b)vanadiumdoped TiO2 thin film NPs.

    Table 1.Key parameters of inverted polymer solar cells under illumination.

    Fig.9.(color online)J–V curves of devices using pure and vanadiumdoped TiO2 thin films with different thicknesses.

    Fig.10.(color online)External quantum efficiency of the cells with the best efficiency.

    5.Conclusion

    Employing vanadium-doped TiO2thin film NPs as the electron transport layer was effective and it improved the optical and electrical performance of the cells.Best thickness of our pure and vanadium-doped thin films was 30 nm.The cell using 30 nm vanadium-doped TiO2thin films achieved 3.68% power conversion efficiency with Jscof 10.7 mA/cm2and Vocof 0.553.The fill factor of this cell was 62.36%.This somehow shows that at higher thicknesses,increase of series resistance causes a loss in power conversion efficiency and in lower thicknesses while the series resistance is low,but the lack of good interfacial area with active layer prevents the cell from having higher performances and this puts a higher power conversion efficiency limit in the thickness of 30 nm thin films; also lower fill factor is another criterion affecting the performance of cell.So we suggest using other forms of vanadiumdoped TiO2,like nanorods and nanotubes.

    [1]N Yeh and Yeh P 2013 Renew.Sustainable Energy Rev.21 421

    [2]Capasso A,Salamandra L,Chou A,Carlo A D and Motta N 2014 Sol. Energ.Mat.Sol.C 122 297

    [3]M A Ibrahem,h Y Wei,M H Tsai,K C Ho,J J Shyue and C W Chu 2013 Sol.Energ.Mat.Sol.C 108 156

    [4]Jin F 2013 Sol.Energ.Mat.Sol.C 117 189

    [5]Noh Y J,Na S I and Kim S S 2013 Sol.Energ.Mat.Sol.C 117 139

    [6]Sio A D,Chakanga K,Sergeev O,Maydell K V,Parisi J and Hauff E V 2012 Sol.Energ.Mat.Sol.C 98 52

    [7]Zhang B,Lee D H,Chae H,Park C and Cho S M 2010 Korean J.Chem. Eng.27 999

    [8]Lee S B 2013 Sol.Energ.Mat.Sol.C 117 203

    [9]Ahmadi M,Mirabbaszadeh K,Salari S and Fatehy H 2014 Electron. Mater.Lett.10 951

    [10]Hu Z,Zhang J and Zhu Y 2013 Sol.Energ.Mat.Sol.C 117 610

    [11]Mirabbaszadeh K,Ahmadi M,Khosravi M,Mokhtari R and Salari S 2013 J.Inorg.Organomet.Polym.23 1219

    [12]Ahmadi M and Rashidi D S 2015 Chin.Phys.B 24 11723

    [13]Jiang Z L 2013 Sci.China.Chem.56 1573

    [14]Harrison L R and Bruce H R 2007 J.Phys.Chem.C 111 18765

    [15]Wiranwetchayan O,Liang Z,Zhang Q,Cao Gand SingjaiP 2011 Mate. Sci.Appl.2 1697

    [16]Brabec C J,Shaheen S E,Winder C,Sariciftci N S and Denk P 2002 Appl.Phys.Lett.80 1288

    [17]Liao H H,Chen L M,Xu Z,Li G and Yang Y 2008 Appl.Phys.Lett. 92 17 3303

    [18]Lee Y I,Youn J H,Ryu M S,Kim J and Moon H T 2011 J.Jang.Org. Electron.12 353

    [19]Zhao D W 2010 Sol.Energ.Mat.Sol.C 94 985

    [20]Jorgensen M,Norrman K and Krebs F C 2008 Sol.Energ.Mat.Sol.C 92 686

    [21]Schattauer S 2012 Colloid.Polym.Sci.290 1843

    [22]Peng R,Yang F,Ouyang X,Liu Y,Kim Y S and Ge Z 2014 Appl.Phys. A 114 429

    [23]Lee J and Jho J Y 2011 Sol.Energ.Mat.Sol.C 95 3152

    [24]Kim D 2014 Ceram.Int.40 1457

    [25]Saehana S,Prasetyowati R,Hidayat M I,Arifin P,Khairurrijal and Abdullah M 2011 IJBAS 11 15

