• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors?

    2017-08-30 08:26:24YanLiu劉艷ZhaoJunLin林兆軍YuanJieLv呂元杰PengCui崔鵬ChenFu付晨RuilongHan韓瑞龍YuHuo霍宇andMingYang楊銘
    Chinese Physics B 2017年9期
    關(guān)鍵詞:劉艷

    Yan Liu(劉艷),Zhao-Jun Lin(林兆軍),?,Yuan-Jie Lv(呂元杰),Peng Cui(崔鵬), Chen Fu(付晨),Ruilong Han(韓瑞龍),Yu Huo(霍宇),and Ming Yang(楊銘)

    1 School of Microelectronics,Shandong University,Jinan 250100,China

    2 National Key Laboratory of Application Specific Integrated Circuit(ASIC), Hebei Semiconductor Research Institute,Shijiazhuang 050051,China

    Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors?

    Yan Liu(劉艷)1,Zhao-Jun Lin(林兆軍)1,?,Yuan-Jie Lv(呂元杰)2,Peng Cui(崔鵬)1, Chen Fu(付晨)1,Ruilong Han(韓瑞龍)1,Yu Huo(霍宇)1,and Ming Yang(楊銘)1

    1 School of Microelectronics,Shandong University,Jinan 250100,China

    2 National Key Laboratory of Application Specific Integrated Circuit(ASIC), Hebei Semiconductor Research Institute,Shijiazhuang 050051,China

    The parasitic source resistance(RS)of AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs)is studied in the temperature range 300–500 K.By using the measured RSand both capacitance–voltage(C–V)and current–voltage(I–V)characteristics for the fabricated device at 300,350,400,450,and 500 K,it is found that the polarization Coulomb field (PCF)scattering exhibits a significant impact on RSat the above-mentioned different temperatures.Furthermore,in the AlGaN/AlN/GaN HFETs,the interaction between the additional positive polarization charges underneath the gate contact and the additional negative polarization charges near the source Ohmic contact,which is related to the PCF scattering,is verified during the variable-temperature study of RS.

    AlGaN/AlN/GaN heterostructure field-effect transistors(HFETs),parasitic source resistance,polarization Coulomb field scattering

    1.Introduction

    GaN-based heterostructure field-effect transistors (HFETs)are considered to be suitable for high temperature, high frequency,and high power applications.In GaN-based HFETs,the parasitic source resistance(RS)is an important parameter for the device performance.[1,2]Here,RSincludes the gate-to-source access resistance(RGS)and the Ohmic contact resistance(ROhmic),and it leads to some undesirable effects. For example,RSreduces the effective transconductance of the device and the current gain cutoff frequency.It is necessary to analyze the origin and properties of RSat different temperatures for enhancing the device performance in various environments.As previously known,RSis related to the scattering mechanisms for the electrons in the gate–source channel.Both theoretical and experimental results reveal that the polarization Coulomb field(PCF)scattering is an important scattering mechanism in AlGaN/AlN/GaN HFETs.[3–5]Recently,the effect of the PCF scattering on RSwas verified at room temperature.[6]However,the influence of PCF scattering on RSis unknown at elevated temperatures.Therefore,for the AlGaN/AlN/GaN HFETs,it is important to study the relationship between PCF scattering and RSat elevated temperatures. In this study,we investigate the influence of PCF scattering on RSin AlGaN/AlN/GaN HFETs in the temperature range 300–500 K using the measured temperature-dependent RSand both capacitance–voltage(C–V)and current–voltage(I–V) characteristics of the prepared device.

    2.Experiments

    The undoped Al0.28Ga0.72N/AlN/GaN heterostructure layers used in this study were grown on a(0001)sapphire substrate by molecular beam epitaxy(MBE).Moreover,the components of its active structure were exhibited in detail in Fig.1.The Al0.28Ga0.72N/AlN/GaN HFET was manufactured according to the standard process.[7]Its source and drain Ohmic metal stack comprised Ti/Al/Ni/Au.The source and drain regions were rectangular with a length and width of 50μm and 100μm,respectively.The drain-to-source distance was 100μm.Ni/Au was deposited to form the gate Schottky contact.The size of the gate Schottky contact was 20μm/100μm(length/width),and the gate was 20μm away from the source.The respective C–V measurements for theprepared Al0.28Ga0.72N/AlN/GaN HFET at 300,350,400, 450,and 500 K were performed using Agilent B1520A at 1 MHz.Moreover,the respective I–V and RSmeasurements at the above different temperatures were performed using the Agilent B1500A semiconductor parameter analyzer.

    Fig.1.(color online)Schematic cross section of fabricated Al-GaN/AlN/GaN HFET.

    3.Results and discussion

    Figure 2(a)shows the measured C–V curves of the prepared Al0.28Ga0.72N/AlN/GaN HFET at different temperatures.The two-dimensional electron gas(2DEG)electron density(n2D)can be obtained by the C–V curve integration,and the values are shown in Fig.2(b).[8]Table 1 lists the values of n2Dcorresponding to zero gate bias(n2D0)at each testing temperature.Figure 3 displays the output characteristics at different temperatures for the prepared sample.The drain-current, IDS,with a source–drain voltage of 125 mV at zero gate bias can be obtained from the I–V characteristics,and the values at different temperatures are shown in Table 1.

