• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Mn substitution on thermoelectric properties of CuIn1?x Mn x Te2?

    2017-08-30 08:26:26PengfeiLuo羅鵬飛LiYou游理JiongYang楊炯JuanjuanXing邢娟娟JiyeZhang張繼業(yè)ChenyangWang王晨陽(yáng)XinluoZhao趙新洛JunLuo駱軍andWenqingZhang張文清
    Chinese Physics B 2017年9期

    Pengfei Luo(羅鵬飛),Li You(游理),Jiong Yang(楊炯),Juanjuan Xing(邢娟娟), Jiye Zhang(張繼業(yè)),Chenyang Wang(王晨陽(yáng)),Xinluo Zhao(趙新洛), Jun Luo(駱軍),?and Wenqing Zhang(張文清),,?

    1 Department of Physics,Institute of Low-Dimensional Carbons and Device Physics, Shanghai University,Shanghai 200444,China

    2 Materials Genome Institute,Shanghai University,Shanghai 200444,China

    3 School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China

    Effects of Mn substitution on thermoelectric properties of CuIn1?xMnxTe2?

    Pengfei Luo(羅鵬飛)1,2,Li You(游理)3,Jiong Yang(楊炯)2,Juanjuan Xing(邢娟娟)3, Jiye Zhang(張繼業(yè))3,Chenyang Wang(王晨陽(yáng))3,Xinluo Zhao(趙新洛)1, Jun Luo(駱軍)3,?and Wenqing Zhang(張文清)2,3,?

    1 Department of Physics,Institute of Low-Dimensional Carbons and Device Physics, Shanghai University,Shanghai 200444,China

    2 Materials Genome Institute,Shanghai University,Shanghai 200444,China

    3 School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China

    CuIn1?xMnxTe2samples have been synthesized by a melt-annealing method.The x-ray powder diffraction(XRD) analysis shows that the CuIn1?xMnxTe2samples crystallize in the chalcopyrite phase.Mn doping can effectively optimize the electrical properties and accordingly improve the power factor.The room temperature electrical conductivity of doped CuInTe2increases by several orders of magnitude due to substituting In with Mn.In addition,a large reduction in thermal conductivity is achieved through the enhanced phonon scattering via Mn-related point defects and precipitates.Therefore, an enhanced average Z T value up to 0.34 is achieved for sample CuIn0.925Mn0.075Te2,which is 41%higher than that of the pristine CuInTe2.

    thermoelectrics,chalcopyrite,CuInTe2,Mn doping

    1.Introduction

    Thermoelectric conversion technology,which could convert heat into electricity for power generation or vice versa convert electrical energy into heat for refrigeration,provides a possible solution for the energy shortage and environmental concerns.[1–3]However,the low conversion efficiency limits the large-scale application of thermoelectric technology,which is determined by the dimensionless thermoelectric figure-of-merit(Z T).Z T is defined as Z T=S2σT/κ,where S is the Seebeck coefficient,σ the electric conductivity,T the absolute temperature,and κ the thermal conductivity,respectively.

    Recently,much effort has been focused on ternary I–III–V I2-type(I=Cu,Ag;III=Al,Ga,In;and V I= S,Se,Te)chalcopyrite compounds owing to their nontoxicity,low lattice thermal conductivity,and good electrical transport properties.[4–13]So far,many compounds with high Z T values have been reported,for example,CuGaTe2with a Z T value of 1.4,[14]Ag0.95GaTe2with a Z T value of 0.77,[15]Cu1?xMnxInTe2with a Z T value of 0.84[16]and CuInTe1.99Sb0.01+1 wt%ZnO system with a Z T value of 1.61.[4]Among these ternary chalcopyrite compounds,p-type CuInTe2are characterized by relatively high Seebeck coefficient and low high-temperature thermal conductivity,owing to its degenerate valence bands[4]and highly distorted crystal structure,[7]respectively,which makes it a promising high temperature thermoelectric material.Nevertheless,the further application of un-doped CuInTe2is still retarded by its poor electrical conductivity and high room-temperature thermal conductivity.Therefore,it is desirable to develop a strategy to improve the electrical conductivity of CuInTe2and simultaneously suppress its lattice thermal conductivity.[4,12]In this work,we find that Mn is a desired doping element to improve both the electrical and thermal transport properties of CuInTe2.Through replacing part of In with Mn,the electrical conductivity of the CuIn1?xMnxTe2sample increases dramatically since Mn element acts as the acceptor to provide additional charge carriers(hole).Meanwhile,the elemental substitution leads to obviously reduced lattice thermal conductivity due to the enhanced phonon scattering.Therefore,enhanced thermoelectric performance is obtained for CuIn1?xMnxTe2, resulting from synergistic effect of optimized electrical conductivity and reduced lattice thermal conductivity.