    [26]Quan W,Cheng C,Liu J,Zhang J,Yan D and Qin D 2011 Appl.Phys. A 104 47

    [27]Sio A D,Chakanga K,Sergeev O,Maydell K V,Parisi J and Hauff E V 2012 Sol Energ.Mat.Sol.C 98 52

    [28]Stubhan T,Oh H,Pinna L,Krantz J,Litzov I and Brabec C J 2011 Org. Electron.12 1539

    [29]Ihn S G 2011 Sol.Energ.Mat.Sol.C.95 1610

    [30]Pal E,Hornok V,Oszkoo A and Dekany I 2009 Colloid Surf.A 340 1

    [31]Fei H,Fang M,Tao L and Guangxing L 2013 Chin.J.Catal.34 2263

    [32]Li L,Liu C Y and Liu Y 2009 Mater.Chem.Phys.113 551

    [33]Liu Y 2010 ACS Nano 4 5373

    [34]Feng X,Shankar K,Paulose M and Grimes C A 2009 Angew.Chem. Int.Ed.48 8095

    [35]Samanta P K,Basak S and Chaudhuri P R 2011 Inter.J.Nano Sci.1 69

    [36]Asmar R A,Zaouk D,Bahouth P,Podleki J and Foucaran A 2006 Microelectron.Eng.83 393

    [37]Salari S,Ahmadi M and Mirabbaszadeh K 2014 Electron.Mater.Lett. 10 13

    [38]J H Lee,K H Ko and B O Park 2003 J.Cryst.Growth.247 119

    [39]Reddy K M,Manorama S V and Reddy A R 2002 Mater.Chem. Physics.78 239

    [40]Brabec C j,Dyakonov V,Parisi J and Sariciftci N S 2003 Organic Photovoltaics:Concepts and Realizatio n(Heidelberg:Springer-Verlag Berlin)