    Fig.2.(color online)(a)Measured C–V curves for Al0.28Ga0.72N/AlN/GaN HFET at different temperatures.(b)Obtained 2DEG electron sheet density n2D from C–V measurements for the sample at different temperatures.

    Fig.3.Measured output characteristics of the sample at(a)300 K,(b)350 K,(c)400 K,(d)450 K,and(e)500 K.

    The 2DEG electron mobility corresponding to zero gate bias(μn0)at 300,350,400,450,and 500 K for the prepared Al0.28Ga0.72N/AlN/GaN HFET can be obtained using the same method,[4]and the calculated results are shown in Table 1.Moreover,according to Ref.[4],the gate-to-source access resistance corresponding to zero gate bias(RGS0)can be calculated by

    where LGSis the gate-to-source length,e is the electron charge, n2D0andμn0are defined earlier,and W is the gate width. Here,it is noted that the Ohmic contact resistance,ROhmic,is not included in the calculated RGS0.Using the transfer-length method(TLM),[9]the specific resistivity of the Ohmic contact is estimated to be 7.98×10?5?·cm2at 300 K,and the value of ROhmicis calculated to be 26.09 ?.Therefore,RS0(RS0is defined as the parasitic source resistance corresponding to zero gate bias),which is the sum of RGS0and ROhmic,can be obtained.In addition,it is suggested that the Ohmic contact re-sistance for the AlGaN/GaN heterojunction exhibits a weaker dependence on temperature.[10]Moreover,in this study,the values of ROhmicat different temperatures can be obtained using the TLM,as shown in Fig.4.Thus,RS0at different temperatures can be determined,and the results are shown in Table 1.

    Table 1.Parameters of the prepared AlGaN/AlN/GaN HFET at different temperatures.V GS is the gate–source bias,V DS is the drain–source bias,I DS is the channel current,n2D0 is the 2DEG electron density at zero gate bias,μn0 is the 2DEG electron mobility with zero gate bias,and R S0 is the parasitic source resistance corresponding to zero gate bias,which is the sum of the source access resistance and the Ohmic contact resistance.

    Fig.4.Plot of R Ohmic versus T for the sample.

    RScan be measured using the gate probe method,as described in detail in Ref.[11].The gate probe method shows that an accurate RScan be extracted from the plot of the gate–source bias(VGS)versus IDSunder the conditions of IGS?IDS, the relatively low drain-to-source bias(VDS),and the constant forward gate–source current IGS.Figure 5 is the test configuration for measuring RSusing the gate probe.As shown in Fig.5, the gate was forward driven with a constant current IGSand the drain was driven with a range of currents,while the source was grounded.As IGSis fixed,the voltage drop across the gate Schottky barrier Vdropis constant.Therefore,VGSis the sum of the channel voltage at the source edge of the gate(Vb) and Vdrop.Owing to Vb=IDS×(ROhmic+RGS),Vbincreases with the increase of IDSwhen VDSincreases.Here,RGSis the gate-to-source access resistance.As VGS=Vb+Vdrop=IDS× (ROhmic+RGS)+Vdrop,the derivative of VGSwith respect to I DS is the value of R Ohmic+R GS,that is,R S.[1,6,11]

    Fig.5.Test configuration for measuring R S using gate probe,I GS=constant.

    Fig.6.(color online)Plot of V GS versus I DS at different temperatures with I GS=25μA for the sample.

    According to the gate probe method,the value of RSis equal to the slope in the VGSversus IDSplot,and the prominent linear relationship of VGSversus IDSsuggests that an accurate extraction of RScan be obtained.In order to study the effect of PCF scattering on RSin the temperature range 300–500 K,the measurements of RSwere conducted at the same value of IGSunder the above different temperatures.Figure 6 shows the measured curves,that is,the plot of VGSversus IDSat different temperatures with forward gate current of 25μA (IGS=25μA).Here,the drain-to-source bias is maintained in the range from 0 V to 3 V.From Fig.6,the value of RScorresponding to IGS=25μA at each testing temperature,RS25,can be extracted.The black trace in Fig.7 corresponds to the extracted RS25.Moreover,the red trace in Fig.7 corresponds to RS0(the value of RS0at each testing temperature is also listed in Table 1).

    Fig.7.(color online)Variations of R S25(black trace)and R S0(red trace) with temperature.R S25 represents the value of R S at I GS=25μA,and R S0 represents the value of R S at V GS=0 V.

    As observed from Fig.7,RS25is larger than RS0at each corresponding testing temperature,and the resistance difference between RS25and RS0(ΔRS=RS25?RS0)decreases with increasing temperature.RSis related to the scattering mechanisms and n2Dfor the electrons in the gate–source channel. As n2Din the gate–source channel is not modulated by the gate–source bias VGS,[4]the value of n2Din the gate–source channel is assumed to remain unchanged as VGSor IGSvaries. It indicates that the value of n2Din the gate–source channel corresponding to IGS=25μA is equal to that corresponding to IGS=0μA at the same temperature.Therefore,RS25and RS0correspond to the same value of n2Dat the same temperature.Hence,the resistance difference,ΔRS,does not result from n2Dof the gate–source channel.