    2.Experimental section

    Polycrystalline samples of CuIn1?xMnxTe2(x=0,0.025, 0.05,0.075,0.1)were synthesized by a melt-annealing method.The starting materials Cu(99.99%,shot),In (99.999%,shot),Mn(99.999%,piece),Te(99.999%,shot) were weighed according to the stoichiometric ratio and sealedin evacuated quartz tubes,which were heated to 1173 K at a rate of 1 K/min and held at this temperature for 24 h.Then,the samples were slowly cooled to 923 K,annealed at 923 K for 72 h,and cooled to room temperature in the furnace.Finally, to obtain densified bulk samples,the as-prepared ingots were crushed into fine powders and then vacuum sintered in a hot pressing furnace at 823 K for 15 min under an axial pressure of 65 MPa.

    Phase identification and structure analysis were carried out by x-ray powder diffraction(XRD)using a Rigaku D/max 2200 diffractometer equipped with Cu-Kα radiation(45 kV, 250 mA).The microstructures of the polished hot-pressed samples were investigated by scanning electron microscope (Zeiss Supra 55,Germany).An electron energy x-ray dispersive spectroscopy(EDXS,Oxford)was equipped for elemental mapping and point analysis.The density D of hot pressed samples was determined by the Archimedes’method and found to be over 97%of the theoretical density.The heat capacity CPwas obtained using Dulong–Petit model, CP=3nR/M,where n is the number of atoms per formula unit, R is the gas constant,and M is the molar mass.Thermal diffusivity(λ)was measured by the laser flash method using a Netzsch LFA457 instrument.The thermal conductivity was calculated from the equation κ=CPDλ.The resistivity ρ and Seebeck coefficient S were measured via four probe method utilizing ZEM-3 instrument(ULVAC,Japan)under low-pressure helium atmosphere.The room-temperature carrier concentrations of the samples were obtained from Hall coefficient measurements,which were conducted on a mini cryogen free measurement system(Cryogenic Limited,UK).

    3.Results and discussion

    Figure 1(a)shows the XRD patterns of CuIn1?xMnxTe2samples(x=0,0.025,0.05,0.075,0.1).For all these samples, their diffraction peaks can be solely indexed to the chalcopyrite phase(PDF#81-1937)and no impurities are observed. All the XRD patterns were analyzed by Rietveld refinement. The obtained lattice parameters of the a-axis are shown in Fig.1(b).It can be seen that the lattice parameter,a,linearly decreases with the Mn contents when x<0.075,indicating the replacement of In3+(0.80?A)by smaller Mn2+(0.67?A). Higher Mn content did not lead to further decrease in a,ascribed to the solid solubility limit of Mn.

    Fig.1.(color online)(a)The XRD patterns and(b)lattice parameters of the a-axis for CuIn1?x Mn x Te2(x=0,0.025,0.05,0.075,0.1)samples. The gray line in panel(b)is guide for eyes.

    Fig.2.(color online)BSE images of the samples with(a)5%Mn and(b)7.5%Mn.The magnified image of 7.5%Mn sample and Mn elemental mapping of boxed area are shown in panels(c)and(d),respectively.

    Figure 2 presents the backscattered electron(BSE)microscopy of the polished surface for typical samples with x= 0.05 and 0.075.As shown in Fig.2(a),the BSE image of the sample with 5%Mn reveals a typical homogeneous solid solution microstructure and no obvious second phase precipitates can be found.However,for the sample with 7.5%Mn(see Figs.2(b)and 2(c)),particle-like precipitates with sizes from severalto 200 nm can be clearly observed,which are randomly distributed in the CuInTe2matrices.Thus,we can conclude that the solubility of Mn is between 5%and 7.5%.The precipitates cannot be identified in the XRD patterns,possibly due to their low content and tiny size.The elemental mapping (Fig.2(d))reveals that the precipitates have Mn-rich compositions.

    Fig.3.(color online)The temperature dependence of(a)electrical conductivity,(b)Seebeck coefficient,(c)power factor for CuIn1?x Mn x Te2 (x=0,0.025,0.05,0.075,0.1)samples.