    12 March 2017;revised manuscript

    13 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/097203

    ?Corresponding author.E-mail:m.ahmadi@vru.ac.ir

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    午夜老司机福利剧场| 久久久精品免费免费高清| 麻豆成人av视频| 成人毛片60女人毛片免费| 搡女人真爽免费视频火全软件| 亚洲内射少妇av| 黑人欧美特级aaaaaa片| av不卡在线播放| 熟妇人妻不卡中文字幕| 精品人妻熟女毛片av久久网站| 亚洲av中文av极速乱| 亚州av有码| 一区二区三区四区激情视频| 香蕉精品网在线| 精品一品国产午夜福利视频| 亚洲激情五月婷婷啪啪| 大片电影免费在线观看免费| 2021少妇久久久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 七月丁香在线播放| 大片免费播放器 马上看| 在线观看www视频免费| 成人午夜精彩视频在线观看| 男女边摸边吃奶| xxx大片免费视频| 成人无遮挡网站| 亚洲人成网站在线播| 欧美+日韩+精品| freevideosex欧美| 精品少妇久久久久久888优播| 三级国产精品片| 成年女人在线观看亚洲视频| 边亲边吃奶的免费视频| 精品久久蜜臀av无| 下体分泌物呈黄色| 久久久精品免费免费高清| 亚洲av日韩在线播放| 我的女老师完整版在线观看| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 成人亚洲欧美一区二区av| 日韩精品有码人妻一区| 又粗又硬又长又爽又黄的视频| 成人漫画全彩无遮挡| 久久影院123| 国产黄片视频在线免费观看| 久久97久久精品| videossex国产| 亚洲国产精品成人久久小说| 最近2019中文字幕mv第一页| 三上悠亚av全集在线观看| 国产成人精品一,二区| 久久久精品免费免费高清| 久久鲁丝午夜福利片| 日韩熟女老妇一区二区性免费视频| 制服丝袜香蕉在线| 欧美日韩在线观看h| 七月丁香在线播放| 国产日韩一区二区三区精品不卡 | 国产无遮挡羞羞视频在线观看| 自线自在国产av| av在线app专区| 精品亚洲乱码少妇综合久久| 欧美97在线视频| 国产成人一区二区在线| 日韩熟女老妇一区二区性免费视频| 美女大奶头黄色视频| 成人黄色视频免费在线看| 桃花免费在线播放| av天堂久久9| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡 | 自拍欧美九色日韩亚洲蝌蚪91| 能在线免费看毛片的网站| 99久久人妻综合| 波野结衣二区三区在线| 桃花免费在线播放| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 日韩一本色道免费dvd| 一级a做视频免费观看| 国产 精品1| 精品人妻在线不人妻| 一级,二级,三级黄色视频| 搡老乐熟女国产| 99热这里只有是精品在线观看| 亚洲国产精品999| 只有这里有精品99| 黄片播放在线免费| 欧美成人午夜免费资源| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 99热全是精品| 少妇高潮的动态图| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品电影小说| 亚洲丝袜综合中文字幕| 亚洲美女黄色视频免费看| 国产综合精华液| 亚洲国产欧美日韩在线播放| 亚洲中文av在线| 日本vs欧美在线观看视频| 人妻人人澡人人爽人人| 久久狼人影院| 日产精品乱码卡一卡2卡三| 午夜免费鲁丝| 国产爽快片一区二区三区| 少妇高潮的动态图| xxx大片免费视频| 水蜜桃什么品种好| 日韩成人伦理影院| av免费观看日本| 亚洲色图综合在线观看| 在线观看人妻少妇| 这个男人来自地球电影免费观看 | 免费高清在线观看日韩| 高清av免费在线| 亚洲人与动物交配视频| 亚洲在久久综合| 最黄视频免费看| 国产免费一区二区三区四区乱码| 日韩精品免费视频一区二区三区 | 国产国语露脸激情在线看| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频| 午夜福利在线观看免费完整高清在| 国产亚洲欧美精品永久| 国产一级毛片在线| 狠狠婷婷综合久久久久久88av| 大片电影免费在线观看免费| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 精品国产一区二区久久| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 久久久久精品久久久久真实原创| 婷婷色综合www| 久久久精品免费免费高清| 亚洲美女黄色视频免费看| 毛片一级片免费看久久久久| 