    In undoped AlGaN/AlN/GaN HFETs,the longitudinal optical(LO)phonon scattering,the interface roughness(IFR) scattering,and the PCF scattering are primarily the three types of important scattering mechanisms.[3,4]For LO phonon scattering,it is primarily related to the average phonon number and n2D.For IFR scattering,it is mostly determined by the average distance of the 2DEG electrons from the AlN/GaN interface.The average phonon number is primarily determined by temperature,and the average distance of the 2DEG electrons from the AlN/GaN interface is considerably impacted by n2D.As mentioned earlier,n2Din the gate–source channel does not vary with IGS.Therefore,for both LO phonon and IFR scatterings,they are IGS-independent at the same temperature.Hence,both LO phonon and IFR scatterings cannot lead to the difference between RS25and RS0at the same temperature.

    Fig.8.(color online)Schematic of polarization charges distribution.(a) Distribution of polarization charges with the Ohmic and Schottky contact metals.(b)Distribution of polarization charges without the contact metals.(c)Distribution of the additional polarization charge density. +:Positive polarization charges;—:Negative polarization charges;°–: Two-dimensional electron gas electrons.

    For PCF scattering as one of the primary types of important scattering mechanisms in AlGaN/AlN/GaN HFETs as mentioned earlier,it is closely related to the distribution of the polarization charges along the AlGaN/AlN/GaN heterostructure interface.The detailed illustration is provided in the following.The distribution of the polarization charges at the AlGaN/AlN/GaN heterostructure interface using the device processing mechanism and both the gate–source and drain–source biases is not uniform(see Fig.8(a)).Without the deposition of the contact metals,the distribution of the polarization charges at the AlGaN/AlN/GaN heterostructure material interface is uniform(see Fig.8(b)).The difference between the nonuniform polarization(Fig.8(a))and the uniform polarization(Fig.8(b))is considered as the additional polarization charges.Figure 8(c)provides the distribution of the additional polarization charge density.In Fig.8(c),Δσ1is the additional negative polarization charge density near the Ohmic contact metals,which is generated by the Ohmic-contact processing owing to the diffusion of the Ohmic contact metal atoms.l is the diffusion length of the Ohmic contact metal atoms.[4]Δσ1andlare related to the Ohmic contact processing only and not modulated by the gate bias and temperature.Δσ2is the additional polarization charge density under the ungated region except the range of l.Neither the Ohmic-contact processing nor the bias voltage influence Δσ2.Hence,the value of Δσ2is considered to be 0.[3,4]Δσ3is the positive additional polarization charge density underneath the gate,which is induced by the forward gate–source bias owing to the converse piezoelectric effect.

    The PCF scattering theory indicates that the additional polarization charges establish the elastic scattering potential that scatters 2DEG electrons,and the larger the PCF scattering potential is,the stronger the PCF scattering will be.[3–5]Here,the PCF scattering potential,V(x,y,z),can be expressed as[6]

    From Eq.(2),it can be observed that the magnitude of the PCF scattering potential relates to the diffusion length of the Ohmic contact metal atoms l,the additional polarization charge density Δσ1and Δσ3,and the device structure parameters such as the gate–source length LGS,the gate length LG,the gate–drain length LGD,and the device width W.For the same device studied in this paper,the device structure parameters are the same and do not vary with the gate bias and temperature. In addition,as mentioned earlier,as Δσ1and l are related to the Ohmic contact processing only,the values of Δσ1and l for the sample remain constant at different gate biases and temperatures.For RS25and RS0in Fig.7,they correspond to IGS=25μA and IGS=0μA,respectively.At the same temperature,the voltage drop across the gate Schottky barrier, Vdrop,corresponding to IGS=25μA,is higher than that corresponding to IGS=0μA(VGS=0 V).Thus,owing to the converse piezoelectric effect,the value of Δσ3corresponding to IGS=25μA is larger than that corresponding to IGS=0μA at the same temperature,which results in a magnitude of the PCF scattering potential corresponding to IGS=25μA that is larger than that corresponding to IGS=0μA.As a result,the PCF scattering corresponding to IGS=25μA is stronger than that corresponding to IGS=0μA at the same temperature.Therefore,the resistance difference between RS25and RS0,ΔRS,results from PCF scattering.Moreover,RS25is larger than RS0at the same temperature,as shown in Fig.7.

    Fig.9.(color online)Measured forward I–V characteristics of Ni/Au/AlGaN/AlN/GaN Schottky diode at different temperatures.

    The polarization charges along the AlGaN/AlN/GaN interface involve both spontaneous and piezoelectric polarization.The spontaneous polarization does not vary with gate bias,[4]and seldom changes with temperature.[12,13]Hence, the variation of ΔRSwith temperature is closely related to the AlGaN barrier layer piezoelectric polarization.The piezoelectric polarization varies with z-direction electric field in the Al-GaN barrier layer owing to the converse piezoelectric effect, and it is expressed as[14]

