• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical response of tunable terahertz plasmon in a grating-gated graphene transistor?

    2017-08-30 08:26:36BoYan閆博JingyueFang方靖岳ShiqiaoQin秦石喬YongtaoLiu劉永濤LiChen陳力ShuangChen陳爽RenbingLi李仁兵andZhenHan韓震
    Chinese Physics B 2017年9期
    關(guān)鍵詞:陳力

    Bo Yan(閆博),Jingyue Fang(方靖岳),Shiqiao Qin(秦石喬),Yongtao Liu(劉永濤),Li Chen(陳力), Shuang Chen(陳爽),Renbing Li(李仁兵),and Zhen Han(韓震)

    1 China Aerodynamics Research and Development Center,Mianyang 621000,China

    2 College of Science,National University of Defense Technology,Changsha 410073,China

    3 Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences,Suzhou 215123,China

    Optical response of tunable terahertz plasmon in a grating-gated graphene transistor?

    Bo Yan(閆博)1,2,3,Jingyue Fang(方靖岳)2,?,Shiqiao Qin(秦石喬)2,Yongtao Liu(劉永濤)3,Li Chen(陳力)1, Shuang Chen(陳爽)1,Renbing Li(李仁兵)1,and Zhen Han(韓震)1

    1 China Aerodynamics Research and Development Center,Mianyang 621000,China

    2 College of Science,National University of Defense Technology,Changsha 410073,China

    3 Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences,Suzhou 215123,China

    Tunable terahertz plasmon in a graphene-based device with a grating serving as a top gate is studied.Transmission spectra exhibit a distinct peak in the terahertz region when the terahertz electric field is perpendicular to the grating fingers. Our results show that the extinction in the transmission of single-layer graphene shields beyond 80%.Electronic results further show that the graphene plasmon can be weakly adjusted by tuning the gate voltage.Theoretical calculation also implies that the plasmon frequency of graphene can fall into the terahertz region of 1–2 THz by improving the sustaining ability and capacitance of the top gate.

    graphene plasmon,Lorentz,terahertz time-domain spectroscopy,electrical measurement

    1.Introduction

    Graphene plasmon is attracting increased research attention because of their potential applications in technology,especially in optoelectronics.[1–3]Many theoretical studies have focused on terahertz graphene plasmon[4–6]because it exhibits many unusual behaviors,such as high wave velocity and long propagation distance.[4,7,8]Engineering a tunable graphene plasmon device is one of the key experiment tasks to determine their superior characteristics.Tunable terahertz plasmon in graphene ribbons/resonant electromagnetic(EM)cavities has recently been investigated to develop plasmon-based terahertz devices.However,the coupling between graphene and incident terahertz wave is relatively weak.[9,10]

    The adoption of metallic grating and resonant cavity is one of the best solutions,and such a scheme has been studied in our previous paper.[6,11]The upper grating serves as a superior coupler to excite graphene plasmon.[6,11,12]The interaction between graphene plasmon and EM wave can be enhanced by a Fabry–Pérot cavity.[6,11,13]The relation between graphene plasmon frequency and the grating width has also been quantitatively analyzed.[11]

    This study investigates the voltage-tunable terahertz plasmon in a grating-coupled two-dimensional electron density (2DEG)embedded in a Fabry–Pérot cavity,using the terahertz time-domain spectroscopy(THz-TDS).Transmission theoretical calculation on the graphene plasmon agrees well with the experimental results.Methods to enhance the tunability of the prepared device are discussed in the next sections.

    2.Experiments

    Three main building blocks were involved in this device,a graphene sheet,a Fabry–Pérot cavity,and a grating,as shown in Fig.1(a).The graphene was synthesized by chemical vapor deposition(CVD)method under low pressure and high temperature.After that,it was transferred onto a silicon substrate(THz permittivity,ε1=11.9)with a 300-nm oxide layer(THz permittivity,ε2=4)by using the PMMA transfer method.Raman measurements were performed in the asprepared sample.Results show that the transferred graphene is single layered with high quality[14,15](see Fig.1(b)).A thinfilm of Al2O3was deposited on the sample by atomic layer deposition(ALD)[16]subsequently,whose chamber temperature was set to 140°C and 280 rounds of deposition were carried out.The thickness of Al2O3film deposited on graphene was about 25 nm.These three elements(Al2O3/SiO2/Si)introduced above make up the main body of the cavity.Next, the 100-nm thick gold grating gate,coupling the terahertz EM wave to the grapheme plasmon and regulating the electronic density of graphene,was fabricated on top of the Al2O3layer. The grating constant L was 8.7μm when the length of the individual gold finger W was 4.7μm(see Fig.1(c)).The source and drain electrodes were produced simultaneously when thegrating gate was prepared.Besides,the device was encapsulated using a chip carrier with 24 pins.The overall thickness and the total functional area of the sample were D1=190μm and S1=4×4 mm2,respectively.Finally,the THz-TDS technique allowed us to obtain the transmission spectrum at different gate voltages.The incident light polarized along the gridfingers,as shown in Fig.1(a).

