• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation?

    2017-08-30 08:26:36GuoBaoFeng封國寶WanZhaoCui崔萬照NaZhang張娜MengCao曹猛andChunLiangLiu劉純亮
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張娜國寶

    Guo-Bao Feng(封國寶),Wan-Zhao Cui(崔萬照),Na Zhang(張娜), Meng Cao(曹猛),and Chun-Liang Liu(劉純亮)

    1 National Key Laboratory of Science and Technology on Space Microwave,Xi’an 710000,China

    2 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology,Xi’an Jiaotong University,Xi’an 710049,China

    A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation?

    Guo-Bao Feng(封國寶)1,2,Wan-Zhao Cui(崔萬照)1,?,Na Zhang(張娜)1, Meng Cao(曹猛)2,and Chun-Liang Liu(劉純亮)2

    1 National Key Laboratory of Science and Technology on Space Microwave,Xi’an 710000,China

    2 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology,Xi’an Jiaotong University,Xi’an 710049,China

    Calculations of secondary electron yield(SEY)by physical formula can hardly accord with experimental results precisely.Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments.In this paper,in order to calculate SEY of metal under complicated surface state accurately,we propose a synthetic semi-empirical physical model.The processes of excitation of internal secondary electron(SE)and movement toward surface can be simulated using this model. This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination.In order to describe internal electronic states accurately,the penetration coefficient of incident electron is described as a function of material atom number.Directions of internal electrons are set to be uniform in each angle.The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process. In addition,according to the experiment data,relationship among desorption gas quantities,sample ultimate temperature and SEY is established.Comparing with experiment results,this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas,especially in the aspect of surface contaminated states.The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission,and offer an available method for estimating and taking advantage of SE emission accurately.

    secondary electron yield,synthetic semi-empirical physical model,metal,electron irradiation

    1.Introduction

    Secondary electron(SE)has been investigated widely and used in many electronic fields since it was reported by Austin and Strake in 1902.[1]With detecting SEs due to the irradiation of focused electron beams,one can obtain surface images on a micro scale.[2]The SE multiplication between plates can conduce to magnifying the number of electrons.[3,4]Nevertheless,the generation of SEs may deteriorate the performance of device,[5]such as electron cloud due to high energy particle collision in accelerators,and multiplication effect of microwave device in the space environment.[6]For using or restraining SE emission better,it is important to calculate the yield of SE from material.[7]Furthermore,considering the fact that material used in device is contaminated more or less,[8]the investigation of secondary electron yield(SEY)in complicated surface states is still required.

    The SEs are the electrons emitted from material surface, including true secondary electrons(TSEs)and backscattering secondary electrons(BSEs).[9]Those TSEs are generated by inelastic scattering events between incident electrons and material extra-nuclear electrons,while elastic scattering events between incident electrons and material nuclei may result in BSEs.[10]Yield of SE due to electron irradiation can be calculated with both Monte Carlo(MC)numerical simulations and formulas directly.[11]Since SEY is calculated by tracing each scattering events of electron inside the material in MC simulations,the computation of those simulations is always huge,and the accuracies of their results are limited.On the other hand,the yield of SEs can be quickly obtained with some classical formulas,[12]such as Joy,Vaughan and Furman’s formulas.[13–16]Due to the simplification of direction and energy distributions of internal SEs and the ignorance of the contribution of backscattering SEs,Joy and Vaughan’s formulas have an obvious deviation from experiment data in the case of high energy electron irradiation.And the experimental data fitted Furman formula requires assigning as many as twenty parameters for each material.[17]In addition,SEY of surface contaminated materials is still unclear in physics and needs further investigations.

    In this paper,we propose a synthetic semi-empirical physical model of SEY of some ordinary metals,Ag,Al,and Au. This model performs processes of internal SEs excitation,outgoing toward surface,incident angle,and backscattering revises.Penetration coefficient of incident electron is correctedfor the materials.Internal SEs are treated by using a more precise model.In addition,according to experimental data, we make a further investigation on one of important surface contaminations,i.e.,surface gas adsorption.This research can help understand the influences of relevant parameters and surface states on SE emission,and has significance for application and restraint of SE in relevant fields.

    2.Simulation method and results

    Emission processes of SEs from a metal material are illustrated in Fig.1,including internal SE excitation,outgoing of SEs from the inside,and SE emission across surface potential.In addition,SE emission is still related to incidence angle, backscattering,and surface contamination.

    Fig.1.(color online)Schematic of SE emission performed in this paper.

    2.1.Excitation of internal secondary electron

    Internal SE can be generated inside the material due to energetic electron beam irradiation.Primary electron with a larger kinetic energy can reach a deeper position,and the lateralrange of the internalSE is also larger.For most amorphous materials,the range of internal SE R(Epe)and the incidence electron energy Epeare related by

    where Lkis the Lane–Zaffarano constant and set to be 76 nm,[18]ρris the relative material density,Ekis the standard energy(1 keV),and α is the index parameter and presents the capability of incident electron penetration.Lane and Zaffarano thought that α was a constant which was in dependent of materials,but the calculated results using the model under this presupposition cannot accord well with experimental results in the case of low-energy-electron incidence.Then,through analyzing NIST data and simulating electron scattering process with Monte Carlo method,we find the following rules.