    where PPE,AlGaNis the piezoelectric polarization charge density,C33is the elastic constant of AlGaN,e33is piezoelectric constant,EPE,AlGaN=Vdrop/dAlGaNis the biased z-direction electric field in the AlGaN barrier layer,and dAlGaNis the AlGaN barrier layer thickness.As the voltage drops across both the gate–source channel and the Ohmic contact,that is, IGS×(ROhmic+RGS)are negligible compared to the voltage drop across the gate Schottky barrier Vdropfor all the testing temperatures when IGSis equal to 25μA,it is reasonable to assume that Vdropis approximately equal to VGS.VGSat different temperatures corresponding to IGS=25μA can be obtained from Fig.9,which provides the forward I–V characteristics of the gate–source Schottky diode at different temperatures.[6]Thus,the biased z-direction electric field EPE,AlGaNat different temperatures corresponding to IGS=25μA can be determined.According to Eq.(3),the piezoelectric polarization charge density at different temperatures corresponding to EPE,AlGaNcan also be obtained.Here,as C33and e33are considered temperature-independent,[15–18]the values of C33and e33for Al0.28Ga0.72N barrier layer can be used as 396 GP and 0.93 C/m2,respectively,in the above calculation.[19]Figure 10 provides these calculated results at different temperatures corresponding to IGS=25μA,the black trace and the red trace correspond to EPE,AlGaNand PPE,AlGaN,respectively.As shown in Fig.10,both the piezoelectric polarizations corresponding to IGS=25μA and the biased z-direction electric field decrease with increasing temperature.The piezoelectric polarization charge density in Eq.(3)is precisely the additional positive polarization charge density underneath the gate,that is,Δσ3in Fig.8(c),which is proportional to the PCF scattering intensity.Therefore,the PCF scattering decreases for the prepared AlGaN/AlN/GaN HFET with increasing temperature.Thus,the resistance difference,ΔRS,decreases with increasing temperature,as shown in Fig.7.

    Fig.10.(color online)Variations of electric field and piezoelectric polarization of AlGaN barrier layer corresponding to I GS=25μA at different temperatures.

    In addition,figure 10 shows that the biased z-direction electric field(EPE,AlGaN=5.57×105V/cm)at 500 K is still strong.Figure 7 shows the resistance difference ΔRSat 500 K is considerably small.The reason can be explained below.

    As mentioned earlier,the Ohmic-contact processing can generate the additional negative polarization charge density near the Ohmic contact metals,that is,Δσ1in Fig.8(c).The positive gate–source bias corresponding to the forward gate current of 25μA can generate the piezoelectric polarization charge density under the gate,that is,the additional positive polarization charge density underneath the gate contact,thatis, Δσ3in Fig.8(c).The scattering potential of the PCF scattering corresponding to IGS=0μA(VGS=0 V)is only constituted by Δσ1.The scattering potential of the PCF scattering corresponding to IGS=25μA is constituted by Δσ1and Δσ3.From Eq.(2),the PCF scattering potential between Δσ1and Δσ3can be eliminated.As mentioned earlier,as Δσ1do not vary with both temperature and gate bias,and Δσ3,which is the piezoelectric polarization charge density induced by Vdrop,decreases with increasing temperature.It can be inferred that the difference in the absolute value of Δσ1and Δσ3decreases with increasing temperature,and the absolute value of the above difference is approximately equal to that of Δσ1at 500 K.As a result,the scattering potential of PCF scattering corresponding to IGS=25μA is approximately equal to that corresponding to IGS=0μA(VGS=0 V).Therefore,RS25and RS0at 500 K are approximately equal.Thus,although the z-direction biased electric field EPE,AlGaNat 500 K is still strong,the resistance difference ΔRSis considerably small.Hence,all the above analysis shows that the PCF scattering exhibits an important influence on the parasitic source resistance RSin the temperature range 300–500 K.This indicates that PCF scattering should be considered at elevated temperatures.In addition,the interaction between the positive additional polarization charges underneath the gate contact and the negative additional polarization charges near the source contact,which is related to PCF scattering,was verified during the variable temperature study of RSin the temperature range 300–500 K. Moreover,the PCF scattering,as a type of Coulomb field scattering,is related to distance.The shorter the gate–source spacing of the AlGaN/AlN/GaN HFETs is,the closer is the distance between the additional polarization charges and the 2DEG in the gate–source channel,and the stronger is the PCF scattering at elevated temperatures.Further research should be performed for the dependence of RSon temperature,which is based on PCF scattering being the dominant mechanism in the AlGaN/AlN/GaN HFETs with the shorter gate–source distance.

    4.Conclusions

    In this study,we analyzed and studied the influence of PCF scattering on the parasitic source resistance RSusing the measured C–V and I–V characteristics and RSin the temperature range 300–500 K for the prepared Al0.28Ga0.72N/AlN/GaN HFET.The results indicate that the PCF scattering should be considered at elevated temperatures as it was found to exhibit an important influence on RSin the investigated temperature range.In addition,the interaction between the positive additional polarization charges underneath the gate contact and the negative additional polarization charges near the source contact was verified to influence the intensity of the PCF scattering.