    Fig.1.(color online)(a)Schematic structure of the device and the coordinate notation for transmission measurement. (b)Measured Raman spectrum of the transferred monolayer graphene on top of the Si/SiO2 substrate.(c)The optical photo of the grating gate.

    3.Results and discussion

    Transmission of the bare cavity and the grating-coupled graphene plasmon device are shown in Fig.2(a).The bare cavity is an insulator with constant transmission level in the THz region.However,the transmission spectra measured on the graphene device with resonant cavity shows that a prominent peak locates at 1.511 THz.This phenomenon implies that THz absorption is observably affected by graphene.Thus,extinction spectra(1?T/T0)for grating devices with VTG=?0.8 V, 0 V,0.8 V were then investigated.

    To compare with the experimental data,we calculate (1?T/T0)of the graphene device theoretically by[11]

    where T0and T are the transmissions passing through the bare cavity and the sample with the graphene,respectively.Z0is the vacuum impedance,and nsis the effective refractive index of the substrate.The solid curves in Fig.2(b)are fitting results according to Eq.(1)and the Lorentz conductivity.We use Lorentz conductivity for the graphene layer as[10,11]

    where ω is the radian frequency of the incident terahertz light, n is the carrier density,and Γpis the plasmon resonance width. The resonance frequency is given by[10,11]

    where ε and kGare effective dielectric constant and plasmon wave vector,respectively.The σuni=πe2/2h is the wellknown optical conductivity,and the Femi energy is given by EF=hvF(πn)1/2,vF=1×106m/s.If the sample is irradiated vertically by the light,the plasmon wave vector is determined by kG=mπ/W with m=1,2,3,...[11,17]

    The corresponding solid curves in Fig.2(b)are fitting results according to Eqs.(1)–(3)with n and Γpas two fitting parameters.Three prominent features for the data are presented in Fig.2(b).First,the plasmon resonance width of the as prepared sample is approximately 3.5 THz,whereas the carrier density n ranges from 7.16×1012cm?2to 8.36×1012cm?2. Second,an obvious blue shift of the plasmon resonance frequency with decreasing top-gate voltage is observed:resonance frequencies are located at 1.523 THz,1.511 THz,and 1.506 THz for voltage of 0.8 V,0 V,and?0.8 V,respectively. Using a larger range of effective top-gate voltage,terahertz resonance in 1–2 THz can be straightforwardly achieved(see Fig.5).Third,the light–plasmon coupling in graphene is remarkably strong;transmission extinction at the plasmon resonance for VTG=0 V is more than 80%.A higher extinction can be achieved readily by enlarging the top-gate voltage VTG.

    Fig.2.(color online)(a)Transmission spectra of the bare cavity(T0) and the device with graphene(T).(b)Extinction in transmission, 1?T/T0,in the graphene plasmonic device as gate voltage V G are?0.8, 0,and 0.8.The solid lines are fitting curves.Inset shows partial enlarged details inside the red-dashed box.The maximal transmission extinction is approximately 85%.

    The electrical properties of the engineered graphene plasmon device are discussed by performing a fullest direct current(DC)measurement.Figure 3 shows the equivalent current model in the DC measurement.First,the output character is measured to obtain the device resistance(see Figs.3(a)and 4(a)).The channel current of the graphene device is found to be linear with the output voltage VDS,and the output resistance is proved to be a constant of 1639 ?.Second,the leakage character of the fabricated graphene plasmon device is obtained in Figs.3(b)and 4(b).In the measurement,the source and drain electrodes are linked to the ground.Figure 3(b)shows the leakage measurement equivalent model. The top-gate structure can be regarded as a parallel between the top-gate capacitance Cxand junction resistance RGbecause of the top-gate leakage.In DC measurement,the current can only flow through the resistance RG.The leakage current results IG1and IG2show an almost perfect symmetry to the origin of coordinates(Fig.4(b)).The total leakage current is IG=IG1+IG2≈1.5μA when VTG=0.85 V.Thus,the junction resistance RGis approximately 0.6 M?,far less than that of small-size top-gate media.Meanwhile,the value of IG1is almost the same as that of IG2.Assuming two graphene channel resistances close to the source and drain electrodes are equal,RS≈RD.

