• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field?

    2017-08-30 08:26:22KangKangJu居康康CuiXianGuo郭翠仙andXiaoYinPan潘孝胤
    Chinese Physics B 2017年9期

    Kang-Kang Ju(居康康),CuiXian Guo(郭翠仙),and Xiao-Yin Pan(潘孝胤)

    Department of Physics,Ningbo University,Ningbo 315211,China

    Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field?

    Kang-Kang Ju(居康康),CuiXian Guo(郭翠仙),and Xiao-Yin Pan(潘孝胤)?

    Department of Physics,Ningbo University,Ningbo 315211,China

    We study the two-dimensional weak-coupling Fr?hlich polaron in a completely anisotropic quantum dot in a perpendicular magnetic field.By performing a unitary transformation,we first transform the Hamiltonian into a new one which describes an anisotropic harmonic oscillator with new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength.Then employing the second-order Rayleigh–Schr?dinger perturbation theory,we obtain the polaron correction to the ground-state energy.The magnetic field and anisotropic effects on the polaron correction to the ground-state energy are discussed.

    Fr?hlich polaron,anisotropic quantum dot,magnetic field,ground-state energy

    1.Introduction

    During the past few decades,tremendous experimental and theoretical interest in low-dimensional systems has been stimulated by the technological advances in the fabrication of nanostructures,[1–4]we refer the readers to Ref.[4]for the latest developments.Nowadays it is possible to confine a few electrons in all three spatial dimensions in semiconductors called quantum dots(QDs).[5–9]This confinement feature brings in quantum effects,for example,the electron energy spectrum of such quantum dots is fully quantized.Because of their potential applications in designing devices and lots of interesting new quantum physical effects arising from their nanometer length scales,understanding the electronic properties of QDs is of particular importance.

    The electron–phonon interaction,which plays an impor-tantrole in electronic and optical properties of polar crystalline materials in three dimensions,also has pronounced effects in low-dimensional systems.Numerous investigations have been devoted to the electron–phonon interaction,especially the interaction of the electrons with longitudinal-optical(LO) phonons,on various electronic properties of semiconductor QD.[10–15]Among these,many authors calculated the ground state energies using different methods such as the second-order perturbation theory,[11]the Feynman–Haken variational pathintegral method,[12]the Lee–Low–Pines–Huybrecht(LLP-H) method,[13]and Landau–Pekar(LP)variational theory.[15]The general consensus they reached is that the polaronic correction becomes considerably stronger as the strength of the dot confi ning potential increases,and the polaronic effects are very significant.

    In the presence of an external magnetic field,the polaron effects in QDs become more interesting,because the magnetic field will affect the confinement length.There exist a considerable amount of studies devoted to this subject in the literature.For instance,Haupt and Wendler[16]investigated the cyclotron resonance of magnetopolarons in three dimensional completely anisotropic parabolic QDs,analytical and numerical results were presented for the anisotropy and polaron corrections to the Landau levels of an isotropic parabolic QD.They also studied[17]the electronic ground state properties of the polaron in an array of anisotropic parabolic QDs in the presence of a quantizing magnetic field.Within the framework of the Rayleigh–Schr?dinger perturbation theory(RSPT),[18]Zhu and Gu[19]investigated the cyclotron resonance of a magnetopolaron in a QD with a strong magnetic field.Yip[20]also studied the similar problem using an operator method.Zhu and Kobayashi[21]calculated the binding energy of strong-coupling polarons in QDs using the LP variational method.They also investigated the resonant shallow donor magnetopolaron effect[22]and the temperature dependence of magnetopolaron[23]in a GaAs/AIGaAs QD in a magnetic field.Kandemir and Altanhan[24,25]studied the polaronic effects for an electron confined in a three dimensional parabolic QD and a uniform magnetic field using the Lee–Low–Pines(LLP)method.Recently,Chen studied the cyclotron resonance of impurity magnetopolarons in two-dimensional QDs[26]and the magnetic field effects on the properties of the GaAs QD qubit due to electron–phonon interactions.[27]

    Of course,the above mentioned works are not a completelist.However,it must be pointed out that in almost all the above mentioned works,as long as they are based on some analytical wave functions,the systems they considered though were referred to as trapped by“anisotropic harmonic potentials”and in a perpendicular magnetic field,they are actually planar isotropically trapped(ωx=ωy),i.e.,the anisotropies have been introduced along the z axis of the confinement rather than laterally in the 3D case.Because all the different methods used are based on the fact that the wave functions for the circular parabolic confinement trapped systems in a perpendicular magnetic field,the so called Fock–Darwin states,[28]can be manipulated analytically with less difficulty,while in the (ωxωy)or elliptic parabolic confinement,the wave functions become very complicated[29]and almost analytically intractable.To the best of our knowledge,reference[16]is probably the only work where the polaron effects of the QDs with the elliptic parabolic confinement in a perpendicular magnetic field are considered.However,for the above reason,the authors used the isotropic part of the Hamiltonian as the unperturbed one to avoid the difficulty.Hence,somehow the polaron effects in the QDs with elliptic parabolic confinement under a perpendicular magnetic field have become a long standing problem.