    [1]Palacios T,Rajan S,Chakraborty A,Heikman S,Keller S,DenBaars S P and Mishra U K 2005 IEEE Trans.Electron Devices 52 2117

    [2]Cao Z F,Lin Z J,Lv Y J,Luan C B,Yu Y X,Chen H and Wang Z G 2012 Chin.Phys.B 21 017103

    [3]Zhao J Z,Lin Z J,T D Corrigan,Wang Z,You Z D and Wang Z G 2007 Appl.Phys.Lett.91 173507

    [4]Luan C B,Lin Z J,Lv Y J,Zhao J T,Wang Y T,Chen H and Wang Z G 2014 J.Appl.Phys.116 044507

    [5]Zhao J T,Lin Z J,Luan C B,Zhou Y,Yang M,Lv Y J and Feng Z H 2014 Appl.Phys.Lett.105 083501

    [6]Yang M,Lin Z J,Zhao J T,Cui P,Fu C and Lv Y J 2016 IEEE Trans. Electron Devices 63 1471

    [7]Lv Y J,Feng Z H,Gu G D,Dun S B,Yin J Y,Han T T,Sheng B C,Cai S J,Liu B and Lin Z J 2013 Chin.Phys.B 22 077102

    [8]Lin Z J,Zhao J Z,Corrigan T D,Wang Z,You Z D,Wang Z G and Wu L 2008 J Appl.Phys.103 044503

    [9]Cohen S S 1983 Thin Solid Films 104 361

    [10]Fontseré A,Pérez-Tomaás A,Plácidi M,Fernández-Martínez P,Baron N,Chenot S,Cordier Y,Moreno J C,Jennings M R,Gammon P M and Walker D 2011 Proc.8th Spanish Conf.Electron Devices 1–2

    [11]Holmstrom R P,Bloss W L and Chi J Y 1986 IEEE Electron.Dev.Lett. EDL-7 410

    [12]Ambacher O,Majewski J,Miskys C,Link A,Hermann M,Eickhoff M, Stutzmann M,Bernardini F,Fiorentini V,Tilak V,Schaff B and Eastman L F 2002 J.Phys.Condens.Matter 14 3399

    [13]Bykhovski A D,Kaminski V V,Shur M S,Chen Q C and Khan M A 1996 Appl.Phys.Lett.69 3254

    [14]Anwar A F M,Webster R T and Smith K V 2006 Appl.Phys.Lett.88 203510

    [15]Reeber R R and Wang K 2001 MRS Internet J.Nitride Semicond.Res. 6 1

    [16]Deger C,Born E,Angerer H,Ambacher O,Stutzmann M,Hornsteiner J,Riha E and Fischerauer G 1998 Appl.Phys.Lett.72 2400

    [17]Roder C,Einfeldt S,Figge S and Hommel D 2005 Phys.Rev.B 72 085218

    [18]Figge S,Kr?ncke H,Hommel D and Epelbaum B M 2009 Appl.Phys. Lett.94 101915

    [19]Zhao J T,Lin Z J,Luan C B,Chen Q Y,Yang M,Zhou Y,Lv Y J and Feng Z H 2015 Superlattices Microstruct.79 21

    14 January 2017;revised manuscript

    23 April 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/097104

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11174182,11574182,and 61306113)and the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110131110005).