天天影视国产精品| 久久久午夜欧美精品| 黄色怎么调成土黄色| 十八禁高潮呻吟视频| 国产精品一区二区在线观看99| 99久久中文字幕三级久久日本| 99久久精品国产国产毛片| 久久久精品免费免费高清| 午夜av观看不卡| 嫩草影院入口| 免费少妇av软件| 亚洲精品乱码久久久久久按摩| 黄色怎么调成土黄色| 久久精品国产鲁丝片午夜精品| 亚洲国产精品一区二区三区在线| 亚洲,一卡二卡三卡| 在线观看人妻少妇| 制服诱惑二区| 免费日韩欧美在线观看| 亚洲欧美成人精品一区二区| 女人精品久久久久毛片| 日本黄色片子视频| 亚洲人成77777在线视频| 国产欧美另类精品又又久久亚洲欧美| 飞空精品影院首页| 我的老师免费观看完整版| 制服人妻中文乱码| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 2022亚洲国产成人精品| 高清不卡的av网站| 久久婷婷青草| 26uuu在线亚洲综合色| 中文字幕精品免费在线观看视频 | 午夜日本视频在线| 精品久久久精品久久久| 色5月婷婷丁香| 久久久久久伊人网av| 欧美日韩av久久| 在线精品无人区一区二区三| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 熟女电影av网| 国产高清国产精品国产三级| 少妇精品久久久久久久| 一区二区三区精品91| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| 国产国语露脸激情在线看| av女优亚洲男人天堂| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 满18在线观看网站| 国产免费视频播放在线视频| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| 青春草国产在线视频| 亚洲av二区三区四区| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 久久99一区二区三区| 国产黄片视频在线免费观看| 日韩电影二区| 亚洲av男天堂| 国产日韩欧美视频二区| 在线天堂最新版资源| 国产高清国产精品国产三级| 日日啪夜夜爽| 制服诱惑二区| 精品一区二区三区视频在线| 老司机影院毛片| 成人影院久久| 久久久久久久亚洲中文字幕| 看非洲黑人一级黄片| 五月天丁香电影| 欧美+日韩+精品| 一本色道久久久久久精品综合| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 丰满乱子伦码专区| 国产成人精品一,二区| 国产午夜精品久久久久久一区二区三区| 能在线免费看毛片的网站| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 国语对白做爰xxxⅹ性视频网站| kizo精华| 日韩av免费高清视频| 如何舔出高潮| 这个男人来自地球电影免费观看 | 母亲3免费完整高清在线观看 | 18禁裸乳无遮挡动漫免费视频| 久久久精品区二区三区| 交换朋友夫妻互换小说| 亚洲综合精品二区| 黄色一级大片看看| 一级二级三级毛片免费看| av在线app专区| 国产午夜精品久久久久久一区二区三区| 大片免费播放器 马上看| 另类亚洲欧美激情| 爱豆传媒免费全集在线观看| 在线观看www视频免费| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 国产成人精品一,二区| 观看av在线不卡| 曰老女人黄片| 免费观看av网站的网址| av卡一久久| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频 | 美女cb高潮喷水在线观看| 伦精品一区二区三区| 日韩中文字幕视频在线看片| 中文字幕制服av| 国产精品 国内视频| 好男人视频免费观看在线| 日韩成人伦理影院| 国产精品免费大片| 少妇精品久久久久久久| 久久久久精品久久久久真实原创| 国产精品久久久久久精品古装| 高清黄色对白视频在线免费看| 大片免费播放器 马上看| 亚洲国产精品999| 国产亚洲欧美精品永久| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 国产日韩欧美视频二区| 亚洲精品亚洲一区二区| 久久久久精品性色| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 午夜影院在线不卡| 九九久久精品国产亚洲av麻豆| 韩国av在线不卡| 制服丝袜香蕉在线| 99久久精品国产国产毛片| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线观看一区二区三区| 亚洲三级黄色毛片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 美女国产高潮福利片在线看| 全区人妻精品视频| videossex国产| 