    The electrical transport properties for CuIn1?xMnxTe2samples(x=0,0.025,0.05,0.075,0.1)are compared in Fig.3. As shown in Fig.3(a),the electrical conductivity of the pristine CuInTe2sample increases with the rising temperature, exhibiting the typical behavior of intrinsic semiconductors. However,when Mn is doped,the room-temperature electrical conductivities of CuIn1?xMnxTe2are dramatically increased, and the temperature dependence of conductivities becomes the behavior of degenerate semiconductors,indicating that the carrier concentrations of the samples were substantially enlarged by Mn doping.The measured room-temperature hole concentrations(nh)and Hall mobilities of carriers(μH)for the CuIn1?xMnxTe2samples are listed in Table 1.It can be seen that the hole concentrations of the samples increase with the increase of Mn contents.It has been reported that the hole concentration of the Mn-free CuInTe2is about 5.75× 1018cm?3.[12]Consequently,the room-temperature electrical conductivity of the sample with x=0.1 is~46600 S/m,which is more than 40 times larger than that of the sample free of Mn (about1100 S/m).Furthermore,the increasing of the hole concentrations suppresses the intrinsic excitation of charge carriers.Thus,the occurrence of bipolar conduction is pushed to higher temperatures with increasing Mn contents.

    Table 1.Room temperature hole concentrations(n h)and Hall mobilities of carriers(μH)for the CuIn1?x Mn x Te2(x=0.025,0.05,0.075, 0.1)samples.

    Figure 3(b)shows the temperature-dependent Seebeck coefficient of CuIn1?xMnxTe2samples.Positive Seebeck coefficients reveal the p-type hole dominant conduction in all the samples.The variation trend of the Seebeck coefficient with temperatures is opposite to that of the electrical conductivity.The Seebeck coefficient of the pristine CuInTe2sample decreases with the temperature increasing,further proving that the undoped sample is a non-degenerate semiconductor,whereas the Seebeck coefficient for the samples doped with Mn increases with the temperature increasing,exhibiting a behavior of degenerate semiconductors.As the Mn content increases,the Seebeck coefficients at 340 K reduce from 424μV/K for the pristine sample to 130μV/K for the sample with x=7.5%.The Seebeck coefficients for the samples with x=0.075 and 0.1 were found to be almost identical at lower temperature range.One possible reason is that the solid solubility of Mn in CuInTe2is below 0.075.The increased electrical conductivity and moderately decreased Seebeck coefficients lead to enhanced power factors(PF)in the temperature ranging from room temperature to 720 K(Fig.3(c)).A maximum PF of 11.2μV·cm?1·K?2at 625 K is achieved for the sample with x=0.05,which is much larger than that for CuInTe2at 625 K.

    Fig.4.(color online)The temperature dependence of(a)total thermal conductivities,(b)Lorentz numbers,(c)electronic thermal conductivities, and(d)lattice thermal conductivities for CuIn1?x Mn x Te2(x=0,0.025,0.05,0.075,0.1)samples.The dashed line in panel(d)is the curve for T?1 relationship.

    Figure 4 depicts the temperature-dependent thermal transport properties of the samples.As shown in Fig.4(a),the introduction of Mn can substantially reduce the total thermal conductivities(κtot).Lattice thermal conductivity(κL)can be obtained from κtotby subtracting the electronic part(κe)according to the relationship of κtot=κL+κe.Electronic thermal conductivity κecan be calculated from the electrical conductivity by the celebrated Wiedemann–Franz law κe=LσT, where L is the Lorenz number.[17]The Lorenz number in degenerate semiconductors can be calculated by Seebeck coefficient within a single parabolic model,using the following equations:[18]

    where kB,e,and η are the Boltzmann constant,electron charge,and reduced Fermi energy(Fermi energy divided by kBT),respectively,and Fn(η)is the n-th Fermi–Dirac integral.The Lorenz number(L)can be calculated using Eq.(2) with the values of η,which are fitted from the experimental data of Seebeck coefficients by Eq.(1).The calculated Lorenz numbers and related electronic thermal conductivities of all the samples are illustrated in Figs.4(b)and 4(c),respectively.It can be derived from Fig.4(c)that κeincreases with the increase of Mn contents(i.e.,electrical conductivities).Consequently,the large reduction in κtotmainly comes from the decreased κL(see Fig.4(d)),which can be ascribed to the addition of Mn.It can be seen in Fig.4(d)that κLof all the samples approximately follow a T?1relationship(the dashed line in Fig.4(d)),indicating that the dominant phonon scattering mechanism should be the three-phonon Umklapp scattering process(U-process).[19]The incorporation of Mn can introduce a large number of point defects that can scatter short-wavelength phonons and thus mainly decrease the hightemperature lattice thermal conductivities.Additionally,nanosized precipitates occurring in samples with higher Mn concentrations can provide extra phonon scattering center for mid wavelength phonons,which can effectively reduce the lattice thermal conductivities near room temperatures.The further reduced κLat lower temperatures for samples with x=0.075 and 0.1 can be attributed to their additional nanosized precipitates.