    1)A material with a higher atomic number has a larger deflection angle during the elastic scattering between incident electron and atom,and it will weaken the capability of incident electron penetration consequently.

    2)A material with a higher atomic number has more orbital electrons and loses energy with a higher probability during the inelastic scattering between incident electrons and orbital electrons.It may also weaken the capability of incident electron penetration.

    According to the quantitative analysis,we propose a relationship between parameter α and material atomic number (mainly for the metals:Al,Au,Ag,Cu,etc.)by

    As shown in Fig.2(a),the parameter α decreases with atom number z increasing,which means that the material with a less atom number allows primary electrons to penetrate deeper.

    Fig.2.(color online)(a)Parameter α as a function of material atom number Z;(b)comparison between Eq.(8)and its approximated function(9).

    The internal SEs are excited inside the material due to inelastic scattering process after primary electron irradiation. Although distributions of internal electrons at different positions are different from each other,the internal SE distributions at SE emission related surface positions are almost the same.Hence,we can treat the distribution of internal SE in deep n(z)such that the following equality holds:

    2.2.Outgoing from the inside

    In the processes of elastic and inelastic scatterings,part of internal SEs can reach the surface of material and exit after crossing the surface potential barrier,while others deposit inside the material and trapped by defective atoms.Bruining[19]and Wittry[20]simplified the directions of internal SEs into upward and downward.Actually,directions of internal SEs can be arbitrary.Hence,we propose absorption probability pabs(d s)of internal SE at a distance d s in each direction can be expressed as

    Here,γ is the absorption coefficient and obeys the exponential distribution.An internal SE in the direction of ? at depth z passes through a distance of z/cos? to reach material surface as shown in the following figure.Then,the probability with which an internal SE in the direction of ? at depth z can reach the material surface is

    where λ is the mean free path of electron in material(for the ordinary metal Au,Ag,Cu,and Al,their values of λ are 1.6, 1.4,1.2,and 3.8 nm,respectively).

    Meanwhile,when an internal SE moves inside the material,it may crash with atom inelastically and generate another internal SE as well,which is cascade scattering.For amorphous material,this collision is isotropic,and directions of internal SEs after this process can be thought to be homogeneous.In general,the density of internal SEs at depth z is n(z),we can obtain the number of internal SEs in the direction ?~?+d? at the depth z~z+d z which can reach the following material surface:

    Combining the density of internal SEs with SE distribution at a depth,the total number of surface SEs Nsfrom the inside of material can be obtained from the following equation:

    which is acomplicated function and can be approximated as

    Figure 2(b)shows the difference between the approximated functions(8)and(9).In Eq.(8),Γ is the gamma functionThen,the total number of surface SEs Nsis expressed as

    Besides,we still have to figure out the energy distribution of internal SEs,which is related to the emission of internal SEs at the surface.Lin and Joy[13]thought that the internal SE energy equals the average ionization energy,while Streitwolf[21]set the energy distribution of internal SEs S(Es) as S(Es)∝(Es?EF)?2.However,there is an essential problem under this assumption,the integration of all the internal SEs whose energy larger than EFis not convergent.That means that the internal SEs could be innumerable,which conflict with realistic scenario obviously.In addition,this assumption only considers the internal SEs generated by incident electrons,and ignores the cascade scattering process.

    Therefore,in this paper,we propose an energy distribution of internal SEs with taking into consideration both the integration convergence and the contribution from the cascade scattering process

    Here,Esis the energy of internal SE,Evis the expected value of Es,and EFis the Fermi level of material.According to the law of energy conservation,the sum energy of all internal SEs should equal primary electron energy.Considering the fact that the energy of internal SEs is on the basis of Fermi level EF,the sum energy of all internal SEs can expressed as

    where SR(Es)d Escan represent the probability of internal SEs in an energy range of Es+d Es.The maximum of internal SEs is primary energy Epe.

    2.3.Emission from the surface

    After reaching the surface,the internal SEs still need to cross the surface potential barrier before being emitted from the material surface,and its probability pe(Es)mainly depends on barrier height U and internal SE energy Esand is expressed as

    and then based on the number of internal SEs,the SEY can be expressed as

    When the primary energy Epeis much larger than Fermi levelcan be approached as N?Epe?=Epe/Ev.Hence, we can obtain SEY

    The SEY is a function of primary energy δ(Epe).Primary electron with peak energy Emgenerates a maximum SEY δm. Assuming its range Rm=R′λ,the equation above can be expressed with R′