    In contrast,there exist quite a lot of studies for the anisotropic QDs where the broken rotational symmetry brings in lots of new physics,especially the effects of anisotropy.[30–42]For instance,the shell structure pattern in the addition energy spectra is much less pronounced for small deformations and vanishes for stronger anisotropies.[31]The degeneracy in the single-particle excitation spectrum is lifted due to the reduction of the symmetry and the selection rules are affected by producing coupling effects between the states.[32]On the other hand,the magnetic field dependence properties such as magnetization for anisotropic QDs have also been studied.[38]

    Thus,it is desirable to investigate the polaron effects in the QDs with elliptic parabolic confinement in the presence of a perpendicular magnetic field.In this paper,we study a two-dimensional(2D)system trapped by an anisotropic harmonic potential(ωxωy)in a perpendicular magnetic field. To overcome the long standing difficulty,instead of working directly with the complicated wave functions,we first perform a unitary transformation and convert the Hamiltonian into a new one which describes a harmonic oscillator(HO) with new masses and trapping frequencies interacting with the same phonon bath but with different interaction form and strength.This unitary transformation method is equivalent to working with the original Hamiltonian in the basis consisting of the complicated wave functions.Then the second-order Rayleigh–Schr?dinger perturbation theory(RSPT)is employed to obtain the polaron correction to the ground-state energy,the magnetic field dependence and anisotropy of the polaron effects are demonstrated,the validity of the results is also discussed.

    The rest of the paper is organized as follows.In Section 2,we perform the unitary transformation and obtain the new Hamiltonian,then we give the polaron correction to the ground-state energy using the second-order RSPT.The numerical results for the magnetic field and anisotropic effects are presented in Section 3.Finally,a brief conclusion is drawn in the last section.

    2.Formulation

    Consider an electron with an effective mass m?confined in a 2D anisotropic QD,i.e.,the confining potential is[37,38]

    One may rewrite ωx=ω0sin(φ)and ωy=ω0cos(φ),the degree of anisotropy is reflected by the angle φ,the case of φ=π/4 corresponds to the circular parabolic confinementand the confinement becomes wirelike when φ→π/2.Note that the 2D quantum dot maybe experimentally realized in a 3D system where the electrons are much more strongly confined in one direction(taken as the z direction)than in the other two directions.[5,8]

    In the presence of a magnetic field B along the z direction, the Fr?hlich Hamiltonian of the electron–phonon system can be written as

    Here the unperturbed Hamiltonian is

    where

    is the Hamiltonian of the electron,ωLOis the LO phonon frequency,and

    describes the interaction between the electron and phonons, withcreating a bulk LO phonon of wave vector q.Vqis defined as

    where q=|q|,α is the electron–phonon coupling constant, and A is the area of the sample.Note that Vqdepends only on the length of q.

    Without loss of generality,we assume ωx≥ωy.Then working in the symmetric gaugeperforming the unitary transformation[29]

    with

    we obtain a new Hamiltonian

    where the transformed unperturbed part of the Hamiltonian is

    with the transformed electronic Hamiltonian

    which describes a 2D HO with an anisotropic mass

    and frequency

    The transformed interaction part of the Hamiltonian is

    Next we shall focus on the transformed Hamiltonianand use the second-order RSPT to obtain the electronic ground-state energy shift,which is given by

    where|j〉=|j1j2〉is the j-th eigenstate of the transformed electronic Hamiltonian,i.e.,in the coordinate-representation, we have

    This is nothing else but a simple 2D harmonic oscillator,and we readily obtain

    with the time-dependent coefficients

    Substituting Eqs.(14)and(18)into Eq.(17),after long algebra manipulations,we finally obtain

    Equation(19)is the key result of this paper.Unfortunately, the integral cannot be calculated analytically.Note that for an isotropic 2D QD in a magnetic field(ωx=ωy=ω0),equation(19)reduces to

    3.Numerical results and discussion

    To further analyze the results obtained,we perform numerical calculations for Eqs.(19)and(20).In the following, we use the Feynman units,i.e.,m?=ˉh=ωLO=1.In the following graphs,we set φ=π/4,2π/5,9π/20,(π?δ)/2,with δ=10?3.