    The temperature-dependent dimensionless thermoelectric figure-of-merit Z T of CuIn1?xMnxTe2compounds is calculated based on the above transport data and is plotted in Fig.5. The Z T values increase when approaching high temperature, and reach a maximum value of~0.8 at 813 K for the sample with x=0.075,which is slightly higher than that of the pristine CuInTe2sample.Nevertheless,the average Z T is also an important factor for actual thermoelectric applications.[20]The calculated average Z T for all the samples is shown in the inset of Fig.5.It can be seen that the average Z T of all the samples with Mn incorporation is much higher than that of the pristine one and is up to 0.34 for the samples with x=0.075 and 0.1, owing to their moderate power factors and low lattice thermal conductivities in lower temperature range.

    Fig.5.(color online)Influence of Mn contents on figure of merit Z T for CuIn1?x Mn x Te2 samples.The inset is the average Z T calculated from the integration using the formula

    4.Conclusion

    In summary,polycrystalline chalcopyrite CuIn1?xMnxTe2compounds(x=0,0.025,0.5,0.075,0.1)has been successfully synthesized.The solubility of Mn in CuInTe2is determined to be below 7.5%.By substituting In,Mn acts as an effective acceptor dopant and can dramatically improve the electrical transport properties of the pristine CuInTe2system.In addition,κLof the CuInTe2system can be substantially decreased by the point defects and nanosized precipitates introduced by the incorporation of Mn,and thus resulting in a considerably reduction in κtot.As a result,an enhanced average Z T value up to 0.34 is achieved for sample CuIn0.925Mn0.075Te2,which is 41%higher than that of the undoped CuInTe2,making it a promising candidate for thermoelectric applications.Furthermore,it is reported that anions (P3?,Sb3?)doping on the Te sites can effectively increase the Seebeck coefficient and consequently enhance the PF of the system.[4]Thus,introducing anion dopants plus some additional microstructure engineering in our Mn-doped CuInTe2system may bring its Z T value to that of the state-of-the-art thermoelectric materials.

    [1]Zhao L D,Lo S H,Zhang Y,Sun H,Tan G,Uher C,Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373

    [2]Liu H,Shi X,Xu F,Zhang L,Zhang W,Chen L,Li Q,Uher C,Day T and Snyder G J 2012 Nat.Mater.11 422

    [3]Pei Y,Shi X,LaLonde A,Wang H,Chen L and Snyder G J 2011 Nature 473 66

    [4]Luo Y,Yang J,Jiang Q,Li W,Zhang D,Zhou Z,Cheng Y,Ren Y and He X 2016 Adv.Energy Mater.6 1600007

    [5]Luo Y,Yang J,Jiang Q,Li W,Xiao Y,Fu L,Zhang D,Zhou Z and Cheng Y 2015 Nano Energy 18 37

    [6]Kucek V,Drasar C,Kasparova J,Plechacek T,Navratil J,Vlcek M and Benes L 2015 J.Appl.Phys.118 125105

    [7]Hu C,Peng K,Wang G,Lijie Guo,Wang G and Zhou X 2015 Mater. Res.Soc.Symp.Proc.1735

    [8]Carr W D and Morelli D T 2015 J.Alloys Compd.630 277

    [9]Zhang J,Liu R,Cheng N,Zhang Y,Yang J,Uher C,Shi X,Chen L and Zhang W 2014 Adv.Mater.26 3848

    [10]Cheng N,Liu R,Bai S,Shi X and Chen L 2014 J.Appl.Phys.115 163705

    [11]Cui J,Li Y,Du Z,Meng Q and Zhou H 2013 J.Mater.Chem.A 1 677

    [12]Liu R,Xi L,Liu H,Shi X,Zhang W and Chen L 2012 Chem.Commun. 48 3818

    [13]Kosuga A,Plirdpring T,Higashine R,Matsuzawa M,Kurosaki K and Yamanaka S 2012 Appl.Phys.Lett.100 042108

    [14]Plirdpring T,Kurosaki K,Kosuga A,Day T,Firdosy S,Ravi V,Snyder G J,Harnwunggmoung A,Sugahara T,Ohishi Y,Muta H and Yamanaka S 2012 Adv.Mater.24 3622

    [15]Yusufu A,Kurosaki K,Kosuga A,Sugahara T,Ohishi Y,Muta H and Yamanaka S 2011 Appl.Phys.Lett.99 061902

    [16]Wang H X,Ying P Z,Yang J F,Chen S P and Cui J L 2016 Acta Phys. Sin.65 067201(in Chinese)

    [17]Cao B L,Jian J K,Ge B H,Li S M,Wang H,Liu J and Zhao H Z 2017 Chin.Phys.B 26 017202

    [18]Biswas K,He J Q,Blum I D,Wu C I,Hogan T P,Seidman D N,Dravid V P and Kanatzidis M G 2012 Nature 489 414

    [19]Goldsmid H J 2010 Introduction to Thermoelectricity(Berlin,Heidelberg:Springer-Verlag)pp.37–38

    [20]Zhang Y,Wu L H,Zhang J Y,Xing J J and Luo J 2016 Acta Mater.111 202

    10.1088/1674-1056/26/9/097201

    (Received 8 May 2017;revised manuscript received 10 June 2017;published online 27 July 2017)

    ?Project supported by the National Natural Science Foundation of China(Nos.51632005 and 51371194)and National Basic Research Program of China(Grant No.2013CB632500).