    As α is given by Eq.(2),the R′values of metals Al,Cu,Ag, and Au can be calculated to be 1.19,1.39,1.53,and 1.61,respectively.The peak energy Emcan be calculated from

    and the SEY can be expressed as

    Here,maximum SEY δmsatisfies

    2.4.Modification considering the incident angle

    As many researches think that the SEY increases with incidence angle increasing,hence,in this paper,we should treat SEY semi-empirical physical model also with an incidence angle revision.When the incidence angle is θ,the depth range of primary electron can reach R cosθ,where R is the range in the case of vertical incidence.The distribution of internal SEs with incidence angle θinin should be revised as n(z,θin)=n(z)/cosθ.Then,the number of internal SEs that can reach the surface in a depth z~z+d z is

    The upper limitation of integral of the total number of surface electrons Ns(θ)should be R cosθ.The peak energy of primary electron with incident angle θin,and its corresponding maximum SEY δm(θin)can be expressed respectively as

    under the assumption of λθ=λ/cosθin.The SEY of metal with primary electron irradiation at incident angle θ is

    In the processes we performed above,trajectories of PEs are thought to be straight lines,which is reasonable when the incident angle is less than 60°.Hence,this incident angle revision of SEY is available within an angle range of 0–60°.

    2.5.Modification with considering the electron backscattering

    Apart from internal electrons which can escape from material surface,electrons due to backscattering of primary electrons can also emit from the surface,and constitute the total SEs.Those backscattering SEs include two parts,one is caused by the reflection surface potential barrier,while the elastic scattering between surface material atoms and primary electrons produces the other part.The reflection yield is

    Here,η1(0)is the backscattering coefficient of PEs with low energy.For an absolutely clean surface,it should be 0,while it is set to be 0.6 for a gas-adsorbed surface.Theis set to be 12.5 eV.Combining the elastic backscattering yield in the case of vertical incidence and the contribution from the effect of incident angle,we can obtain the following elastic scattering yield with the incident angle η2(Epe,θ):

    Here,η2(∞)elastic backscattering yield in high energy which is related with materials,and EBSrelative backscattering energy which is related with materials as well,e1and e2is backscattering revision parameters,which are set to be 0.8 and 0.4 for metals,respectively.Therefore,the total backscattering yield can be expressed as the sum of η1and η2,ηBS=η1+η2. Then,the total SEY can be revised as

    2.6.Experiment comparison

    For verifying the theory we performed above,we compare the theoretical results with experimental data of kinds of metals under electron beam irradiation.Since the ordinary metal surface is always contaminated due to oxidization and adsorption,we clean metal surface with Ar ion irradiation before testing their SE emission characteristics.

    Figure 3(a)shows the measurement system of SEY.The vacuum environment of the main cavity can reach as high as 10?9Pa.The electron gun works in a range of 20 eV–5000 eV, and its current is in a range between 0.05 nA and 2 nA.Samples are fixed on the platform which is rotat able and move able in any direction.In addition,temperature of sample can be controlled by the heater under the stage.The default temperature of sample is ordinary room temperature 300 K.

    Figure 3(b)shows the comparison of SEY curve of Ag between calculated results and experimental results.It is easy to find out that the simulation results calculated with this model accord with experimental results better than those with other models,such as Joy’s and Vaughan’s,[13,22]which can also verify the validity of our model.

    Fig.3.(color online)(a)Schematic of SE measurement system;(b)comparation of SEY of the simulation with experimental data,by using the Joy and Vaughan’s model.

    Fig.4.(color online)Comparisons of SEY curve of(a)Ag,(b)Al,and(c)Au between calculation and experiment results at angles of 0°,20°,and 40°.

    Table 1.Parameters setting of SEY related metals.

    Table 1 is SEY related parameters setting of metals(Ag, Al,and Au),which are corresponding with Fig.4.Figure 4 includes the total SEY δtotal,errors of SEY test under different primary electron energy irradiations.Results of calculations for metals approximately accord with experimental data.

    In addition,the comparisons shown in Fig.4 still include SEY and their errors at different incident angles for three metals,Ag,Al,and Au.The agreement between experimental results and simulation results can also indicate the applicability of our model in incident angle revision.On the whole, comparison differences in Ag between experimental results and simulation results metals are not so notable as those in Au and Al.Error comparison results also show that this model produces more consistent results with experimental data when the incident energy is larger.

    2.7.Surface contamination

    For metals in the ordinary environment in air,their characteristics of SE emission is also related to surface contamination state.Generally,surface contaminations contain adsorbed gases and oxide layers for most parts.On the one hand,those contaminations may reduce the escape depth of internal SEs, and thus change the peak energy Em.On the other hand,contaminations may also change the surface potential barrier U and the mean energy of internal SEs Ev,then affect the process of SE emission.

    Table 2 shows the values of mean free path λ of four metals(Au,Ag,Cu,and Al)exposed to the air environment for a long time.We can find that λ values of those metals in air environment are lower than those with a clean surface state. Then,based on Eq.(17),the peak energy Emcan be obtained.

    Table 2.Mean free paths of metals exposed to air environment.