    ?Corresponding author.E-mail:linzj@sdu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    劉艷
    “蘇州園林:景致與情思”課程設(shè)計
    丟部手機算啥
    基于Kano模型的中學(xué)武術(shù)教學(xué)品質(zhì)研究
    體育師友(2022年1期)2022-04-17 10:42:34
    Experiment on low-frequency electromagnetic waves propagating in shock-tube-generated magnetized cylindrical enveloping plasma
    2019漢諾威金屬加工世界展覽會再出發(fā)
    山特維克可樂滿攜新品亮相CIMT2019
    婆婆給100萬,求我別生二胎
    富豪慘烈殉情:誰說追愛風(fēng)塵就能不忠貞?
    有趣的云
    后媽的傳說
    三月三(2015年12期)2015-12-11 16:28:20
    夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| 国产国语露脸激情在线看| 成人18禁在线播放| 免费在线观看视频国产中文字幕亚洲| 2021天堂中文幕一二区在线观 | 成人欧美大片| 午夜视频精品福利| av有码第一页| 欧美日韩福利视频一区二区| 怎么达到女性高潮| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆 | 日本在线视频免费播放| 午夜激情av网站| 国产精品久久久av美女十八| 满18在线观看网站| 亚洲av电影不卡..在线观看| 美女国产高潮福利片在线看| 国产一区在线观看成人免费| 人成视频在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品98久久久久久宅男小说| 日韩 欧美 亚洲 中文字幕| 99国产综合亚洲精品| 免费在线观看黄色视频的| 亚洲人成网站高清观看| 亚洲精品国产区一区二| 亚洲av成人av| x7x7x7水蜜桃| 美国免费a级毛片| 97碰自拍视频| 久久久久久久午夜电影| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 伊人久久大香线蕉亚洲五| 亚洲av成人av| 精品无人区乱码1区二区| 成人欧美大片| 亚洲全国av大片| АⅤ资源中文在线天堂| 美女 人体艺术 gogo| 亚洲 欧美一区二区三区| 午夜两性在线视频| 日韩欧美三级三区| 一级作爱视频免费观看| 人人妻人人看人人澡| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 日日爽夜夜爽网站| 欧美又色又爽又黄视频| 日韩欧美免费精品| 成人三级做爰电影| 国产精品98久久久久久宅男小说| 欧美黄色片欧美黄色片| 91国产中文字幕| 午夜久久久久精精品| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 一本精品99久久精品77| 国产成人欧美| 国产精品爽爽va在线观看网站 | 亚洲熟女毛片儿| 在线观看一区二区三区| 禁无遮挡网站| 久久国产亚洲av麻豆专区| 欧美一区二区精品小视频在线| 亚洲精品国产精品久久久不卡| 青草久久国产| 午夜免费鲁丝| 亚洲av成人不卡在线观看播放网| 久久中文字幕一级| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| 国产一卡二卡三卡精品| 欧美成人性av电影在线观看| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 婷婷精品国产亚洲av| 12—13女人毛片做爰片一| 成人国产一区最新在线观看| 搡老岳熟女国产| 宅男免费午夜| 亚洲av成人av| 国产伦人伦偷精品视频| 这个男人来自地球电影免费观看| x7x7x7水蜜桃| 欧美另类亚洲清纯唯美| 欧美久久黑人一区二区| 黄色毛片三级朝国网站| www日本在线高清视频| 一二三四在线观看免费中文在| 一区二区三区激情视频| 亚洲美女黄片视频| 91成人精品电影| 欧美激情 高清一区二区三区| 精品乱码久久久久久99久播| 亚洲无线在线观看| 在线观看午夜福利视频| 日韩有码中文字幕| 久久久久免费精品人妻一区二区 | 国产真实乱freesex| 脱女人内裤的视频| 美女大奶头视频| 国产黄色小视频在线观看| 欧美一级毛片孕妇| 亚洲专区国产一区二区| 午夜福利免费观看在线| 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 欧美性猛交黑人性爽| 成人国语在线视频| 日韩中文字幕欧美一区二区| 日韩三级视频一区二区三区| 99热6这里只有精品| 一本大道久久a久久精品| av天堂在线播放| 日本a在线网址| 成人亚洲精品av一区二区| 国产乱人伦免费视频| 国产精品久久久久久精品电影 | 日韩成人在线观看一区二区三区| 国产成人精品久久二区二区91| 欧美中文综合在线视频| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 成年免费大片在线观看| 国产精品亚洲一级av第二区| 中文字幕人妻丝袜一区二区| 桃色一区二区三区在线观看| 亚洲一区中文字幕在线| 国产精品久久久久久精品电影 | 欧美av亚洲av综合av国产av| a在线观看视频网站| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| 久久性视频一级片| 国产熟女xx| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 91九色精品人成在线观看| 一级a爱片免费观看的视频| 一个人观看的视频www高清免费观看 | 久久婷婷人人爽人人干人人爱| 给我免费播放毛片高清在线观看| 亚洲av片天天在线观看| 日韩 欧美 亚洲 中文字幕| 久久久久九九精品影院| 国产亚洲精品av在线| 美女午夜性视频免费| 中亚洲国语对白在线视频| 免费观看精品视频网站| 啦啦啦免费观看视频1| 18禁裸乳无遮挡免费网站照片 | 免费av毛片视频| 精品熟女少妇八av免费久了| 白带黄色成豆腐渣| АⅤ资源中文在线天堂| 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 日韩欧美 国产精品| 国产亚洲精品久久久久5区| 熟女少妇亚洲综合色aaa.