    ?Corresponding author.E-mail:junluo@shu.edu.cn

    ?Corresponding author.E-mail:wqzhang@t.shu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    成年女人毛片免费观看观看9 | 久久这里只有精品19| 亚洲第一av免费看| 性色avwww在线观看| 少妇人妻 视频| 亚洲,欧美,日韩| 999精品在线视频| 伦理电影免费视频| 婷婷色麻豆天堂久久| 热99久久久久精品小说推荐| 九色亚洲精品在线播放| 一边亲一边摸免费视频| 日韩一本色道免费dvd| 免费少妇av软件| 春色校园在线视频观看| 日韩中文字幕视频在线看片| 男女免费视频国产| 国产xxxxx性猛交| 五月天丁香电影| 伦理电影免费视频| 一区在线观看完整版| 国产成人精品在线电影| 考比视频在线观看| 亚洲精品第二区| 观看美女的网站| 久久久久精品久久久久真实原创| 午夜福利在线免费观看网站| 在线观看人妻少妇| 一二三四在线观看免费中文在| 久久综合国产亚洲精品| 成人黄色视频免费在线看| 人人妻人人澡人人爽人人夜夜| 日日啪夜夜爽| 人妻人人澡人人爽人人| 国产精品 欧美亚洲| 男女边摸边吃奶| 另类亚洲欧美激情| 麻豆乱淫一区二区| 免费观看性生交大片5| 亚洲欧洲国产日韩| 最近中文字幕2019免费版| 久久狼人影院| 建设人人有责人人尽责人人享有的| 啦啦啦中文免费视频观看日本| 看非洲黑人一级黄片| 国产av码专区亚洲av| 国产色婷婷99| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线观看一区二区三区| 91aial.com中文字幕在线观看| videosex国产| 精品视频人人做人人爽| 狂野欧美激情性bbbbbb| 亚洲国产精品成人久久小说| 亚洲情色 制服丝袜| 少妇被粗大猛烈的视频| 飞空精品影院首页| 国产成人精品婷婷| 亚洲激情五月婷婷啪啪| 不卡视频在线观看欧美| 亚洲欧美一区二区三区国产| 日本爱情动作片www.在线观看| 欧美日韩视频精品一区| 大陆偷拍与自拍| 一个人免费看片子| 最近2019中文字幕mv第一页| 亚洲综合色网址| 日产精品乱码卡一卡2卡三| 国产在线视频一区二区| av在线app专区| 久久久久精品性色| 亚洲精品国产色婷婷电影| 少妇被粗大猛烈的视频| 精品福利永久在线观看| 老汉色av国产亚洲站长工具| 成年人免费黄色播放视频| 精品亚洲乱码少妇综合久久| 国产老妇伦熟女老妇高清| 青青草视频在线视频观看| 国产精品人妻久久久影院| 国产黄频视频在线观看| 老司机影院毛片| h视频一区二区三区| 亚洲精品在线美女| 色播在线永久视频| 天美传媒精品一区二区| 亚洲av成人精品一二三区| 在线看a的网站| 九草在线视频观看| 日韩欧美一区视频在线观看| 欧美成人午夜免费资源| 久久久久精品性色| av国产久精品久网站免费入址| 免费久久久久久久精品成人欧美视频| av免费观看日本| 欧美激情高清一区二区三区 | 久久久久久人人人人人| 亚洲欧美清纯卡通| 精品第一国产精品| 国产亚洲欧美精品永久| 99热国产这里只有精品6| 久久免费观看电影| 日韩熟女老妇一区二区性免费视频| 国产亚洲精品第一综合不卡| av女优亚洲男人天堂| 丝袜美足系列| 我的亚洲天堂| 少妇的丰满在线观看| 2022亚洲国产成人精品| 欧美xxⅹ黑人| 人人妻人人爽人人添夜夜欢视频| 飞空精品影院首页| 国产精品国产三级国产专区5o| 日韩欧美精品免费久久| 青春草亚洲视频在线观看| 精品午夜福利在线看| 中文欧美无线码| 午夜福利网站1000一区二区三区| 亚洲国产精品999| 久久精品熟女亚洲av麻豆精品| 久久久精品区二区三区| 午夜老司机福利剧场| 综合色丁香网| av又黄又爽大尺度在线免费看| 久久精品久久久久久噜噜老黄| 在线看a的网站| 欧美日韩综合久久久久久| 国产成人午夜福利电影在线观看| 亚洲少妇的诱惑av| 侵犯人妻中文字幕一二三四区| 99久国产av精品国产电影| av在线播放精品| 成人漫画全彩无遮挡| 一级毛片 在线播放| 国产一区二区三区av在线| 伊人亚洲综合成人网| 色94色欧美一区二区| 亚洲欧美成人精品一区二区| 丝袜喷水一区| 亚洲国产成人一精品久久久| 国产精品免费视频内射| 国产精品嫩草影院av在线观看| 日本av手机在线免费观看| 中文精品一卡2卡3卡4更新| 宅男免费午夜| 国产一区有黄有色的免费视频| 性色av一级| 下体分泌物呈黄色| 99九九在线精品视频| 久久影院123| 免费不卡的大黄色大毛片视频在线观看| 成人黄色视频免费在线看| 在线看a的网站| 色网站视频免费| videosex国产| 欧美老熟妇乱子伦牲交| 精品一区二区三卡| 