    Fig.1.(color online)The magnitudes of the polaron correction to the ground-state energy over the coupling constant α,?ΔE/α,as a function of the cyclotron frequency ωc for different degrees of anisotropy.We set ωx=ω0 sin(φ),ωy=ω0 cos(φ),ω0=5.0,10.0,15.0,20.0,25.0, 30.0,and φ=π/4,2π/5,9π/20,(π?δ)/2,with δ=10?3.

    In Fig.1,we plot the magnitude of the polaron correction to the ground-state energy over the coupling constant,α?ΔE/α,as a function of the cyclotron frequency ωcwhen ω0=5.0,10.0,15.0,20.0,25.0,30.0.From the graphs,we can see that the electron–LO phonon interaction produces a negative shift to the ground-state energy,namely,the polaron correction is negative,and the magnitude increases as the strength of the magnetic field increases for fixed coupling constant α. As the degree of anisotropy increases,i.e.,as φ increases from π/4 to π/2,the magnitude decreases,while the correction increases since it is negative.

    In Figs.2 and 3,we plot the ground-state energies without and with the polaron effects,namely,E0and E=E0+ΔE,as a function of the cyclotron frequency ωcfor different degrees of anisotropy.It is clear that E0and E always increase as the strength of the magnetic field increases,while the anisotropy always lowers the ground-state energies no matter whether the polaron effects are taken into account or not,and the stronger the anisotropy is,the lower the energy becomes.

    Fig.2.(color online)The ground-state energies without and with the polaron effects,namely,E0 and E=E0+ΔE,as a function of the cyclotron frequency ωc for different degrees of anisotropy.We set ωx=ω0 sin(φ),ωy=ω0 cos(φ),and ω0=5.0,10.0,15.0;φ=π/4,2π/5, 9π/20,(π?δ)/2,with δ=10?3.

    Fig.3.(color online)The same as Fig.3,but with ω0=20.0,25.0,30.0.

    In order to check the validity of the RSPT,we also plot the ratios of the correction to the ground-state energy without the polaron effects,i.e.,|ΔE/E0|,as functions of ωcin Fig.4. It is clear that all the ratios are less than 10%and the values decrease as ωcincreases,thus the applicability of RSPT is justified if we set the criteria for validity to be that the correction shall not be greater than 10%of the unperturbed ground-state energy.It should be pointed out that when the value of ω0becomes smaller,say ω0<5.0,then|ΔE/E0|increases and could be greater than 10%,then the applicability of RSPT becomes questionable.On the other hand,we note that at different values ofω0,the curves of the ratio behave quite differently for different degrees of anisotropy as shown in the graphs.It is apparent that at ω0=5.0,the ratio increases as the degree of anisotropy increases and the situation becomes opposite at ω0=30.0.The details of the evolution of this change in between are shown for ω0=10.0,15.0,20.0,25.0.

    Fig.4.(color online)The magnitudes of polaron correction to the ground-state energy over the ground-state energy?ΔE/E0 as a function of the cyclotron frequency ωc for different degrees of anisotropy.We set ωx=ω0 sin(φ),ωy=ω0 cos(φ),ω0=5.0,10.0,15.0,20.0,25.0,30.0, and φ=π/4,2π/5,9π/20,(π?δ)/2,with δ=10?3.

    4.Conclusion

    We have investigated the system of a 2D weak-coupling Fr?hlich polaron in an anisotropic quantum dot in a perpendicular magnetic field.To avoid directly using the wave function for the electronic part of the Hamiltonian which is almost analytically intractable,we transformed the total Hamiltonian into a new one by performing a unitary transform.The new Hamiltonian describes a 2D harmonic oscillator with a new mass and trapping frequencies interacting with the same phonon bath but with different interaction form and strength.We then calculated the polaron correction to the ground-state energy by using the second-order RSPT,it is found that the magnetic field will produce a negative shift to the ground-state energy, and this shift increases as the strength of the magnetic field increases.Moreover,in the valid domain of the perturbation theory,it is shown that as the degree of anisotropy increases, the ground state energy decreases.However,the ratio of correction is not necessarily the case.In fact,it depends upon the confining frequencyand could behave quite differently.This is expected to be confirmed by experiments.

    Finally,it is worth stressing that although the problem we considered is 2D,the unitary transformation method can be generalized to the 3D case.Furthermore,various other methods such as the LP or LLP-H variational method and path integral approach can be applied to study the same problem. These are our future works and will be presented elsewhere.