    Fig.3.(color online)Equivalent current models.Here,R S and R D are considered as contact resistances in the source and drain electrodes,respectively.Graphene channel resistance is regarded as two parts close to the source and drain electrodes.Both resistances are set equally to calculate easily,and C x and R G are the top-gate capacitance and resistance,respectively.(a)Output-character measurement model.(b)Leak current measurement model.Panels(c)and(d)are transfer-characters measurements for positive and negative voltage,respectively.

    Third,our double DC measurement of the prepared graphene device for different top-gate voltages will explicitly indicate the transfer character,as shown in Figs.3(c), 3(d),and 4(c).From the values of ID,IS,and IGextracted from the DC measurement(inset in Fig.4(c)),the actual topgate voltage VGset on the capacitance Cxat different gate voltages can be obtained in Fig.4(c).Here,VG=VTG?V (see Figs.3(c)and 3(d)),with graphene channel voltage V= ID(RD+RC/2)=VDS?IS(RS+RC/2).To further simplify, RS+RC/2=RD+RC/2=VDS/(IS+ID),V=VDSID/(IS+ ID).As a result,VG=VTG?VDSID/(IS+ID),and the actual channel current due to the graphene carrier can be expressed by IDS=V0/Rt,where the whole device resistance Rtcan be given by Rt=RD+RS+RC=2VDS/(IS+ID),and V0is set as 10 mV.The theoretical fitting for our transfer characteristic data will be discussed below.The carrier concentration(electrons or holes)in the graphene channel regions n related to the residual carrier concentration n0and the Diracpoint voltage VDiraccan be approximatedwhere Cxand n0can be set as 122.4 nF/cm2and 1×1012cm?2in our fitting model,respectively.The total device resistance Rtis given by Rt=Rcontact+L/(Weμn),[18]where the contact resistance is Rcontact=RS+RDand μ represents the mobility.Finally, the channel current is given by IDS=V0/Rt.The measured IDSagainst VG(symbols)along with the fitting results(solid lines)is shown in Fig.4(c).Then,the relevant parameters can be extracted:VDirac=?10.5 V,μ=1500 cm2·V?1·s?1and Rcontact=770 ?.

    Fig.4.(color online)(a)Output characteristic curve.(b)Leak current curve(red solid line(I G1)and blue dashed line(I G2)).(c)Transfer characteristic curve of experimental and theoretical fitting results.Inset shows the channel and leakage results measured at the same time.

    However,the variation range of the graphene plasmon frequency is very small,as shown in Fig.5.The calculating parameters were set as the same as those in Fig.4(c).In our experiments,tiny top-gate voltage range was applied to the device.Otherwise,when the larger top-gate voltage is applied to modulate the carrier density of the graphene channel,the leakage current can reach up more than 1.5μA(see Fig.4(b)). Therefore,the top-gate voltage can only be set as small as possible to avoid the large leakage current to breakdown the topgate capacitance.Two aspects should be considered to develop a device with a larger plasmon frequency range.First,defects of the top-gate media can be decreased by enlarging the growth temperature of ALDand applying the graphene prepared using molecular beam epitaxy(MBE).[19]As a result,the sustaining capability of the top-gate media can be improved directly.Second,the thickness and permittivity of top-gate dielectric layers can be optimized to enlarge its capacitance.Consequently,the range of graphene plasmon frequency can also be expanded (see the inset of Fig.5).

    Fig.5.(color online)Experiment and theoretical frequency character of the prepared graphene plasmon device as a function of the top-gate voltage.Inset shows the graphene plasmon frequencies calculated at different top-gate dielectric capacitances.

    4.Conclusion and perspectives

    In summary,a tunable graphene plasmon device was fabricated with an Al2O3gate dielectric on its surface by ALD. A strong interaction between the graphene and the incident terahertz wave was expected because of the grating coupler and resonant cavity.The calculated results,including Lorentz conductivity of graphene,agree very well with our experimental results,and the extracted extinction value of the transmission in the resonance frequency is more than 80%at room temperature.Our DC measurement data revealed that a limited frequency range of the graphene plasmon was modulated. A superior graphene plasmon device with a larger frequency variable range may find applications in THz modulators by replacing the top-gate media with stronger sustaining ability and higher gate dielectric capacitance.