久久狼人影院| 日本91视频免费播放| 精品亚洲乱码少妇综合久久| 黄色怎么调成土黄色| 2018国产大陆天天弄谢| 中文字幕人妻熟女乱码| 国产熟女午夜一区二区三区| 亚洲天堂av无毛| 欧美人与性动交α欧美精品济南到 | av福利片在线| 永久免费av网站大全| 国产av码专区亚洲av| 国产熟女欧美一区二区| 在线天堂中文资源库| 成人免费观看视频高清| 黄色一级大片看看| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 性色av一级| 亚洲熟女精品中文字幕| 香蕉国产在线看| av网站在线播放免费| 丰满迷人的少妇在线观看| 国产精品久久久久久av不卡| 国产综合精华液| 精品午夜福利在线看| 色吧在线观看| 亚洲国产av影院在线观看| 日韩中字成人| 精品福利永久在线观看| 精品少妇黑人巨大在线播放| 考比视频在线观看| 免费少妇av软件| 精品一品国产午夜福利视频| 久久精品熟女亚洲av麻豆精品| 国产精品麻豆人妻色哟哟久久| 婷婷成人精品国产| 三级国产精品片| 亚洲精品第二区| 国产精品国产三级国产专区5o| 国产精品久久久久久精品电影小说| 丝袜脚勾引网站| 亚洲四区av| 咕卡用的链子| 卡戴珊不雅视频在线播放| www.熟女人妻精品国产| 最新中文字幕久久久久| 两性夫妻黄色片| 国产成人精品无人区| 亚洲经典国产精华液单| 国产在线视频一区二区| 女性生殖器流出的白浆| 性高湖久久久久久久久免费观看| 黄色配什么色好看| 亚洲精品aⅴ在线观看| 叶爱在线成人免费视频播放| 黑丝袜美女国产一区| 午夜福利在线免费观看网站| 99re6热这里在线精品视频| 免费少妇av软件| 黑人巨大精品欧美一区二区蜜桃| 婷婷色av中文字幕| 亚洲欧美精品综合一区二区三区 | 春色校园在线视频观看| 一本久久精品| av电影中文网址| 一本大道久久a久久精品| 色播在线永久视频| 日本av手机在线免费观看| av卡一久久| 我要看黄色一级片免费的| 777久久人妻少妇嫩草av网站| 少妇熟女欧美另类| 少妇熟女欧美另类| 侵犯人妻中文字幕一二三四区| 少妇人妻精品综合一区二区| 曰老女人黄片| 五月天丁香电影| 人妻人人澡人人爽人人| 国语对白做爰xxxⅹ性视频网站| 曰老女人黄片| 秋霞在线观看毛片| 久久久精品区二区三区| 久久精品久久久久久久性| 国产精品久久久久久精品古装| 午夜激情av网站| 一边摸一边做爽爽视频免费| 女的被弄到高潮叫床怎么办| 高清在线视频一区二区三区| 日本91视频免费播放| 国产欧美日韩一区二区三区在线| 久久精品国产鲁丝片午夜精品| 丰满饥渴人妻一区二区三| av女优亚洲男人天堂| 国产成人aa在线观看| 亚洲伊人色综图| 亚洲伊人色综图| 涩涩av久久男人的天堂| 老女人水多毛片| 亚洲精品久久成人aⅴ小说| 看免费成人av毛片| 久久久久久久久久久免费av| 国产有黄有色有爽视频| 久久精品国产亚洲av高清一级| 欧美日韩一区二区视频在线观看视频在线| 波野结衣二区三区在线| 久久精品国产亚洲av高清一级| 亚洲精品日韩在线中文字幕| 最黄视频免费看| 可以免费在线观看a视频的电影网站 | a 毛片基地| 美女国产高潮福利片在线看| 青春草国产在线视频| 狠狠精品人妻久久久久久综合| 巨乳人妻的诱惑在线观看| 午夜免费观看性视频| 久久久欧美国产精品| 中文字幕人妻丝袜一区二区 | 成人午夜精彩视频在线观看| 一区二区日韩欧美中文字幕| 宅男免费午夜| 国产高清不卡午夜福利| 日韩av在线免费看完整版不卡| 街头女战士在线观看网站| 视频区图区小说| 欧美精品av麻豆av| 日韩免费高清中文字幕av| 韩国高清视频一区二区三区| 日韩制服丝袜自拍偷拍| 精品亚洲成国产av| 精品人妻在线不人妻| 十八禁网站网址无遮挡| 99精国产麻豆久久婷婷| 大香蕉久久成人网| 亚洲综合色惰| 国产亚洲午夜精品一区二区久久| 观看美女的网站| 国产免费一区二区三区四区乱码| 水蜜桃什么品种好| 男女午夜视频在线观看| 成人午夜精彩视频在线观看| 高清视频免费观看一区二区| 国产免费现黄频在线看| 母亲3免费完整高清在线观看 | 啦啦啦在线观看免费高清www| 久久热在线av| 9191精品国产免费久久| 黄色视频在线播放观看不卡| 亚洲精品国产av蜜桃| 午夜影院在线不卡| 在线天堂中文资源库| 男女边摸边吃奶| 最黄视频免费看| 精品午夜福利在线看| av国产精品久久久久影院| 性色avwww在线观看| 国产精品久久久久久久久免| 成年女人在线观看亚洲视频| 精品人妻熟女毛片av久久网站| 亚洲第一区二区三区不卡| 国产熟女午夜一区二区三区| 国产视频首页在线观看| 夜夜骑夜夜射夜夜干| 一区二区三区激情视频| 亚洲欧美色中文字幕在线| 999精品在线视频| 一区二区日韩欧美中文字幕| 欧美激情极品国产一区二区三区| 