    Considering the fact that the quantity of surface adsorbed gas is hard to modify directly in experiment,we describe the quantity of surface adsorbed gas with metals heated to some certain temperatures in this research.Taking Ag for example, we try to figure out the relationship between the ultimate temperature and the desorption gas quantity.By heating five silver samples with the same initial states to different ultimate temperature TS,we obtain changes of surface adsorbed gas quantity QSof each silver sample.Those heating and testing processes are finished in vacuum environment with the SE measurement system as we mentioned above.

    Figure 5 shows the desorption gas quantity QSas a function of ultimate sample temperature TS.The relationship between QSand TScan be expressed as

    After adsorbed gas is released from the surface,the work function of the surface may change,and SEY varies consequently. Since the work function of metal after being heated in vacuum is hard to measure in experiment,we can adapt the work function for the measured SEY,and obtain the maximum SEY δmand function of work function U as a function of ultimate sample temperature TSand desorption gas quantity QSas shown in Fig.6.

    Fig.5.(color online)Desorption gas quantity Q S as a function of ultimate sample temperature T S.

    As shown in Fig.6(a),we can find that the maximum SEY δmdecreases linearly with ultimate sample temperature TS,while the work function U increases exponentially in the range shown in the figure.And a similar relationship of the desorption gas quantity QSis shown in Fig.6(b),which can befit with an exponential function

    Considering the relationship between ultimate temperature TSand desorption gas quantities QS,the maximum SEY δmcan be expressed by the ultimate temperature TSas

    Then,with the revision of surface contamination on SEY,we compare SEY calculation results of unclean silver at three different temperatures TS=108°C,233°C,320°C with experiment results as shown in Fig.7.

    Since the silver easily adsorbs gas in air environment, gases will escape from the surface after heat processing,and then the work function increases and the SEY reduces as a consequence.As shown in the figures above,calculated results accord well with experimental data after revising the work function and mean free path in the case of surface contamination.

    Fig.6.(color online)Variations of maximum SEY δm and work function U with(a)ultimate sample temperature T S and(b) desorption gas quantity Q S for unclear Ag.

    Fig.7.(color online)Comparison of δ varying with E PE between calculations and measurements of uncleaned silver at three different ultimate temperatures T S=108°C(a),233°C(b),320°C(c).

    3.Discussion

    The results obtained from the presented synthetic semi empirical physical model of SEY accord with experimental results better than those from the model proposed by Joy and Vaughan.By revising the penetration parameter α for different materials with the NIST database,the range of internal SE distribution can be presented more accurately than the case that the penetrated parameter is set to be the same constant.In addition,compared with the method of the former model,the method of this model sets the directions of internal SEs to be isotropic and treats the internal SEs energy with a convergent distribution,which correspond to a precise SEY.

    For a sample exposed to air for a long time,the surface contaminations of metal material should include adsorbed gas and oxides in general.In this paper,effects of surface absorbed gas on SEY are investigated as a primary factor.Actually,for some active metals,oxidization of surface layer also has a remarkable effect on SE emission,which still needs further investigations.

    4.Conclusions

    In this paper,we propose a synthetic semi-empirical physical model for SEY of metals.With expressing the penetrated parameter as a function of atom number,revising the direction and energy distribution of internal SEs,and considering the contribution of backscattering electron,the formula for SEY in this article performs much better than the previous one in the sense of its agreement with experimental results.In addition, a relationship between work function and adsorbed gas quantity is established in the way of heating sample.The effects of temperature on SEYare expressed with a formula directly.Results show that the desorption gas quantity increases with ultimate sample temperature increasing exponentially,and surface work function increases with desorption gas quantity increasing exponentially as well.Then,the maximum SEY presents a linear increase relationship with ultimate sample temperature increasing,as a consequence.This work can conduce to understanding the emission of SE from metal surface,and has a significance for studying the surface contamination effects.

    [1]Austin L and Starke H 1902 Annalen.Der.Physik.314 271

    [2]Al-Obaidi H N and KhaleelI H 2013 Micron 51 13

    [3]Feng G B,Cao M,Yan L P and Zhang H B 2013 Micron 52–53 62

    [4]Feng G B,Wang F,Hu T C and Cao M 2015 Chin.Phys.B 24 117901

    [5]Wang F,Feng G B,Zhang X S and Cao M 2016 Micron 90 64

    [6]He Y N,Ye M,Hu S G 2013 J.Appl.Phys.113 074904

    [7]Weng M,Cao M,Zhao H J and Zhang H B 2014 Rev.Sci.Instru.85 036108

    [8]Zhang H B,Hu X C,Wang R,Cao M,Zhang N and Cui W Z 2012 Rev. Sci.Instru.83 066105

    [9]Suzuki M,Kumagai K,Sekiguchi T,Cassell A M,Saito T and Yang C Y 2008 J.Appl.Phys.104 114306

    [10]Feng G B,Wang F and Cao M 2015 Acta Phys.Sin.64 227901(in Chinese)