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩精品成人综合77777| 久久精品国产亚洲网站| 久久免费观看电影| 九色亚洲精品在线播放| 欧美三级亚洲精品| 我要看黄色一级片免费的| 看十八女毛片水多多多| 欧美三级亚洲精品| 午夜老司机福利剧场| 精品酒店卫生间| 成人漫画全彩无遮挡| 欧美精品高潮呻吟av久久| 国产熟女午夜一区二区三区 | 搡女人真爽免费视频火全软件| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 国产av精品麻豆| 日日爽夜夜爽网站| 日日摸夜夜添夜夜添av毛片| 国产精品三级大全| 成人午夜精彩视频在线观看| 黑人猛操日本美女一级片| 亚洲第一av免费看| 精品午夜福利在线看| videos熟女内射| 视频区图区小说| 性色av一级| 亚洲一区二区三区欧美精品| 熟女人妻精品中文字幕| 日韩人妻高清精品专区| 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 视频在线观看一区二区三区| 97精品久久久久久久久久精品| 永久网站在线| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 久久韩国三级中文字幕| 欧美激情国产日韩精品一区| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区 | 国产精品蜜桃在线观看| 观看av在线不卡| 999精品在线视频| 18在线观看网站| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 亚洲第一区二区三区不卡| 欧美日韩国产mv在线观看视频| 国产在线免费精品| 人人澡人人妻人| 18+在线观看网站| 色哟哟·www| 久久国产精品男人的天堂亚洲 | 曰老女人黄片| a级毛片在线看网站| 人妻少妇偷人精品九色| 午夜日本视频在线| 日本黄色片子视频| av免费观看日本| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 久久久久久久大尺度免费视频| 欧美精品一区二区免费开放| 超碰97精品在线观看| 欧美精品一区二区免费开放| 特大巨黑吊av在线直播| 亚洲美女视频黄频| 国产日韩欧美亚洲二区| 亚洲国产欧美在线一区| 午夜免费观看性视频| 国产精品三级大全| 亚洲精品一二三| 国产精品欧美亚洲77777| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久 | 22中文网久久字幕| 少妇 在线观看| a级毛片在线看网站| 最近2019中文字幕mv第一页| 久久99精品国语久久久| 国产视频内射| 国产 一区精品| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 美女主播在线视频| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 亚洲国产精品国产精品| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| 国产欧美另类精品又又久久亚洲欧美| 精品一品国产午夜福利视频| 久久影院123| 欧美+日韩+精品| 国产高清有码在线观看视频| 老司机影院毛片| 插阴视频在线观看视频| 精品熟女少妇av免费看| 下体分泌物呈黄色| av在线观看视频网站免费| 久久精品久久久久久久性| 亚洲天堂av无毛| 精品99又大又爽又粗少妇毛片| 少妇丰满av| 中文字幕免费在线视频6| 免费观看a级毛片全部| 超碰97精品在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| av线在线观看网站| 成人国产麻豆网| 晚上一个人看的免费电影| 欧美精品一区二区免费开放| 女的被弄到高潮叫床怎么办| 亚洲国产av新网站| 新久久久久国产一级毛片| 桃花免费在线播放| 久久国产精品男人的天堂亚洲 | 国精品久久久久久国模美| 岛国毛片在线播放| 午夜91福利影院| 最近中文字幕2019免费版| 午夜91福利影院| 你懂的网址亚洲精品在线观看| 亚洲综合精品二区| 永久免费av网站大全| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 国产 精品1| 亚洲精品日韩在线中文字幕| 热re99久久精品国产66热6| 91国产中文字幕| 性色av一级| 欧美人与性动交α欧美精品济南到 | 国产av精品麻豆| 婷婷色综合www| 大话2 男鬼变身卡| 免费黄色在线免费观看| 一区二区三区精品91| 999精品在线视频| 少妇丰满av| 久久精品国产a三级三级三级| 精品久久久久久电影网| 日本91视频免费播放| xxx大片免费视频| 免费人成在线观看视频色| a级毛片免费高清观看在线播放| 80岁老熟妇乱子伦牲交| 欧美另类一区| 欧美老熟妇乱子伦牲交| 久久青草综合色| 亚洲精品久久午夜乱码| 