精品国产乱码久久久久久男人| 亚洲精品,欧美精品| 一边亲一边摸免费视频| 一本大道久久a久久精品| 欧美 日韩 精品 国产| 亚洲国产看品久久| 国产av码专区亚洲av| 又大又黄又爽视频免费| 搡老乐熟女国产| 不卡av一区二区三区| 纯流量卡能插随身wifi吗| 精品少妇黑人巨大在线播放| 2022亚洲国产成人精品| 国产成人91sexporn| 9色porny在线观看| av不卡在线播放| 新久久久久国产一级毛片| 亚洲国产色片| 婷婷成人精品国产| 久久亚洲国产成人精品v| 欧美最新免费一区二区三区| 日韩av在线免费看完整版不卡| 久久这里只有精品19| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 亚洲精品一区蜜桃| 欧美+日韩+精品| 在线观看免费日韩欧美大片| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 亚洲美女搞黄在线观看| 欧美激情 高清一区二区三区| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 好男人视频免费观看在线| 侵犯人妻中文字幕一二三四区| 美女中出高潮动态图| 国产av码专区亚洲av| 美女国产视频在线观看| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 国产又爽黄色视频| 免费观看av网站的网址| 成人国语在线视频| 亚洲精品久久午夜乱码| 美女国产高潮福利片在线看| av在线app专区| 国产高清不卡午夜福利| 极品人妻少妇av视频| 国产综合精华液| 久久久久国产精品人妻一区二区| 两个人免费观看高清视频| 麻豆av在线久日| 国产精品三级大全| 一区二区三区乱码不卡18| 伊人久久国产一区二区| 国产一区二区三区综合在线观看| 国产 一区精品| 久久综合国产亚洲精品| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| av.在线天堂| 亚洲av中文av极速乱| 久久这里只有精品19| 一级片'在线观看视频| 9热在线视频观看99| 精品视频人人做人人爽| 天堂中文最新版在线下载| 亚洲av福利一区| 777久久人妻少妇嫩草av网站| 亚洲国产看品久久| 亚洲欧美精品自产自拍| 国产亚洲欧美精品永久| 亚洲欧美精品综合一区二区三区 | 国产成人精品福利久久| 免费高清在线观看视频在线观看| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 91精品三级在线观看| 街头女战士在线观看网站| 国产一区二区 视频在线| 99热全是精品| 在线精品无人区一区二区三| 欧美人与性动交α欧美精品济南到 | 波野结衣二区三区在线| 一区二区av电影网| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 夫妻性生交免费视频一级片| 日本wwww免费看| 一区二区三区乱码不卡18| 乱人伦中国视频| 看十八女毛片水多多多| 国产精品亚洲av一区麻豆 | xxxhd国产人妻xxx| 中文字幕亚洲精品专区| 精品人妻熟女毛片av久久网站| 婷婷色综合大香蕉| 男男h啪啪无遮挡| 丝袜喷水一区| 最近中文字幕2019免费版| 美女国产视频在线观看| 黄色视频在线播放观看不卡| 亚洲,欧美精品.| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美亚洲二区| 免费观看在线日韩| 精品午夜福利在线看| 亚洲精品第二区| 亚洲,欧美,日韩| 五月伊人婷婷丁香| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说| 亚洲精品视频女| 精品第一国产精品| 国产乱人偷精品视频| 天天操日日干夜夜撸| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 国产探花极品一区二区| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| 亚洲三级黄色毛片| 这个男人来自地球电影免费观看 | 七月丁香在线播放| 99久国产av精品国产电影| 日韩一区二区视频免费看| av福利片在线| 久久综合国产亚洲精品| 伊人久久国产一区二区| 久久精品国产亚洲av高清一级| 熟女少妇亚洲综合色aaa.