    [11]Renoud R,Mady F,Bigarre J and Ganachaud J P 2005 J.Euro.Cera. Soci.25 2805

    [12]Bundaleski N,Shaw B J,Silva A G,Moutinho A M C and Teodoro O M N D 2011 Scanning 33 266

    [13]Lin Y and Joy D C 2005 Surf.Interf.Anal.37 895

    [14]Furman M A and Pivi M T F 2013 Phys.Rev.Accel.Beams 16 069901

    [15]Vaughan J R M and Abuelma’Atti M T 1991 IEEE Trans.Electron. Dev.38 1982

    [16]Vaughan J R M 1989 IEEE Trans.Elec.Devi.36 1963

    [17]Furman MAand PiviMT F 2002 Phys.Rev.St.Accel.Beams5 124404

    [18]Lane R O and Zaffarano D J 1954 Phys.Rev.94 960

    [19]Bruining H 1955 Physics and Applications of Secondary Electron Emission(London:Pergamon Press)pp:93–96

    [20]Wittry D B and Kyser D F 1965 J.Appl.Phys.36 1387

    [21]Streitwolf H W 1959 Annalen.Der.Physik.458 183

    [22]Vaughan R 1993 IEEE Trans.Electron.Dev.40 830

    7 April 2017;revised manuscript

    24 May 2017;published online 1 August 2017)

    10.1088/1674-1056/26/9/097901

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211 and 11675278)and the China Postdoctoral Science Foundation (Grant No.2016M602944XB).