    [1]Chen H T,Padilla W J,Zide Joshua M O,Gossard A C,Taylor A J and Averitt R D 2006 Nature 444 597

    [2]Yen T J,Padilla W J,Fang N,Vier D C,Smith D R,Pendry J B,Basov D N and Zhang X 2004 Science 303 1494

    [3]Wu H Q,Linghu C Y,Lu H M and Qian H 2013 Chin.Phys.B 22 098106

    [4]Ryzhii V 2006 Jpn.J.Appl.Phys.45 923

    [5]Hwang E H and Sarma S D 2007 Phys.Rev.B 75 205418

    [6]Yan B,Yang X X,Fang J Y,Huang Y D,Qin H and Qin S Q 2015 Chin. Phys.B 24 015203

    [7]Marinko J and Hrvoje B 2009 Phys.Rev.B 80 245435

    [8]Ryzhii V,Satou A and Otsuji T 2007 J.Appl.Phys.101 024509

    [9]Grigorenko A N,Polini M and Novoselov K S 2012 Nat.Photonics 6 749

    [10]Vicarelli L,Vitiello M S,Coquillat D,Lombardo A,Ferrari A C,Knap W,Polini M,Pellegrini V and Tredicucci A 2012 Nat.Mater.11 865

    [11]Yan B,Fang J Y,Qin S Q,Liu Y T,Zhou Y Q,Li R B and Zhang X A 2015 Appl.Phys.Lett.107 191905

    [12]Marco F,Alexander U,Andreas P,Govinda L,Karl U,Hermann D, Pavel K,Aaron M,Werner S,Gottfried S and Thomas M 2012 Nano Lett.12 2773

    [13]Nicolas U,Iris C,Julien L,Ievgeniia O N,Felix F,Michl K,Thomas S and Alexey B K 2013 Opt.Express 21 24736

    [14]Ferrari A C,Meyer J C,Scardaci V,Casiraghi C,Lazzeri M,Mauri F, Piscanec S,Jiang D,Novoselov K S,Roth S and Geim A K 2006 Phys. Rev.Lett.97 187401

    [15]Tu Z Q,Liu Z C,Li Y F,Yang F,Zhang L Q,Zhao Z,Xu C M,Wu S F,Liu H W,Yang H T and Richard P 2014 Carbon 73 252

    [16]Lee B,Park S Y,Kim H C,Cho K,Vogel E M,Kim M J,Wallace R M and Kim J 2008 Appl.Phys.Lett.92 203102

    [17]Zhu X L,Yan W Jepsen P U,Hansen O,Mortensen N A Xiao S S, Jackson R and Graham S 2013 Appl.Phys.Lett.102 131101

    [18]Kim S,Nah J,Jo I,Shahrjerdi D,Colombo L,Yao Z,Tutuc E and Banerjee S K 2009 Appl.Phys.Lett.94 062107

    [19]Sambonsuge S,Jiao S,Nagasawa H,Fukidome H,Filimonov S N and Suemitsu M 2016 Diam.Relat.Mater.67 51

    17 April 2017;revised manuscript

    10 June 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/097802

    ?Project supported by the National Natural Science Foundation of China(Grant No.11272337),the Research Project of National University of Defense Technology,China(Grant No.ZK16-03-34),the Natural Science Foundation of Hunan Province,China(Grant No.2016JJ3021),and the Open Project of Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences(Grant No.15ZS03).