| 丁香六月天网| 人成视频在线观看免费观看| 久久青草综合色| 一级爰片在线观看| 日韩一本色道免费dvd| 人人澡人人妻人| tube8黄色片| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 波多野结衣av一区二区av| 婷婷色麻豆天堂久久| xxxhd国产人妻xxx| 新久久久久国产一级毛片| 2022亚洲国产成人精品| 丝袜美足系列| 天天影视国产精品| 男人操女人黄网站| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 亚洲欧美中文字幕日韩二区| 亚洲精品美女久久av网站| 美女国产视频在线观看| 亚洲国产色片| 免费高清在线观看日韩| 欧美中文综合在线视频| 成人二区视频| 午夜福利网站1000一区二区三区| 日本爱情动作片www.在线观看| 伊人久久国产一区二区| 大香蕉久久成人网| 午夜福利影视在线免费观看| av视频免费观看在线观看| 日韩伦理黄色片| 一级黄片播放器| 国产成人精品在线电影| 国产精品免费大片| 乱人伦中国视频| freevideosex欧美| 亚洲成人手机| 精品人妻在线不人妻| 成人国语在线视频| 在线观看www视频免费| 久久国产精品大桥未久av| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 视频在线观看一区二区三区| av卡一久久| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 超碰97精品在线观看| 美女大奶头黄色视频| 久久精品久久精品一区二区三区| 天天影视国产精品| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 免费黄频网站在线观看国产| 亚洲精品,欧美精品| av电影中文网址| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久 | 尾随美女入室| 国产成人免费观看mmmm| 三上悠亚av全集在线观看| 电影成人av| 久久午夜福利片| 国产在线免费精品| www.熟女人妻精品国产| 亚洲av在线观看美女高潮| 如日韩欧美国产精品一区二区三区| 女性被躁到高潮视频| 黄色配什么色好看| www.熟女人妻精品国产| 男人添女人高潮全过程视频| 26uuu在线亚洲综合色| 黄网站色视频无遮挡免费观看| 国产福利在线免费观看视频| 国产精品久久久久久av不卡| 国产在线视频一区二区| 男女边吃奶边做爰视频| 波多野结衣av一区二区av| 久久久久精品久久久久真实原创| 少妇人妻精品综合一区二区| 人成视频在线观看免费观看| videossex国产| 91精品三级在线观看| 久久综合国产亚洲精品| 精品视频人人做人人爽| 日本wwww免费看| 免费黄网站久久成人精品| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 国产精品av久久久久免费| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 久久久国产欧美日韩av| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 男女边摸边吃奶| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 国产人伦9x9x在线观看 | 国产精品成人在线| 我要看黄色一级片免费的| 一级爰片在线观看| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 亚洲,欧美精品.| 亚洲欧洲日产国产| 国产又爽黄色视频| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃| 日本色播在线视频| 欧美成人午夜精品| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 成年美女黄网站色视频大全免费| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 日韩,欧美,国产一区二区三区| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 有码 亚洲区| 久久久精品免费免费高清| 有码 亚洲区| 秋霞伦理黄片| 国产精品人妻久久久影院| 精品国产露脸久久av麻豆| 美女福利国产在线| 亚洲中文av在线| 精品少妇久久久久久888优播| 捣出白浆h1v1| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 久久午夜综合久久蜜桃| 日韩一区二区视频免费看| 一级片'在线观看视频| 久久精品aⅴ一区二区三区四区 | 美女xxoo啪啪120秒动态图| 久久精品aⅴ一区二区三区四区 | 午夜福利视频精品| 大香蕉久久网| 日日爽夜夜爽网站| 久久国产精品大桥未久av| 韩国高清视频一区二区三区| 伊人亚洲综合成人网| 亚洲五月色婷婷综合| 麻豆av在线久日| 亚洲精品第二区|