    [1]Kastner M A 1992 Rev.Mod.Phys.64 849

    [2]Zimbovskaya N A and Pederson M R 2011 Phys.Rept.509 1

    [3]Zhou L L 2011 Chin.Phys.Lett.28 128504

    [4]Harrison P and Valavanis A 2016 Quantum Wells,Wires and Dots:Theoretical and Computational Physics of semiconductor nanostructures (4th Edn)(Chichester:John Wiley and Sons Ltd)

    [5]Sikorski C and Merkt U 1989 Phys.Rev.Lett.62 2164

    [6]Reimann S M and Manninen M 2002 Rev.Mod.Phys.74 1283

    [7]Chakraborty T 1999 Quantum Dots(Amsterdam:Elsevier)

    [8]Ferreyra J M,Bosshard P and Proetto C R 1997 Phys.Rev.B 55 13682

    [9]Hanson R,Kouwenhoven L P,Petta J R,Tarucha S and Vandersypen L M K 2007 Rev.Mod.Phys.79 1217

    [10]Degani M H and Farias G A 1990 Phys.Rev.B 42 11950

    [11]Zhu K D and Gu S W 1992 Phys.Lett.A 163 435

    [12]Chen Q,Ren Y,Jiao Z and Wang K 1998 Phys.Rev.B 58 16340

    [13]Kervan N,Altanhan T and Chatterjee A 2003 Phys.Lett.A 315 280

    [14]Yan Z W and Feng Z Y 2016 Chin.Phys.B 25 107804

    [15]Yao Q Z and Chen S H 2011 J.Low.Temp.Phys.162 34

    [16]Haupt R and Wendler L 1993 Physica B 184 394

    [17]Haupt R and Wendler L 1994 Solid-State Electron.37 1153

    [18]Mitra T K,Chatterjee A andMukhopadhyay S S 1987 Phys.Rept.153 91

    [19]Zhu K D and Gu S W 1993 Phys.Rev.B 47 12941

    [20]Yip S K 1989 Phys.Rev.B 40 3682

    [21]Zhu K D and Kobayashi T 1994 Phys.Lett.A 190 337

    [22]Zhu K D and Kobayashi T 1994 Sol.Stat.Commun.92 353

    [23]Zhu K D and Kobayashi T 1995 Sol.Stat.Commun.95 805

    [24]Kandemir B S and Altanhan T 1999 Phys.Rev.B 60 4834

    [25]Kandemir B S and Altanhan T 1999 Phys.Lett.A 287 403

    [26]Chen S H 2011 Physica E 43 1007

    [27]Chen S H 2014 Physica B 452 55

    [28]Fock V 1928 Z.Phys.47 446

    [29]DippelO,SchmelcherP and Cederbaum L S 1994 Phys.Rev.A 49 4415

    [30]Ezaki T,Mori N and Hamaguchi C 1997 Phys.Rev.B 56 6428

    [31]Maksym P A 1998 Physica B 249 233

    [32]Ezaki T,Mori N and Hamaguchi C 1998 Physica B 249 238

    [33]Reimann S M,Koskinen M,Lindelof P E and Manninen M 1998 Physica E 2 648

    [34]Reimann S M,Koskinen M,Kolehmainen J,Manninen M,Austing D G and Tarucha S 1999 Eur.Phys.J.D 9 105

    [35]Austing D G 1999 Phys.Rev.B 60 11514

    [36]Lee I H,Kim Y H and Ahn K H 2001 J.Phys.:Condens.Matter 13 1987

    [37]Drouvelis P S,Schmelcher P and Diakonos F K 2004 Phys.Rev.B 69 035333

    [38]Drouvelis P S,Schmelcher P and Diakonos F K 2004 J.Phys.:Condens.Matter 16 3633

    [39]Ko′sik P and Okopińska A 2010 Phys.Lett.A 374 3841

    [40]Yannouleas C and Landman U 2007 Rep.Prog.Phys.70 2067

    [41]Birman J L,Nazmitdinov R G and Yukalov V I 2013 Phys.Rep.526 1

    [42]Kokiantonis N and Castrigiano D P L 1987 J.Phys.A:Math.Gen.18 45

    [43]Yonei K 1989 J.Phys.A:Math.Gen.22 2415

    3 May 2017;revised manuscript

    6 June 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/097103

    ?Project supported by the National Natural Science Foundation of China(Grant No.11375090)and the K.C.Wong Magna Foundation in Ningbo University, China.