| 成人特级黄色片久久久久久久| 女性生殖器流出的白浆| 亚洲第一电影网av| av天堂在线播放| 一级片免费观看大全| 精品国内亚洲2022精品成人| 日韩欧美一区视频在线观看| 99久久国产精品久久久| 亚洲中文字幕日韩| 日本免费a在线| 色尼玛亚洲综合影院| 精品国产亚洲在线| 日本a在线网址| 日本一本二区三区精品| 在线视频色国产色| 久久性视频一级片| 激情在线观看视频在线高清| a级毛片a级免费在线| 午夜成年电影在线免费观看| 国内少妇人妻偷人精品xxx网站 | 欧美成人性av电影在线观看| 男男h啪啪无遮挡| 在线观看一区二区三区| aaaaa片日本免费| 一二三四在线观看免费中文在| av有码第一页| 91大片在线观看| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 亚洲精品色激情综合| 中文字幕精品亚洲无线码一区 | 国产精品av久久久久免费| 国产精品久久电影中文字幕| 国产三级在线视频| 麻豆国产av国片精品| 又黄又粗又硬又大视频| 亚洲精品国产精品久久久不卡| 国产亚洲欧美精品永久| 亚洲av成人不卡在线观看播放网| 视频在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| aaaaa片日本免费| 在线观看免费视频日本深夜| 午夜亚洲福利在线播放| 欧美最黄视频在线播放免费| 久久亚洲精品不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区字幕在线| 19禁男女啪啪无遮挡网站| 精品欧美一区二区三区在线| 悠悠久久av| 欧美zozozo另类| 中文字幕久久专区| 国产av一区二区精品久久| 亚洲成人久久爱视频| 欧美精品亚洲一区二区| 香蕉丝袜av| 两个人看的免费小视频| 在线观看一区二区三区| 成人国语在线视频| 男人舔奶头视频| 国产成人影院久久av| 91在线观看av| 女生性感内裤真人,穿戴方法视频| 婷婷丁香在线五月| 欧美又色又爽又黄视频| 桃红色精品国产亚洲av| 亚洲一区中文字幕在线| 欧美激情高清一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲国产毛片av蜜桃av| 午夜精品在线福利| 国产精品1区2区在线观看.| 国产精品日韩av在线免费观看| 99热这里只有精品一区 | 窝窝影院91人妻| 一a级毛片在线观看| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 国产精品av久久久久免费| 淫妇啪啪啪对白视频| 精品国产一区二区三区四区第35| 在线看三级毛片| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| 中文字幕av电影在线播放| 日韩欧美一区二区三区在线观看| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 免费高清视频大片| 成人18禁在线播放| 日韩精品免费视频一区二区三区| 很黄的视频免费| 欧美成人午夜精品| 亚洲五月天丁香| 成人永久免费在线观看视频| 久久久久久国产a免费观看| svipshipincom国产片| 99国产极品粉嫩在线观看| 一本一本综合久久| 在线观看66精品国产| 丝袜美腿诱惑在线| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 人妻久久中文字幕网| 日韩免费av在线播放| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 一级毛片精品| 天堂√8在线中文| 欧美中文综合在线视频| 一a级毛片在线观看| 国产日本99.免费观看| 免费在线观看影片大全网站| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 久久精品成人免费网站| 老司机在亚洲福利影院| 日日干狠狠操夜夜爽| netflix在线观看网站| 深夜精品福利| 午夜久久久久精精品| 国产一区在线观看成人免费| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| bbb黄色大片| 亚洲中文字幕一区二区三区有码在线看 | 搡老岳熟女国产| 很黄的视频免费| 99久久久亚洲精品蜜臀av| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品av在线| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 丰满的人妻完整版| 黄色丝袜av网址大全| 国产不卡一卡二| xxxwww97欧美| 国产野战对白在线观看| 免费在线观看成人毛片| 人人妻,人人澡人人爽秒播| 1024手机看黄色片| 亚洲成人久久性| 俺也久久电影网| 亚洲一区中文字幕在线| 大型av网站在线播放| 成人永久免费在线观看视频| 日韩欧美免费精品| 搞女人的毛片| 精品免费久久久久久久清纯| 国产伦在线观看视频一区| videosex国产| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| 热re99久久国产66热| 亚洲熟妇熟女久久| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 人人妻人人看人人澡| 国产一区二区在线av高清观看| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 97超级碰碰碰精品色视频在线观看| 好男人电影高清在线观看| 91国产中文字幕| 亚洲熟女毛片儿| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 香蕉国产在线看| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 亚洲一区二区三区色噜噜| 国产精华一区二区三区| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 在线观看www视频免费| 一区二区三区精品91| 变态另类成人亚洲欧美熟女| 18美女黄网站色大片免费观看| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 亚洲五月色婷婷综合| 麻豆av在线久日| 变态另类成人亚洲欧美熟女| 亚洲五月婷婷丁香| 亚洲精品国产区一区二| 免费在线观看黄色视频的| ponron亚洲| 免费在线观看黄色视频的| ponron亚洲| 日韩有码中文字幕| 亚洲精品在线观看二区| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 久久国产乱子伦精品免费另类| 老司机午夜十八禁免费视频| 亚洲国产毛片av蜜桃av| 免费在线观看亚洲国产| 久久久国产欧美日韩av| 色综合欧美亚洲国产小说| 村上凉子中文字幕在线| 久久久国产成人精品二区| 在线视频色国产色| 亚洲avbb在线观看| 一进一出好大好爽视频| 欧美一级a爱片免费观看看 | 女警被强在线播放| av中文乱码字幕在线| 国内精品久久久久久久电影| 亚洲国产精品999在线| 亚洲第一欧美日韩一区二区三区| 亚洲片人在线观看| 国产精品久久电影中文字幕| 欧美日本亚洲视频在线播放| 狠狠狠狠99中文字幕| 久久久久久大精品| www.