    ?Corresponding author.E-mail:cuiwanzhao@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張娜國寶
    “國寶”競拍會
    動作不可少(下)
    動作不能少(上)
    凝心固本 引智聚力 創(chuàng)新開拓
    漫話國寶
    我們是國寶
    國寶求學(xué)記
    English Phonetic Teaching in Primary School
    松樹梢
    A review of studies of mechanism and prediction of tip vortex cavitation inception*
    午夜激情欧美在线| 成人午夜精彩视频在线观看| 中文亚洲av片在线观看爽| 中文欧美无线码| 97在线视频观看| 国产成人a∨麻豆精品| 久久久久性生活片| 国产精品野战在线观看| 人妻夜夜爽99麻豆av| 少妇被粗大猛烈的视频| 欧美激情在线99| 欧美3d第一页| 国产探花极品一区二区| 最好的美女福利视频网| 在线观看美女被高潮喷水网站| 国产老妇伦熟女老妇高清| 中文在线观看免费www的网站| 国产毛片a区久久久久| 国产午夜精品久久久久久一区二区三区| 男女边吃奶边做爰视频| 精品人妻熟女av久视频| 国产探花在线观看一区二区| 成人毛片60女人毛片免费| 亚洲精品色激情综合| 狠狠狠狠99中文字幕| 久久99热6这里只有精品| 99久久精品一区二区三区| 身体一侧抽搐| 麻豆国产97在线/欧美| 一本一本综合久久| 久久久精品大字幕| 国产女主播在线喷水免费视频网站 | 1024手机看黄色片| 日本一本二区三区精品| av在线蜜桃| 91麻豆精品激情在线观看国产| 国产精品久久久久久av不卡| 国产综合懂色| 亚洲中文字幕一区二区三区有码在线看| av免费在线看不卡| 午夜老司机福利剧场| 亚洲不卡免费看| 免费无遮挡裸体视频| av免费观看日本| 亚洲av一区综合| 日本撒尿小便嘘嘘汇集6| 18+在线观看网站| 中文字幕av成人在线电影| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 99热这里只有是精品50| 国产爱豆传媒在线观看| 听说在线观看完整版免费高清| 午夜激情福利司机影院| 国产伦一二天堂av在线观看| 日韩中字成人| 一区二区三区免费毛片| 午夜精品一区二区三区免费看| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中国美白少妇内射xxxbb| 又粗又爽又猛毛片免费看| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 五月伊人婷婷丁香| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美| 三级男女做爰猛烈吃奶摸视频| 色综合亚洲欧美另类图片| 美女内射精品一级片tv| 精品久久久久久久久久免费视频| 午夜福利高清视频| 国产精品女同一区二区软件| 精品99又大又爽又粗少妇毛片| 亚洲国产精品合色在线| 国产成人91sexporn| 欧美激情在线99| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜 | 亚洲av二区三区四区| 国产精品av视频在线免费观看| 午夜福利在线观看吧| av黄色大香蕉| 国产爱豆传媒在线观看| or卡值多少钱| 亚洲人成网站在线播| 伦理电影大哥的女人| 日韩精品有码人妻一区| 午夜精品在线福利| 亚洲精华国产精华液的使用体验 | 欧美高清性xxxxhd video| 免费无遮挡裸体视频| 99久久精品热视频| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 亚洲国产精品久久男人天堂| 国内精品美女久久久久久| 国产亚洲91精品色在线| 免费看av在线观看网站| 精品不卡国产一区二区三区| 国产一区二区亚洲精品在线观看| 极品教师在线视频| 亚洲电影在线观看av| 国产精品一区二区三区四区久久| 人妻系列 视频| 色5月婷婷丁香| 哪个播放器可以免费观看大片| 成人午夜高清在线视频| 欧美一级a爱片免费观看看| 寂寞人妻少妇视频99o| 波多野结衣高清作品| 国产精品美女特级片免费视频播放器| 日韩成人伦理影院| 少妇丰满av| 成人无遮挡网站| 亚洲在线自拍视频| 国产精品无大码| 丝袜美腿在线中文| 一级毛片aaaaaa免费看小| 亚洲激情五月婷婷啪啪| 亚洲av熟女| 亚洲不卡免费看| 亚洲成人av在线免费| 99热只有精品国产| 日本黄色片子视频| 成人特级黄色片久久久久久久| 久久人人爽人人爽人人片va| 免费看日本二区| 大香蕉久久网| 久久精品影院6| 热99re8久久精品国产| 久久久久久久久久成人| 97超视频在线观看视频| 麻豆av噜噜一区二区三区| 婷婷亚洲欧美| 国产一区二区亚洲精品在线观看| 亚洲美女搞黄在线观看| 欧美一区二区精品小视频在线| av在线天堂中文字幕| 人妻久久中文字幕网| 99视频精品全部免费 在线| 波多野结衣高清作品| 麻豆乱淫一区二区| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 日本黄色片子视频| 午夜福利在线观看免费完整高清在 | 国产91av在线免费观看| 欧美区成人在线视频| 国产精品三级大全| 亚洲美女搞黄在线观看| 亚洲精品日韩在线中文字幕 | 全区人妻精品视频| 亚洲国产欧美人成| 色尼玛亚洲综合影院| 国产午夜福利久久久久久| 欧美一区二区国产精品久久精品| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 欧美成人a在线观看| 久久久精品大字幕| 最新中文字幕久久久久| 国产美女午夜福利| 免费av不卡在线播放| 亚洲熟妇中文字幕五十中出| 国产精品蜜桃在线观看 | av在线天堂中文字幕| 国产久久久一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区三区在线臀色熟女| 国产 一区 欧美 日韩| 日韩av不卡免费在线播放| 一级毛片久久久久久久久女| 中文字幕久久专区| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 哪个播放器可以免费观看大片| 午夜免费激情av| 日韩欧美在线乱码| 国产成年人精品一区二区| 韩国av在线不卡| 久久久久久久久久久免费av| 中国国产av一级| 九九爱精品视频在线观看| 国产精品综合久久久久久久免费| 久久韩国三级中文字幕| 99热精品在线国产| 久久久久久伊人网av| 国产中年淑女户外野战色| 国产精品.