亚洲精品久久成人aⅴ小说 | 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 在线亚洲精品国产二区图片欧美 | 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 在线观看免费视频网站a站| 久久久精品94久久精品| 中国美白少妇内射xxxbb| 最近中文字幕高清免费大全6| 老司机影院毛片| 亚洲精品日本国产第一区| 蜜臀久久99精品久久宅男| 亚洲国产欧美日韩在线播放| 99久久中文字幕三级久久日本| 亚洲精品久久成人aⅴ小说 | 国产成人午夜福利电影在线观看| 中文字幕av电影在线播放| 国产有黄有色有爽视频| 午夜激情av网站| 亚洲精品,欧美精品| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| 亚洲精品久久成人aⅴ小说 | 日韩电影二区| 国产成人av激情在线播放 | 国产成人av激情在线播放 | 亚洲,一卡二卡三卡| 人体艺术视频欧美日本| 成年人午夜在线观看视频| 一级毛片电影观看| 蜜桃在线观看..| 国产av国产精品国产| 在线天堂最新版资源| 97精品久久久久久久久久精品| 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 青青草视频在线视频观看| 黑丝袜美女国产一区| 熟女人妻精品中文字幕| 精品国产乱码久久久久久小说| 精品亚洲成a人片在线观看| 国产精品欧美亚洲77777| 亚洲精品美女久久av网站| 性色avwww在线观看| 母亲3免费完整高清在线观看 | 亚洲欧美日韩卡通动漫| 色94色欧美一区二区| 在现免费观看毛片| 国产精品无大码| 久久精品国产鲁丝片午夜精品| 色哟哟·www| 欧美日本中文国产一区发布| 国产精品熟女久久久久浪| 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 国产白丝娇喘喷水9色精品| 久久久久精品性色| 欧美日韩精品成人综合77777| 亚洲欧美色中文字幕在线| 久久综合国产亚洲精品| 久久国产精品大桥未久av| 久久精品夜色国产| 国产伦精品一区二区三区视频9| 国产免费又黄又爽又色| 人人妻人人添人人爽欧美一区卜| 肉色欧美久久久久久久蜜桃| 99热这里只有是精品在线观看| 亚洲国产精品专区欧美| 亚洲丝袜综合中文字幕| 卡戴珊不雅视频在线播放| av网站免费在线观看视频| a级毛色黄片| 一级毛片 在线播放| 热99久久久久精品小说推荐| videossex国产| 18在线观看网站| 亚洲国产精品国产精品| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 九色亚洲精品在线播放| 一区二区av电影网| 少妇被粗大的猛进出69影院 | av女优亚洲男人天堂| 69精品国产乱码久久久| 大又大粗又爽又黄少妇毛片口| 日本爱情动作片www.在线观看| 寂寞人妻少妇视频99o| 婷婷色av中文字幕| 亚洲国产欧美在线一区| 久久久久国产网址| 在现免费观看毛片| 国产一区二区在线观看日韩| 亚洲三级黄色毛片| 日日摸夜夜添夜夜爱| 高清黄色对白视频在线免费看| 久久久久久久大尺度免费视频| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 午夜激情av网站| 日本wwww免费看| 赤兔流量卡办理| 精品国产国语对白av| 超色免费av| 在线观看人妻少妇| 综合色丁香网| 国产成人精品无人区| 纯流量卡能插随身wifi吗| 中文精品一卡2卡3卡4更新| 不卡视频在线观看欧美| 下体分泌物呈黄色| 草草在线视频免费看| 亚洲欧美成人精品一区二区| 免费观看的影片在线观看| 在线观看免费日韩欧美大片 | 青青草视频在线视频观看| 成年美女黄网站色视频大全免费 | 国产男人的电影天堂91| 国产欧美亚洲国产| 51国产日韩欧美| 精品国产乱码久久久久久小说| 久热这里只有精品99| 精品少妇内射三级| 亚洲精品乱码久久久久久按摩| 中文字幕人妻熟人妻熟丝袜美| 天堂8中文在线网| 亚洲第一区二区三区不卡| 久久久久久久大尺度免费视频| 国国产精品蜜臀av免费| 欧美日韩综合久久久久久| 另类精品久久| 日本猛色少妇xxxxx猛交久久| 成人亚洲精品一区在线观看| 建设人人有责人人尽责人人享有的| 大码成人一级视频| av有码第一页| 麻豆乱淫一区二区| 97超视频在线观看视频| 亚洲国产日韩一区二区| 精品人妻熟女av久视频| 美女国产视频在线观看| 欧美人与善性xxx| 人妻少妇偷人精品九色| 亚洲av.av天堂| 人人妻人人爽人人添夜夜欢视频| 五月天丁香电影| 精品久久久久久电影网| 麻豆成人av视频| 欧美日韩av久久| 我的女老师完整版在线观看| 看免费成人av毛片| 午夜激情av网站| 中国三级夫妇交换| av有码第一页| 麻豆精品久久久久久蜜桃| 日韩中文字幕视频在线看片| 成人免费观看视频高清| 韩国高清视频一区二区三区| 国产男女内射视频|