    ?Corresponding author.E-mail:fjynudt@aliyun.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    陳力
    青脆李枯萎病致病菌的分離鑒定及藥劑篩選
    Discovery of Extended Structure Around Open Cluster COIN-Gaia 13 Based on Gaia EDR3
    助力數(shù)字經(jīng)濟(jì)做強做優(yōu)做大
    Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
    二 胎
    那些年我們遺落的勇氣
    東方女性(2017年11期)2017-12-04 12:28:25
    七彩生活
    金秋(2017年10期)2017-08-31 19:44:53
    African American Vernacular English
    青春歲月(2016年22期)2016-12-23 23:32:53
    修繕房子的錢該誰出
    故事會(2016年8期)2016-05-06 08:57:23
    陳力:讓每一片花瓣都綻放
    婦女(2015年3期)2015-08-03 00:47:57
    偷拍熟女少妇极品色| 色视频www国产| 日韩 亚洲 欧美在线| 建设人人有责人人尽责人人享有的 | 欧美激情国产日韩精品一区| 免费观看在线日韩| 日韩欧美一区视频在线观看 | 精品酒店卫生间| av免费观看日本| 大香蕉97超碰在线| 亚洲最大成人中文| 精品少妇久久久久久888优播| 国产永久视频网站| 69人妻影院| 国产高清国产精品国产三级 | 久久久欧美国产精品| 性插视频无遮挡在线免费观看| 亚洲精品亚洲一区二区| 国产在线男女| 日本欧美国产在线视频| 亚洲欧美成人综合另类久久久| 一级爰片在线观看| 亚洲四区av| 又大又黄又爽视频免费| 久久久久久久亚洲中文字幕| 国产精品熟女久久久久浪| 一级片'在线观看视频| 免费大片黄手机在线观看| 老司机影院成人| 少妇人妻 视频| 亚洲无线观看免费| 中文字幕av成人在线电影| 人妻系列 视频| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| .国产精品久久| 18禁动态无遮挡网站| 国产综合精华液| 精品国产三级普通话版| 国产白丝娇喘喷水9色精品| av线在线观看网站| 一级毛片我不卡| 久久久久久久精品精品| 草草在线视频免费看| 肉色欧美久久久久久久蜜桃 | 亚洲精品视频女| 老女人水多毛片| 日日摸夜夜添夜夜爱| 亚洲成人精品中文字幕电影| 中文资源天堂在线| 少妇熟女欧美另类| 亚洲aⅴ乱码一区二区在线播放| 久久久久久伊人网av| 精品少妇黑人巨大在线播放| 久久精品国产亚洲网站| 国产精品精品国产色婷婷| 亚洲欧美成人综合另类久久久| 天堂中文最新版在线下载 | 日本一本二区三区精品| 老司机影院成人| 18禁在线播放成人免费| 国产 一区精品| 亚洲国产精品999| 少妇 在线观看| 老司机影院成人| 欧美日韩精品成人综合77777| 国产伦在线观看视频一区| 国产亚洲午夜精品一区二区久久 | 国产伦精品一区二区三区视频9| 小蜜桃在线观看免费完整版高清| 麻豆精品久久久久久蜜桃| 久久人人爽人人爽人人片va| 人妻夜夜爽99麻豆av| 国产免费又黄又爽又色| 五月天丁香电影| 高清av免费在线| 久久久亚洲精品成人影院| 伊人久久国产一区二区| 天天躁日日操中文字幕| 国产精品国产三级专区第一集| 国产成人午夜福利电影在线观看| 美女高潮的动态| av国产精品久久久久影院| av在线观看视频网站免费| 小蜜桃在线观看免费完整版高清| 久久精品夜色国产| 久久综合国产亚洲精品| 国产精品国产三级国产av玫瑰| 人体艺术视频欧美日本| 男人狂女人下面高潮的视频| 亚洲最大成人av| 国产精品国产三级专区第一集| 欧美激情国产日韩精品一区| 夜夜看夜夜爽夜夜摸| 国产女主播在线喷水免费视频网站| 看免费成人av毛片| 纵有疾风起免费观看全集完整版| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 高清av免费在线| 在线观看美女被高潮喷水网站| 亚洲欧美清纯卡通| 久久久色成人| 成人亚洲精品av一区二区| 免费人成在线观看视频色| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 免费高清在线观看视频在线观看| 少妇丰满av| 久久久国产一区二区| 视频中文字幕在线观看| 2021少妇久久久久久久久久久| 国产视频内射| 亚洲人成网站高清观看| 欧美+日韩+精品| 亚洲国产高清在线一区二区三| 国产黄色免费在线视频| av免费在线看不卡| 欧美日韩视频高清一区二区三区二| 国产免费视频播放在线视频| 乱系列少妇在线播放| 蜜桃久久精品国产亚洲av| 久久精品熟女亚洲av麻豆精品| 亚洲最大成人中文| 午夜福利高清视频| 国产精品福利在线免费观看| 成人国产av品久久久| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 三级国产精品片| 中文字幕人妻熟人妻熟丝袜美| 青春草视频在线免费观看| 免费av观看视频| .