    ?Corresponding author.E-mail:panxiaoyin@nbu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    国产在线一区二区三区精| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 国产日韩欧美视频二区| 9191精品国产免费久久| 久久久久国产一级毛片高清牌| 日本av免费视频播放| 国产av精品麻豆| 91精品三级在线观看| 一个人免费看片子| 亚洲四区av| 大片电影免费在线观看免费| 久久精品久久久久久噜噜老黄| 伊人亚洲综合成人网| a级片在线免费高清观看视频| 久久精品国产a三级三级三级| 五月天丁香电影| 国产亚洲最大av| 少妇人妻久久综合中文| 亚洲精品日韩在线中文字幕| 免费大片黄手机在线观看| 韩国av在线不卡| 久久99热这里只频精品6学生| 美女大奶头黄色视频| 亚洲人成网站在线观看播放| 国产xxxxx性猛交| 女人高潮潮喷娇喘18禁视频| 国产精品嫩草影院av在线观看| 中文精品一卡2卡3卡4更新| 欧美bdsm另类| 大香蕉久久网| 久久鲁丝午夜福利片| 日韩在线高清观看一区二区三区| 亚洲图色成人| 精品少妇内射三级| 久久久久精品久久久久真实原创| 男女啪啪激烈高潮av片| 亚洲欧美一区二区三区黑人 | 美女午夜性视频免费| 国产无遮挡羞羞视频在线观看| 老司机亚洲免费影院| 嫩草影院入口| 丰满迷人的少妇在线观看| 欧美人与性动交α欧美精品济南到 | 多毛熟女@视频| 天天躁夜夜躁狠狠久久av| 亚洲国产日韩一区二区| 成年女人在线观看亚洲视频| 欧美成人午夜免费资源| 久久精品久久久久久久性| 99久久精品国产国产毛片| 黄色毛片三级朝国网站| 桃花免费在线播放| 99热网站在线观看| 菩萨蛮人人尽说江南好唐韦庄| av免费观看日本| 日本-黄色视频高清免费观看| 国产野战对白在线观看| 亚洲欧美一区二区三区久久| 亚洲国产最新在线播放| 日韩三级伦理在线观看| 最黄视频免费看| 国产精品久久久久久精品电影小说| 啦啦啦在线免费观看视频4| 精品一区在线观看国产| 国产精品秋霞免费鲁丝片| 青草久久国产| 亚洲第一区二区三区不卡| 国产熟女欧美一区二区| 亚洲国产日韩一区二区| 在线观看免费视频网站a站| 丝瓜视频免费看黄片| 国产精品一二三区在线看| 中文乱码字字幕精品一区二区三区| www日本在线高清视频| 午夜日韩欧美国产| 人人妻人人添人人爽欧美一区卜| 熟女少妇亚洲综合色aaa.| 亚洲欧美成人综合另类久久久| 成人黄色视频免费在线看| 亚洲色图 男人天堂 中文字幕| 成人手机av| 午夜福利一区二区在线看| 精品亚洲成a人片在线观看| www.自偷自拍.com| 日韩一区二区三区影片| 国产成人a∨麻豆精品| 美女福利国产在线| 天美传媒精品一区二区| 有码 亚洲区| 久久久国产一区二区| 中文字幕色久视频| 日本vs欧美在线观看视频| 日韩精品有码人妻一区| 日韩不卡一区二区三区视频在线| 国产黄频视频在线观看| 国产精品 国内视频| 国产成人精品无人区| 国产免费现黄频在线看| 久久毛片免费看一区二区三区| 久久亚洲国产成人精品v| 不卡视频在线观看欧美| 黄片小视频在线播放| 亚洲视频免费观看视频| 午夜福利,免费看| 精品一品国产午夜福利视频| 久久精品国产亚洲av天美| 黑人巨大精品欧美一区二区蜜桃| 超碰97精品在线观看| 久久久久久人人人人人| 国产欧美日韩一区二区三区在线| 精品99又大又爽又粗少妇毛片| 下体分泌物呈黄色| 久久久久久久久免费视频了| 亚洲内射少妇av| 久久久久人妻精品一区果冻| 啦啦啦在线观看免费高清www| 中国三级夫妇交换| 亚洲天堂av无毛| 久久99蜜桃精品久久| 最新的欧美精品一区二区| 日韩av在线免费看完整版不卡| 美女大奶头黄色视频| 亚洲精品aⅴ在线观看| 肉色欧美久久久久久久蜜桃| 男的添女的下面高潮视频| 欧美xxⅹ黑人| 国产精品二区激情视频| 国产不卡av网站在线观看| 成年女人在线观看亚洲视频| 亚洲,欧美,日韩| 大陆偷拍与自拍| 十八禁网站网址无遮挡| 在线观看免费视频网站a站| 亚洲国产毛片av蜜桃av| 久久精品aⅴ一区二区三区四区 | 十八禁网站网址无遮挡| 日日啪夜夜爽| 男女国产视频网站| 国产精品欧美亚洲77777| 又粗又硬又长又爽又黄的视频| av又黄又爽大尺度在线免费看| 成年女人毛片免费观看观看9 | 国产白丝娇喘喷水9色精品| 国产精品av久久久久免费| 欧美激情极品国产一区二区三区| 精品人妻熟女毛片av久久网站| 久久国产精品大桥未久av| 亚洲第一区二区三区不卡| 国产男女超爽视频在线观看| 熟女电影av网| 国产成人精品无人区| 日韩人妻精品一区2区三区| 18在线观看网站| 五月伊人婷婷丁香| 亚洲欧美成人综合另类久久久| 成年女人毛片免费观看观看9 | 日韩熟女老妇一区二区性免费视频| 99re6热这里在线精品视频| 成人免费观看视频高清| 国产精品.