久久久| 国产高清视频在线观看网站| 国产久久久一区二区三区| ponron亚洲| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 国产一区二区三区av在线 | 午夜福利在线在线| 亚洲四区av| 国产精品99久久久久久久久| 国产成人福利小说| 乱码一卡2卡4卡精品| 亚洲精品久久久久久婷婷小说 | 国产真实乱freesex| 少妇熟女aⅴ在线视频| 亚州av有码| 亚洲成a人片在线一区二区| 夫妻性生交免费视频一级片| 我要看日韩黄色一级片| 久久久精品大字幕| 精品久久久久久久久亚洲| 毛片女人毛片| 白带黄色成豆腐渣| 青春草亚洲视频在线观看| 亚洲国产精品久久男人天堂| 亚洲成人精品中文字幕电影| 免费观看的影片在线观看| 欧美+日韩+精品| 久久久久久久久久黄片| 精品99又大又爽又粗少妇毛片| 欧美一区二区精品小视频在线| 日韩av在线大香蕉| 国产精品99久久久久久久久| 丰满乱子伦码专区| 中文字幕久久专区| 色吧在线观看| 蜜桃久久精品国产亚洲av| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 色5月婷婷丁香| 亚洲精品色激情综合| 99久国产av精品| 边亲边吃奶的免费视频| 久久久久九九精品影院| 久久久久久久久久成人| 麻豆国产97在线/欧美| 日本三级黄在线观看| 神马国产精品三级电影在线观看| 99久国产av精品国产电影| 国产精品乱码一区二三区的特点| 色综合站精品国产| 成人美女网站在线观看视频| 久久久久久久久大av| 亚洲人与动物交配视频| 国内精品美女久久久久久| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| 亚洲欧美中文字幕日韩二区| .国产精品久久| 一级二级三级毛片免费看| 国产成人a区在线观看| 亚洲精品成人久久久久久| 国产成人aa在线观看| 变态另类成人亚洲欧美熟女| 久久6这里有精品| 麻豆一二三区av精品| 美女国产视频在线观看| 成熟少妇高潮喷水视频| 久久国产乱子免费精品| 少妇熟女欧美另类| 午夜福利高清视频| 国产片特级美女逼逼视频| 国产精品.久久久| 最近视频中文字幕2019在线8| 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 日韩精品青青久久久久久| 99久久精品国产国产毛片| 色综合色国产| 日本爱情动作片www.在线观看| 99精品在免费线老司机午夜| 菩萨蛮人人尽说江南好唐韦庄 | 直男gayav资源| 亚洲欧美日韩无卡精品| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| 国产精品蜜桃在线观看 | 在现免费观看毛片| 九九在线视频观看精品| av视频在线观看入口| 国产精品不卡视频一区二区| 国产精品日韩av在线免费观看| 国产色爽女视频免费观看| 久久精品夜夜夜夜夜久久蜜豆| a级毛色黄片| 欧美一区二区精品小视频在线| 亚洲va在线va天堂va国产| 国产探花极品一区二区| 在线观看美女被高潮喷水网站| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲网站| 男女啪啪激烈高潮av片| 国产真实乱freesex| 夜夜看夜夜爽夜夜摸| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看| 国产黄片视频在线免费观看| 熟妇人妻久久中文字幕3abv| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| АⅤ资源中文在线天堂| 大又大粗又爽又黄少妇毛片口| 久久久久久久久大av| 国产91av在线免费观看| 精品国产三级普通话版| 欧美极品一区二区三区四区| 男人舔女人下体高潮全视频| 女的被弄到高潮叫床怎么办| 国产 一区精品| 欧美xxxx性猛交bbbb| 三级国产精品欧美在线观看| 午夜精品在线福利| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 国产精品1区2区在线观看.| 成人午夜高清在线视频| 色综合色国产| 六月丁香七月| 黄色日韩在线| 嫩草影院入口| 网址你懂的国产日韩在线| 嫩草影院新地址| 亚洲,欧美,日韩| or卡值多少钱| av在线亚洲专区| 国国产精品蜜臀av免费| 国产久久久一区二区三区| 又粗又爽又猛毛片免费看| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜 | 91久久精品电影网| 午夜精品在线福利| 国产高潮美女av| 久久久久九九精品影院| 欧美+日韩+精品| 亚洲自偷自拍三级| 美女xxoo啪啪120秒动态图| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 精品熟女少妇av免费看| 中国国产av一级| 免费黄网站久久成人精品| 三级国产精品欧美在线观看| 一个人免费在线观看电影| 久久人妻av系列| 中文欧美无线码| 99久久精品国产国产毛片| 久久亚洲国产成人精品v| 亚洲一级一片aⅴ在线观看| 一级黄片播放器| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 日韩欧美国产在线观看| 91aial.com中文字幕在线观看| 男人的好看免费观看在线视频| 麻豆成人av视频| 亚洲国产欧美在线一区| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| av视频在线观看入口| 免费一级毛片在线播放高清视频| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 久久精品91蜜桃| 欧美成人a在线观看| 国产成人freesex在线| 日韩三级伦理在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久韩国三级中文字幕| av专区在线播放| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 亚洲经典国产精华液单| а√天堂www在线а√下载| kizo精华| 国产成人精品婷婷| 天堂影院成人在线观看| 亚洲国产精品sss在线观看| 最后的刺客免费高清国语| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 国产亚洲欧美98| 插逼视频在线观看| 深爱激情五月婷婷| 欧美高清成人免费视频www| 一级毛片电影观看 | 日本欧美国产在线视频| 少妇高潮的动态图| 久久6这里有精品| 