熟女人妻精品国产| ponron亚洲| 欧美zozozo另类| 欧美乱码精品一区二区三区| 亚洲,欧美精品.| 欧美国产日韩亚洲一区| 自线自在国产av| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 国产一级毛片七仙女欲春2 | 国产成人欧美在线观看| 不卡一级毛片| 精品熟女少妇八av免费久了| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 亚洲国产看品久久| 欧美大码av| 亚洲av成人av| 99久久99久久久精品蜜桃| 欧美日韩乱码在线| 亚洲欧美精品综合一区二区三区| 久久久久九九精品影院| 久久久久久九九精品二区国产 | 亚洲av成人一区二区三| 91av网站免费观看| 午夜激情av网站| 高清毛片免费观看视频网站| 国内少妇人妻偷人精品xxx网站 | 人人妻人人澡人人看| 最好的美女福利视频网| 午夜久久久在线观看| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久| 国产精品,欧美在线| 人人澡人人妻人| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美网| 一夜夜www| 一二三四在线观看免费中文在| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看 | 国产亚洲精品一区二区www| 国产亚洲精品久久久久5区| 手机成人av网站| 视频在线观看一区二区三区| 久久久久久人人人人人| 国产成人欧美在线观看| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址| 99国产综合亚洲精品| 欧美激情久久久久久爽电影| 禁无遮挡网站| 婷婷精品国产亚洲av在线| 成人三级做爰电影| 亚洲,欧美精品.| 成人一区二区视频在线观看| 少妇裸体淫交视频免费看高清 | 国产熟女午夜一区二区三区| 日本黄色视频三级网站网址| 精品熟女少妇八av免费久了| 亚洲国产精品sss在线观看| 成人亚洲精品av一区二区| 午夜免费观看网址| 麻豆一二三区av精品| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 日本 欧美在线| 身体一侧抽搐| 三级毛片av免费| 18禁黄网站禁片免费观看直播| 色尼玛亚洲综合影院| 岛国视频午夜一区免费看| 成人欧美大片| 国产伦人伦偷精品视频| 午夜两性在线视频| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 美女扒开内裤让男人捅视频| www.999成人在线观看| 99国产精品99久久久久| 亚洲一码二码三码区别大吗| 精品不卡国产一区二区三区| 麻豆国产av国片精品| 午夜福利在线在线| 成人亚洲精品av一区二区| 国产欧美日韩一区二区三| 日日摸夜夜添夜夜添小说| 51午夜福利影视在线观看| 精品福利观看| 男人操女人黄网站| 国产三级在线视频| 午夜久久久久精精品| 成人免费观看视频高清| 手机成人av网站| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网| 午夜久久久在线观看| 免费高清视频大片| 超碰成人久久| 香蕉国产在线看| 免费看a级黄色片| www.精华液| 久久久水蜜桃国产精品网| 熟妇人妻久久中文字幕3abv| 久久久久国内视频| 91字幕亚洲| 99久久综合精品五月天人人| 久久中文看片网| 亚洲午夜理论影院| 国产精品 国内视频| 午夜视频精品福利| 成人亚洲精品av一区二区| 国产精品一区二区三区四区久久 | 亚洲精品美女久久久久99蜜臀| 人人妻人人看人人澡| 母亲3免费完整高清在线观看| 12—13女人毛片做爰片一| 可以免费在线观看a视频的电影网站| 免费电影在线观看免费观看| 午夜日韩欧美国产| 1024视频免费在线观看| 男人舔女人的私密视频| 国产成人啪精品午夜网站| 亚洲精品国产精品久久久不卡| 少妇熟女aⅴ在线视频| 一本一本综合久久| 精华霜和精华液先用哪个| 亚洲欧美日韩高清在线视频| 亚洲av第一区精品v没综合| 国产午夜福利久久久久久| 亚洲免费av在线视频| 国产91精品成人一区二区三区| 亚洲午夜理论影院| 日韩高清综合在线| 2021天堂中文幕一二区在线观 | 精品久久久久久久毛片微露脸| 国产精品99久久99久久久不卡| 国产极品粉嫩免费观看在线| 日韩欧美一区视频在线观看| 看黄色毛片网站| 国产精品 国内视频| 好男人电影高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲无线在线观看| 精品不卡国产一区二区三区| xxxwww97欧美| 亚洲男人天堂网一区| 欧美乱码精品一区二区三区| 禁无遮挡网站| 97人妻精品一区二区三区麻豆 | 午夜免费观看网址| 香蕉久久夜色| tocl精华| 美女午夜性视频免费| 窝窝影院91人妻| 99久久无色码亚洲精品果冻| www.自偷自拍.com| 中文字幕最新亚洲高清| 欧美日韩亚洲综合一区二区三区_| 日本黄色视频三级网站网址| 老司机午夜福利在线观看视频| 亚洲国产欧洲综合997久久, | 黄片大片在线免费观看| 亚洲真实伦在线观看| 级片在线观看| 免费观看人在逋| 身体一侧抽搐| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站 | 亚洲国产精品成人综合色| 男人舔女人的私密视频| 亚洲欧洲精品一区二区精品久久久| 欧美性猛交╳xxx乱大交人| 一边摸一边做爽爽视频免费| 成人国语在线视频| АⅤ资源中文在线天堂| 白带黄色成豆腐渣| 免费在线观看成人毛片| 岛国视频午夜一区免费看| 欧美精品啪啪一区二区三区| 女警被强在线播放| 1024香蕉在线观看| 欧美 亚洲 国产 日韩一| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区视频在线观看| 中文资源天堂在线| 亚洲色图 男人天堂 中文字幕| 午夜a级毛片| 波多野结衣巨乳人妻| 两性夫妻黄色片| 丁香欧美五月| 脱女人内裤的视频| 1024视频免费在线观看| www.自偷自拍.com| 亚洲天堂国产精品一区在线| 一夜夜www| 男人舔女人的私密视频| 午夜久久久久精精品| 一夜夜www| 成人国产一区最新在线观看| 观看免费一级毛片| 搡老妇女老女人老熟妇| 大型黄色视频在线免费观看| 在线播放国产精品三级| 黄频高清免费视频| 男人舔女人的私密视频| 精品第一国产精品| 日日干狠狠操夜夜爽| 此物有八面人人有两片| 91大片在线观看| 国产成人精品久久二区二区91| 久久久久亚洲av毛片大全| 我的亚洲天堂| 中亚洲国语对白在线视频| 免费看a级黄色片| 99精品在免费线老司机午夜| 这个男人来自地球电影免费观看| 搡老岳熟女国产| 色播在线永久视频| 黄片大片在线免费观看| 久久国产精品男人的天堂亚洲|