久久久| 成年人免费黄色播放视频| 国产精品.久久久| 欧美最新免费一区二区三区| 成人免费观看视频高清| 看十八女毛片水多多多| 精品国产一区二区三区久久久樱花| 精品国产露脸久久av麻豆| 90打野战视频偷拍视频| 成人免费观看视频高清| 午夜福利在线观看免费完整高清在| 日韩av不卡免费在线播放| 亚洲欧洲国产日韩| 最近最新中文字幕免费大全7| 午夜免费鲁丝| 国产1区2区3区精品| 高清欧美精品videossex| 最近手机中文字幕大全| 亚洲国产色片| 人妻系列 视频| 国产深夜福利视频在线观看| 午夜福利乱码中文字幕| videosex国产| 国产福利在线免费观看视频| 精品福利永久在线观看| 午夜福利网站1000一区二区三区| 亚洲精品,欧美精品| 日本vs欧美在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看三级黄色| 在线观看国产h片| 91精品国产国语对白视频| 久久国内精品自在自线图片| 最近的中文字幕免费完整| 另类精品久久| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华液的使用体验| 老汉色av国产亚洲站长工具| 色吧在线观看| 1024视频免费在线观看| 亚洲欧美成人综合另类久久久| av网站在线播放免费| 热re99久久国产66热| 韩国高清视频一区二区三区| 国产日韩欧美亚洲二区| 成人午夜精彩视频在线观看| 熟女av电影| 中文天堂在线官网| 搡女人真爽免费视频火全软件| 国产视频首页在线观看| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区国产| 另类精品久久| 国产亚洲av片在线观看秒播厂| 赤兔流量卡办理| videosex国产| 日韩一本色道免费dvd| 欧美人与性动交α欧美精品济南到 | 成人免费观看视频高清| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 中文精品一卡2卡3卡4更新| www.精华液| 制服人妻中文乱码| 国产精品久久久久成人av| 18禁观看日本| 18禁国产床啪视频网站| 黄频高清免费视频| 日韩精品有码人妻一区| 日韩一卡2卡3卡4卡2021年| 黄色怎么调成土黄色| 我要看黄色一级片免费的| 久久久精品区二区三区| 国产又爽黄色视频| 高清视频免费观看一区二区| 大陆偷拍与自拍| 如日韩欧美国产精品一区二区三区| 欧美精品国产亚洲| 黄色毛片三级朝国网站| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免| 叶爱在线成人免费视频播放| 亚洲av日韩在线播放| 精品久久久久久电影网| 99久久综合免费| 婷婷色综合大香蕉| 美女福利国产在线| 新久久久久国产一级毛片| a级毛片在线看网站| 日日爽夜夜爽网站| 精品一区二区三卡| 日本-黄色视频高清免费观看| 26uuu在线亚洲综合色| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 午夜影院在线不卡| 精品一品国产午夜福利视频| 午夜福利在线免费观看网站| 欧美日韩成人在线一区二区| 欧美中文综合在线视频| 丝袜美足系列| 午夜精品国产一区二区电影| 国产xxxxx性猛交| 欧美日本中文国产一区发布| 人成视频在线观看免费观看| 欧美日韩一级在线毛片| 国产一区亚洲一区在线观看| 国产成人免费无遮挡视频| 一级黄片播放器| 亚洲国产欧美日韩在线播放| 亚洲精品久久成人aⅴ小说| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 国产精品一区二区在线不卡| 欧美 亚洲 国产 日韩一| 人妻系列 视频| 日本欧美视频一区| 丝袜美腿诱惑在线| 精品一区二区三区四区五区乱码 | 国产精品一区二区在线观看99| 国产伦理片在线播放av一区| 日韩一本色道免费dvd| 十分钟在线观看高清视频www| 人人妻人人添人人爽欧美一区卜| 国产成人aa在线观看| 国产一区有黄有色的免费视频| 香蕉丝袜av| 久久久国产一区二区| 欧美 亚洲 国产 日韩一| 91成人精品电影| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 大片电影免费在线观看免费| 校园人妻丝袜中文字幕| 精品少妇一区二区三区视频日本电影 | 国产福利在线免费观看视频| 亚洲国产av影院在线观看| 久久人人爽av亚洲精品天堂| 精品少妇内射三级| 久久久精品区二区三区| 亚洲国产看品久久| 国产熟女欧美一区二区| 国产熟女午夜一区二区三区| 国产激情久久老熟女| 黄色毛片三级朝国网站| 午夜激情av网站| 伊人久久大香线蕉亚洲五| 天天影视国产精品| 国产成人一区二区在线| 午夜福利在线免费观看网站| 丝袜人妻中文字幕| 成人国产av品久久久| 这个男人来自地球电影免费观看 | 