国产精品久久| 亚洲精品,欧美精品| 日韩大片免费观看网站| 欧美性感艳星| 一区二区三区乱码不卡18| 国产老妇伦熟女老妇高清| 欧美成人精品欧美一级黄| 嫩草影院精品99| 免费不卡的大黄色大毛片视频在线观看| 国产成人91sexporn| 精品一区在线观看国产| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 最近最新中文字幕大全电影3| 久久亚洲国产成人精品v| 一级毛片黄色毛片免费观看视频| 亚洲激情五月婷婷啪啪| 亚洲国产精品专区欧美| 亚洲av电影在线观看一区二区三区 | 三级国产精品欧美在线观看| 亚洲欧美日韩无卡精品| 最近最新中文字幕免费大全7| 亚洲av一区综合| 99久国产av精品国产电影| 如何舔出高潮| 欧美一级a爱片免费观看看| 日韩,欧美,国产一区二区三区| av网站免费在线观看视频| 精品国产三级普通话版| 啦啦啦在线观看免费高清www| 久久久国产一区二区| 丰满乱子伦码专区| 好男人视频免费观看在线| 亚洲人与动物交配视频| 乱码一卡2卡4卡精品| 不卡视频在线观看欧美| 搞女人的毛片| 卡戴珊不雅视频在线播放| 一级a做视频免费观看| 欧美精品一区二区大全| freevideosex欧美| 亚洲国产精品专区欧美| 国产一区亚洲一区在线观看| 欧美性猛交╳xxx乱大交人| 亚洲综合精品二区| 婷婷色av中文字幕| 日韩欧美一区视频在线观看 | 六月丁香七月| 男人狂女人下面高潮的视频| 一级爰片在线观看| 国产高清不卡午夜福利| 国产极品天堂在线| 欧美日韩视频高清一区二区三区二| 欧美成人一区二区免费高清观看| 超碰97精品在线观看| 免费看不卡的av| 精品熟女少妇av免费看| 亚洲欧美精品专区久久| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 777米奇影视久久| 成人一区二区视频在线观看| 91在线精品国自产拍蜜月| 午夜老司机福利剧场| 美女视频免费永久观看网站| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说 | 国国产精品蜜臀av免费| 国内精品宾馆在线| 伊人久久国产一区二区| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| 亚洲最大成人手机在线| 久久精品国产亚洲av天美| 成人高潮视频无遮挡免费网站| 纵有疾风起免费观看全集完整版| 爱豆传媒免费全集在线观看| videossex国产| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 男女啪啪激烈高潮av片| 亚洲精品乱久久久久久| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 在线播放无遮挡| 国产精品国产三级专区第一集| 噜噜噜噜噜久久久久久91| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久| 在线a可以看的网站| 久久精品久久久久久噜噜老黄| 欧美激情在线99| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 男女下面进入的视频免费午夜| 国产免费视频播放在线视频| 别揉我奶头 嗯啊视频| www.av在线官网国产| 亚洲美女视频黄频| 偷拍熟女少妇极品色| 99热这里只有是精品在线观看| 国产成人午夜福利电影在线观看| 国产爱豆传媒在线观看| 国产av不卡久久| 欧美日韩国产mv在线观看视频 | 免费看av在线观看网站| 观看免费一级毛片| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 欧美zozozo另类| 国产91av在线免费观看| 亚洲欧美日韩东京热| 亚洲成人精品中文字幕电影| 一级毛片久久久久久久久女| 国产精品国产三级国产专区5o| 波多野结衣巨乳人妻| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 久久久久九九精品影院| 又黄又爽又刺激的免费视频.| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 视频中文字幕在线观看| 国产v大片淫在线免费观看| 天天一区二区日本电影三级| eeuss影院久久| 丝袜美腿在线中文| 亚洲人成网站在线播| 成人亚洲精品一区在线观看 | 免费观看在线日韩| 日韩不卡一区二区三区视频在线| 视频中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 成人毛片a级毛片在线播放| 久久精品综合一区二区三区| a级毛色黄片| 视频中文字幕在线观看| 欧美一区二区亚洲| 国产精品久久久久久精品古装| 日韩成人伦理影院| 26uuu在线亚洲综合色| 久久久久久久精品精品| 99热这里只有精品一区| 亚洲av二区三区四区| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| av在线天堂中文字幕| 狠狠精品人妻久久久久久综合| 色网站视频免费| 国产精品国产三级国产av玫瑰| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 