午夜精品一区二区三区免费看| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 日本五十路高清| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| 偷拍熟女少妇极品色| 日韩成人伦理影院| or卡值多少钱| 久久久欧美国产精品| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 日韩制服骚丝袜av| 中出人妻视频一区二区| 国产精品久久久久久亚洲av鲁大| 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 国产男人的电影天堂91| 国产高清三级在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产亚洲网站| 婷婷精品国产亚洲av| 18禁在线无遮挡免费观看视频| 不卡视频在线观看欧美| 久久久久久国产a免费观看| 国产色爽女视频免费观看| 婷婷六月久久综合丁香| 特大巨黑吊av在线直播| 最好的美女福利视频网| 国产一区二区三区av在线 | 你懂的网址亚洲精品在线观看 | 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| 夜夜爽天天搞| www.av在线官网国产| 精品免费久久久久久久清纯| 久久久久免费精品人妻一区二区| 午夜福利在线观看免费完整高清在 | 99久久精品国产国产毛片| 国产精品.久久久| 我要搜黄色片| 午夜视频国产福利| 亚洲国产欧洲综合997久久,| 直男gayav资源| 欧美日韩精品成人综合77777| 中文字幕精品亚洲无线码一区| 99久久久亚洲精品蜜臀av| 美女cb高潮喷水在线观看| 亚洲成人av在线免费| 女人十人毛片免费观看3o分钟| 婷婷亚洲欧美| 99久国产av精品国产电影| 久久精品人妻少妇| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| av专区在线播放| 深爱激情五月婷婷| 变态另类成人亚洲欧美熟女| 简卡轻食公司| 日本色播在线视频| 国产又黄又爽又无遮挡在线| 男女边吃奶边做爰视频| 天天一区二区日本电影三级| 春色校园在线视频观看| 午夜福利在线在线| 欧美高清性xxxxhd video| 国产成年人精品一区二区| 小蜜桃在线观看免费完整版高清| 成人午夜高清在线视频| 精品熟女少妇av免费看| 久久久久性生活片| 亚洲美女视频黄频| 国产欧美日韩精品一区二区| 亚洲七黄色美女视频| 插逼视频在线观看| 精品无人区乱码1区二区| 少妇被粗大猛烈的视频| 成人美女网站在线观看视频| 一级二级三级毛片免费看| 亚洲经典国产精华液单| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| 久久精品国产亚洲av天美| 天堂√8在线中文| 国产精品不卡视频一区二区| 嫩草影院入口| 久久热精品热| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 草草在线视频免费看| 99热这里只有是精品50| 国产精品女同一区二区软件| 在线观看免费视频日本深夜| 精品无人区乱码1区二区| avwww免费| 啦啦啦观看免费观看视频高清| 久久综合国产亚洲精品| 九九在线视频观看精品| 麻豆乱淫一区二区| www.色视频.com| 成人午夜精彩视频在线观看| 91久久精品国产一区二区成人| 亚洲第一区二区三区不卡| 国产视频内射| 日韩欧美一区二区三区在线观看| 少妇的逼水好多| 女人十人毛片免费观看3o分钟| 永久网站在线| 国产精品伦人一区二区| 97超视频在线观看视频| 91狼人影院| 久久久久九九精品影院| 日本与韩国留学比较| 国内久久婷婷六月综合欲色啪| 麻豆国产97在线/欧美| 黄色配什么色好看| 国产淫片久久久久久久久| 免费观看a级毛片全部| 老师上课跳d突然被开到最大视频| 欧美性猛交黑人性爽| 免费无遮挡裸体视频| 人妻少妇偷人精品九色| 男女下面进入的视频免费午夜| 精品国内亚洲2022精品成人| av在线播放精品| 精品一区二区三区人妻视频| 婷婷色av中文字幕| 国产成年人精品一区二区| 成人永久免费在线观看视频| 午夜福利视频1000在线观看| 村上凉子中文字幕在线| 久久久久久久亚洲中文字幕| 天美传媒精品一区二区| 三级国产精品欧美在线观看| 成熟少妇高潮喷水视频| 亚洲国产欧美人成| 国产精品1区2区在线观看.| 欧美xxxx性猛交bbbb| 草草在线视频免费看| 中文字幕av在线有码专区| 男女视频在线观看网站免费| 国产三级中文精品| 国产乱人偷精品视频| or卡值多少钱| 高清午夜精品一区二区三区 | 草草在线视频免费看| 欧美变态另类bdsm刘玥| 欧美成人a在线观看| 此物有八面人人有两片| 精品久久久久久久久久久久久| a级毛片免费高清观看在线播放| 国产精品1区2区在线观看.| 中文字幕精品亚洲无线码一区| 色综合亚洲欧美另类图片| 日韩在线高清观看一区二区三区| 久久久久九九精品影院| 久久国产乱子免费精品| 欧美最黄视频在线播放免费| 久久韩国三级中文字幕| 午夜福利在线在线| 十八禁国产超污无遮挡网站| 嫩草影院新地址| 悠悠久久av| 免费黄网站久久成人精品| 久久久久久大精品| 在线天堂最新版资源| 国产单亲对白刺激| 99在线人妻在线中文字幕| 久久久久久久久久久免费av| 免费在线观看成人毛片| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 99在线视频只有这里精品首页| 3wmmmm亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 午夜老司机福利剧场| 深夜a级毛片| 一级毛片aaaaaa免费看小| 美女内射精品一级片tv| 日本与韩国留学比较| 黄色欧美视频在线观看| 卡戴珊不雅视频在线播放| 久久久午夜欧美精品| 亚洲人成网站高清观看| 亚洲七黄色美女视频| 日本免费一区二区三区高清不卡| 尤物成人国产欧美一区二区三区| 偷拍熟女少妇极品色| 成人毛片60女人毛片免费| 亚洲图色成人| 免费大片18禁| 欧美精品一区二区大全| 高清毛片免费看| 一级二级三级毛片免费看| 麻豆久久精品国产亚洲av| 亚洲精品乱码久久久v下载方式| 乱人视频在线观看| 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式| 中国国产av一级| 色哟哟哟哟哟哟| 国产精品永久免费网站| 少妇裸体淫交视频免费看高清| 国产精品一区二区性色av| 精品久久久久久成人av| 黄色视频,在线免费观看| 高清午夜精品一区二区三区 | 长腿黑丝高跟| 国产精品1区2区在线观看.| 免费看av在线观看网站|