熟女电影av网| 免费高清在线观看视频在线观看| 99热网站在线观看| 亚洲精品av麻豆狂野| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 亚洲国产毛片av蜜桃av| 99国产综合亚洲精品| 精品国产乱码久久久久久小说| 看免费av毛片| 欧美日韩av久久| 九九爱精品视频在线观看| 精品国产一区二区三区四区第35| 黑丝袜美女国产一区| 成人国产麻豆网| 男男h啪啪无遮挡| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 亚洲美女视频黄频| 亚洲精品av麻豆狂野| 午夜精品国产一区二区电影| 最近中文字幕2019免费版| 又大又黄又爽视频免费| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 日韩精品免费视频一区二区三区| 午夜福利在线免费观看网站| 亚洲美女视频黄频| 久久午夜福利片| 久久精品国产a三级三级三级| 成人亚洲精品一区在线观看| av片东京热男人的天堂| 国产免费一区二区三区四区乱码| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 有码 亚洲区| 韩国高清视频一区二区三区| 老汉色av国产亚洲站长工具| 国产一区二区在线观看av| 不卡视频在线观看欧美| av在线观看视频网站免费| 国产精品免费大片| 精品少妇一区二区三区视频日本电影 | 性高湖久久久久久久久免费观看| 菩萨蛮人人尽说江南好唐韦庄| 咕卡用的链子| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 久久久久国产一级毛片高清牌| 亚洲精品第二区| 亚洲精品美女久久av网站| 久久久久久伊人网av| 9191精品国产免费久久| 秋霞伦理黄片| 久久99蜜桃精品久久| 亚洲国产欧美网| 精品国产一区二区三区四区第35| 只有这里有精品99| 午夜91福利影院| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 亚洲久久久国产精品| 日日撸夜夜添| 一级a爱视频在线免费观看| 99国产精品免费福利视频| 日韩制服骚丝袜av| 人妻少妇偷人精品九色| www.av在线官网国产| 又粗又硬又长又爽又黄的视频| 国产一级毛片在线| 亚洲第一区二区三区不卡| 国产成人av激情在线播放| 日日啪夜夜爽| 2022亚洲国产成人精品| 亚洲综合精品二区| 亚洲第一青青草原| 国产激情久久老熟女| 亚洲少妇的诱惑av| 日本色播在线视频| 黄色视频在线播放观看不卡| 深夜精品福利| 视频区图区小说| www日本在线高清视频| 国产精品二区激情视频| 爱豆传媒免费全集在线观看| 国产精品国产三级国产专区5o| 精品少妇黑人巨大在线播放| 777米奇影视久久| 欧美成人午夜精品| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看 | av网站免费在线观看视频| 国产成人av激情在线播放| 亚洲少妇的诱惑av| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 久久精品aⅴ一区二区三区四区 | 久久人人爽av亚洲精品天堂| 精品人妻一区二区三区麻豆| 只有这里有精品99| 99久久精品国产国产毛片| 欧美人与善性xxx| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 两个人免费观看高清视频| 波野结衣二区三区在线| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 久久99精品国语久久久| 亚洲精品国产av成人精品| 久久av网站| 大片电影免费在线观看免费| 纯流量卡能插随身wifi吗| 成人毛片60女人毛片免费| 久久综合国产亚洲精品| 国产精品久久久av美女十八| 制服诱惑二区| www日本在线高清视频| 在线天堂中文资源库| 一级毛片电影观看| 少妇精品久久久久久久| 观看av在线不卡| 2021少妇久久久久久久久久久| 岛国毛片在线播放| 国产av精品麻豆| 精品亚洲乱码少妇综合久久| 香蕉丝袜av| 欧美精品av麻豆av| 婷婷色av中文字幕| 国产有黄有色有爽视频| 国产成人av激情在线播放| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到 | 亚洲综合色惰| 国产亚洲一区二区精品| 日本免费在线观看一区| 校园人妻丝袜中文字幕| 考比视频在线观看| 最新中文字幕久久久久| 久久久久网色| 伦理电影大哥的女人| 日韩av免费高清视频| 成人二区视频| 免费女性裸体啪啪无遮挡网站| 观看美女的网站| 一级爰片在线观看| 丝袜人妻中文字幕| 午夜福利视频精品| 一个人免费看片子| 国产精品偷伦视频观看了| 2021少妇久久久久久久久久久| 成年人免费黄色播放视频| 