日产精品乱码卡一卡2卡三| 久久99热这里只频精品6学生| 国产视频内射| 白带黄色成豆腐渣| 亚洲av男天堂| 五月天丁香电影| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 狂野欧美激情性xxxx在线观看| 天堂俺去俺来也www色官网| 欧美激情久久久久久爽电影| 亚洲怡红院男人天堂| 精品久久久精品久久久| 亚洲人成网站高清观看| 日韩av在线免费看完整版不卡| 嫩草影院精品99| 香蕉精品网在线| 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 亚洲成人久久爱视频| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 欧美潮喷喷水| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 免费看日本二区| 99精国产麻豆久久婷婷| 国产国拍精品亚洲av在线观看| 国产黄色视频一区二区在线观看| 欧美日本视频| 国产黄色免费在线视频| 免费大片18禁| 日日啪夜夜爽| 两个人的视频大全免费| 亚洲欧美成人精品一区二区| 亚洲欧美精品专区久久| 在线观看免费高清a一片| 精品亚洲乱码少妇综合久久| 成人毛片60女人毛片免费| 亚洲av电影在线观看一区二区三区 | 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 国产免费视频播放在线视频| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 性插视频无遮挡在线免费观看| 在线观看一区二区三区激情| 婷婷色麻豆天堂久久| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 国产乱人视频| 嫩草影院新地址| 国产高清三级在线| 2022亚洲国产成人精品| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲av天美| 国产高潮美女av| 嫩草影院新地址| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 少妇人妻 视频| 亚洲国产精品成人久久小说| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 乱系列少妇在线播放| 免费大片黄手机在线观看| 国产男人的电影天堂91| 秋霞在线观看毛片| 九草在线视频观看| 国产成年人精品一区二区| 建设人人有责人人尽责人人享有的 | 久久97久久精品| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 欧美一区二区亚洲| 国产日韩欧美亚洲二区| 久久久午夜欧美精品| 少妇猛男粗大的猛烈进出视频 | 国产成年人精品一区二区| 国产精品久久久久久精品古装| 一级毛片黄色毛片免费观看视频| 精品国产三级普通话版| 色婷婷久久久亚洲欧美| 内射极品少妇av片p| 亚州av有码| 久久精品国产亚洲网站| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 熟妇人妻不卡中文字幕| 国产精品一区二区性色av| 亚洲色图综合在线观看| 欧美97在线视频| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 成人亚洲精品一区在线观看 | 蜜臀久久99精品久久宅男| 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 国产一区二区在线观看日韩| 久久久久网色| 成人高潮视频无遮挡免费网站| 久久久国产一区二区| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| 亚洲,一卡二卡三卡| 男女无遮挡免费网站观看| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 搞女人的毛片| 自拍欧美九色日韩亚洲蝌蚪91 | 九九久久精品国产亚洲av麻豆| 狂野欧美激情性bbbbbb| 国产精品一区二区在线观看99| 久久久久久久午夜电影| 丝袜喷水一区| 精品人妻视频免费看| 久久久久精品性色| 网址你懂的国产日韩在线| 18禁在线播放成人免费| 黄色欧美视频在线观看| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 最后的刺客免费高清国语| 亚洲性久久影院| 啦啦啦在线观看免费高清www| 精品99又大又爽又粗少妇毛片| 一区二区三区精品91| 国产精品一区www在线观看| 欧美日韩综合久久久久久| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看 | 国产精品99久久久久久久久| 国产成人福利小说| 97在线人人人人妻| 精品人妻视频免费看| 久久久久性生活片| .国产精品久久| 亚洲色图综合在线观看| 亚洲精华国产精华液的使用体验| 欧美一区二区亚洲| 成人亚洲精品一区在线观看 | 禁无遮挡网站| 久久久久久九九精品二区国产| 少妇熟女欧美另类| 精品国产乱码久久久久久小说| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 青春草亚洲视频在线观看| 国产一区二区三区综合在线观看 | 精品一区在线观看国产| kizo精华| 日本爱情动作片www.