国产亚洲一区二区精品| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频| 国产乱人偷精品视频| 亚洲精品久久久久久婷婷小说| 亚洲av免费高清在线观看| 成人免费观看视频高清| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| av在线观看视频网站免费| 性色avwww在线观看| 黄片小视频在线播放| 国产精品免费大片| 极品少妇高潮喷水抽搐| 五月伊人婷婷丁香| 麻豆乱淫一区二区| 男女免费视频国产| 王馨瑶露胸无遮挡在线观看| 看免费成人av毛片| 91久久精品国产一区二区三区| 免费黄频网站在线观看国产| 欧美人与性动交α欧美精品济南到 | 亚洲精品av麻豆狂野| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 成年av动漫网址| 日本av免费视频播放| 少妇熟女欧美另类| 国产成人精品无人区| 久久韩国三级中文字幕| 国产成人一区二区在线| 日韩av免费高清视频| 一级爰片在线观看| 桃花免费在线播放| www.自偷自拍.com| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 亚洲欧美精品自产自拍| 美女福利国产在线| 日本91视频免费播放| 免费播放大片免费观看视频在线观看| 亚洲三区欧美一区| 精品人妻偷拍中文字幕| 丝袜脚勾引网站| 成人毛片60女人毛片免费| av电影中文网址| av有码第一页| av天堂久久9| 欧美av亚洲av综合av国产av | 在线看a的网站| 91精品国产国语对白视频| 黄片小视频在线播放| av一本久久久久| 免费少妇av软件| 一级毛片 在线播放| 18禁动态无遮挡网站| 这个男人来自地球电影免费观看 | 99久国产av精品国产电影| 黄色配什么色好看| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 人人妻人人澡人人看| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线| av网站在线播放免费| 新久久久久国产一级毛片| 一区二区av电影网| 成年av动漫网址| 国产黄色免费在线视频| 欧美国产精品va在线观看不卡| 九草在线视频观看| 久久热在线av| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 国产深夜福利视频在线观看| 两性夫妻黄色片| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 咕卡用的链子| 岛国毛片在线播放| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 夫妻午夜视频| 国产又爽黄色视频| 美女国产视频在线观看| 精品亚洲成a人片在线观看| 少妇人妻久久综合中文| 99久久人妻综合| 少妇被粗大猛烈的视频| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 亚洲国产欧美网| 亚洲中文av在线| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 日本爱情动作片www.在线观看| 亚洲国产精品999| 熟女少妇亚洲综合色aaa.| 亚洲第一av免费看| 777米奇影视久久| 国产xxxxx性猛交| 精品久久蜜臀av无| 免费黄频网站在线观看国产| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 国产精品亚洲av一区麻豆 | 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 国产乱来视频区| 中文欧美无线码| 天堂俺去俺来也www色官网| 两性夫妻黄色片| 国产一级毛片在线| 欧美日韩一级在线毛片| 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 又大又黄又爽视频免费| 欧美亚洲日本最大视频资源| 国产精品一国产av| 亚洲国产成人一精品久久久| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 一级毛片 在线播放| 在线观看一区二区三区激情| 熟女少妇亚洲综合色aaa.| 久久久精品免费免费高清| www.精华液| 宅男免费午夜| 免费观看性生交大片5| 精品人妻熟女毛片av久久网站| 国精品久久久久久国模美| 国产在线视频一区二区| 一区二区三区四区激情视频| 色网站视频免费| 亚洲欧美清纯卡通| 纵有疾风起免费观看全集完整版| 9热在线视频观看99| 亚洲av中文av极速乱| 婷婷色av中文字幕| 最新中文字幕久久久久| 日日啪夜夜爽| 亚洲精品乱久久久久久| 日韩一区二区视频免费看| 国产一区二区 视频在线|