在线观看| 国产黄片美女视频| 日韩亚洲欧美综合| av在线观看视频网站免费| 欧美日韩亚洲高清精品| 久久精品国产自在天天线| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩精品成人综合77777| 亚洲图色成人| 久久人人爽人人爽人人片va| 色5月婷婷丁香| 91久久精品国产一区二区成人| 在线天堂最新版资源| 人妻少妇偷人精品九色| 国产午夜精品久久久久久一区二区三区| 久久久久久久国产电影| 大码成人一级视频| 久久亚洲国产成人精品v| 女人十人毛片免费观看3o分钟| 美女脱内裤让男人舔精品视频| 亚洲欧美中文字幕日韩二区| 深夜a级毛片| 99久久人妻综合| 欧美精品国产亚洲| 高清视频免费观看一区二区| videossex国产| 午夜福利网站1000一区二区三区| 热re99久久精品国产66热6| 搡女人真爽免费视频火全软件| 国产日韩欧美在线精品| 一级二级三级毛片免费看| 女人久久www免费人成看片| 国产亚洲av嫩草精品影院| 亚洲av中文av极速乱| 在线亚洲精品国产二区图片欧美 | 少妇的逼水好多| 最近中文字幕高清免费大全6| 国产老妇女一区| 乱系列少妇在线播放| 日本色播在线视频| 日本一本二区三区精品| 国产精品精品国产色婷婷| 成人亚洲精品一区在线观看 | 国产视频内射| 亚洲国产精品专区欧美| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久性生活片| 久久久欧美国产精品| 国产精品三级大全| 国产色婷婷99| 自拍欧美九色日韩亚洲蝌蚪91 | 毛片女人毛片| 国产毛片在线视频| 久久久久久久精品精品| 国产毛片a区久久久久| 天美传媒精品一区二区| 九草在线视频观看| 18禁在线无遮挡免费观看视频| 国产高清不卡午夜福利| 国语对白做爰xxxⅹ性视频网站| 永久网站在线| 熟女人妻精品中文字幕| 婷婷色麻豆天堂久久| 超碰97精品在线观看| 国产精品成人在线| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 色吧在线观看| 新久久久久国产一级毛片| 97人妻精品一区二区三区麻豆| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 99热这里只有精品一区| 久久99热这里只有精品18| 涩涩av久久男人的天堂| 精品午夜福利在线看| 亚洲人成网站在线观看播放| 国国产精品蜜臀av免费| 看黄色毛片网站| 丰满乱子伦码专区| 18+在线观看网站| 国产成人福利小说| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 久久这里有精品视频免费| 久久精品综合一区二区三区| 免费av观看视频| 久久ye,这里只有精品| av在线亚洲专区| 亚洲精品久久午夜乱码| 国产毛片a区久久久久| 男男h啪啪无遮挡| 成人亚洲欧美一区二区av| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 亚洲精品成人av观看孕妇| 亚洲国产精品专区欧美| 国产伦理片在线播放av一区| 日本一二三区视频观看| 亚洲天堂av无毛| 国产成人精品一,二区| 精品少妇久久久久久888优播| 大话2 男鬼变身卡| 国产欧美日韩一区二区三区在线 | 国产精品人妻久久久久久| 18禁在线无遮挡免费观看视频| 亚洲av国产av综合av卡| 99久久人妻综合| 舔av片在线| 肉色欧美久久久久久久蜜桃 | 亚洲精品视频女| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| 一级毛片aaaaaa免费看小| av卡一久久| 国产极品天堂在线| 亚洲人成网站高清观看| av在线播放精品| 国产永久视频网站| 高清在线视频一区二区三区| 欧美一区二区亚洲| 亚洲av日韩在线播放| 狠狠精品人妻久久久久久综合| 亚洲综合色惰| 人妻一区二区av| 在线 av 中文字幕| 一区二区av电影网| 久久亚洲国产成人精品v| 毛片女人毛片| 在线观看一区二区三区| 免费看不卡的av| 毛片女人毛片| 最新中文字幕久久久久| 亚洲精华国产精华液的使用体验| 美女cb高潮喷水在线观看| 亚洲成人中文字幕在线播放| 日韩视频在线欧美| 色播亚洲综合网| av在线蜜桃| 蜜桃久久精品国产亚洲av| 嫩草影院精品99| 亚洲欧美一区二区三区黑人 | 久久久久性生活片| 五月玫瑰六月丁香| 网址你懂的国产日韩在线| 国产精品一二三区在线看| 亚洲综合色惰| 久久精品国产亚洲av涩爱| 久久久久九九精品影院| 欧美日韩精品成人综合77777| 赤兔流量卡办理| 美女cb高潮喷水在线观看| av国产免费在线观看| 日韩电影二区| 国模一区二区三区四区视频| 亚洲精品,欧美精品| 日韩电影二区| 能在线免费看毛片的网站| 97人妻精品一区二区三区麻豆| 成人午夜精彩视频在线观看| 亚洲欧美清纯卡通| 欧美日韩精品成人综合77777| 国产午夜精品一二区理论片| 国产亚洲精品久久久com| 成人国产麻豆网| a级一级毛片免费在线观看| 最近手机中文字幕大全|