• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants?

    2017-08-30 08:26:28ChangShengLi李長(zhǎng)生LeiMa馬磊andJieRongGuo郭杰榮
    Chinese Physics B 2017年9期
    關(guān)鍵詞:長(zhǎng)生

    Chang-Sheng Li(李長(zhǎng)生),Lei Ma(馬磊),and Jie-Rong Guo(郭杰榮)

    Department of Physics and Electronic Sciences,Hunan University of Arts and Science,Changde 415000,China

    Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants?

    Chang-Sheng Li(李長(zhǎng)生)?,Lei Ma(馬磊),and Jie-Rong Guo(郭杰榮)

    Department of Physics and Electronic Sciences,Hunan University of Arts and Science,Changde 415000,China

    We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions.The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing.Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing.Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space.The dopants induced quasilocalized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density.

    electron transport,nanowire transistor,non-equilibrium Green’s function,dopant

    1.Introduction

    The control of electrostatic variability is increasingly important for metal–oxide–semiconductor(MOS)devices as the size continues to shrink.[1,2]In order to have an ideal gate control over the channel region,high-k oxides and tri-gate technologies have been employed in industry in the past few decades.For future MOS applications,full gate transistors, such as gate-all-around(GAA)nanowire MOS field-effect transistors,[3,4]attract significant interest due to their superior electrostatic gate control at ultimate-scaling.[5–7]However,the electrostatic variability associated with depleted impurities in the source and drain regions is still a major threat to further scaling and integration of nanowire MOS devices.[8–10]The statistical variabilities due to dopants or acceptors in the source and drain regions of nanowire MOS devices have been theoretically investigated by modeling various distributions, such as delta,[11]square well,[12]Gaussian,[13]and random distributions.[10,14–16]However,at a few nanometers,even though we call it highly doped,there are only a few impurities inside the device.The statistical analysis of various distributions could be inappropriate.Besides,the rapid technological achievement makes it possible to set arbitrarily the position of a single dopant inside nanowire devices.It is very relevant to consider a few impurities realistically inside the device and estimate the variance of the key electrical parameters.There have been several works on studying the influence of putting a single dopant or acceptor in a channel.[17]In further study,we need to simulate the variability introduced by a few realistic discrete donors arbitrarily added in the source and drain regions.Unfortunately,the potential of a dopant in the source or drain region has a substantial contribution to the total electrostatic potential at a narrow cross section and can easily break the ideal current characteristics.It also creates numerical difficulties of charge sloshing to achieve a reliable convergence in the self-consistent simulation.[8,9]

    The charge sloshing problem is very common to induce numerical instability during the self-consistent iterations.[18,19]For ab initio molecular-dynamics simulations and electronic-structure calculations,particularly for inhomogeneous systems with large unit cells suffering from poor convergence,the Kerker method[20]is very efficient in preventing charge sloshing,especially in density functional calculations.[21–23]The original Kerker method[24]introduced by Manninen is applied in the reciprocal space,but it can also be applied in the real space and have the advantages of avoiding time-consuming integration to include the exponential kernel and be suitable for massively parallel computation.[25]Although the Kerker method is widely used in ab initio density functional calculations,it is relatively new in simulating MOS transistors,since we usually consider continuous doping in the source and drain regions and therefore no charge sloshing is incorporated.However,this approximation could miss some important physics at small size naowire devices since we include realistic dopants in the DFT calculation of molecular devices.In this work,we implement the real-space Kerker method self-consistently into a fully 3D real-space effective mass non-equilibrium Green’s function(NEGF)simulator for very narrow n-channel nanowire MOSFET with few discretedonors added in the source and drain regions and achieve the stable convergence.The realistic discrete dopants induced variations are also discussed.

    2.Method

    The dopant induced variation of electron density is treated by the usual self-consistent Schr?dinger–Poisson procedure,[26]which is equivalent to the usual Hartree approximation.The Schr?dinger equation within the effective mass approach is expressed as[27,28]

    where[1/m]is the tensor of the inverse electron effective mass, ψ is the wave-function,and E is the energy.The electron–electron interactions are averaged through the dielectric constant ε.

    When the effective masses are corrected from atomistic band structure calculations for each transverse cross-section, this self-consistent procedure is valid in simulating silicon nanowire transistors as narrow as 2 nm and the scattering is dominated by impurity scattering.[29–31]The electron–phonon scattering plays a minor role after appropriate fitting the values of the effective mass from full atomistic tight-binding band structure calculations.[16,32]The doping impurity is included by adding an on-site positive charge in the Poisson equation.For a general distribution with a continuous and discrete charge distribution,the Poisson equation coupled to the Schr?dinger equitation is demonstrated in the form

    where NDis the usual continuous doping function and n(r)is the electron density.The cjis the charge of a discrete doping atom located at position rj.For simplicity,we assume that the electrons and dopants are dominant charge carriers,the hole density and acceptors are neglected in this work.When we include random discrete dopants in the source and drain regions instead of assuming continuous doping,the dopants in the source and drain regions induce a numerical divergence from charge sloshing in the self-consistent Schr?dingerpoisson loop.We adopt the real-space Kerker method to solve this problem.To demonstrate the real-space Kerker method, we transform the Poisson equation into a Helmholtz-like equation

    where λ is the Thomas–Fermi wave vector.The Thomas–Fermi screening introduces a natural cutoff for the divergence.

    The resulting solution is

    By transforming the Poisson equation into the Helmholtz equation,the charge sloshing problem is mainly solved since long range oscillations are naturally suppressed.

    Once the self consistence of the Schr?dinger–Poisson procedure is obtained,we adopt the Landauer–Büttiker transport method[33]based on the standard NEGF formalism[34]to calculate the transport properties.We define the Green function of the scattering region

    with

    The drain current can then be calculated by the Landauer–Büttiker formula

    HerefS(D)is the Fermi–Dirac distribution of the source(drain) defined as

    where k is Boltzmann’s constant,T is the absolute temperature,andμis the Fermi level.The total electron density of the system resulting from the electrons coming from the source and the drain can be calculated by the formula

    The electron mobility is defined asμe=G/(eNtot),where G is the conductance defined by G=(2e2/h)T.

    3.Results and discussion

    The structure of the GAA silicon nanowire MOSFET along the transport direction is shown in Fig.1(a).The cross section of the nanowire is displayed in Fig.1(b).When the source and drain regions are assumed to be uniformly doped (NS=ND=1026m?3),the transmission coefficients with and without a single donor added in the middle of the channel are displayed in Fig.2.The intrinsic device without doping in the channel is characterized by the usual step shape.While the introduction of a single discrete donor in the channel generates dips below the steps in transmission,which implies that a donor could induce quasi-localized states.

    Fig.1.(color online)The structure of the gate all around silicon nanowire MOSFET considered in this work:(a)the cross section in the x–y plane,(b)the cross section in the y–z plane,and(c)two discrete dopants in the source region,and another two dopants in the drain region along the central line.In all the calculations,the silicon body thickness is 2 nm,and the oxide thickness is 1 nm.

    Fig.2.(color online)Transmission versus energy at V G=0.5 V for nanowire MOSFET with intrinsic(small red dot)and doped(big blue square)channel region.Here V DS=0.1 V.

    In order to further investigate the effect of the donor, we vary the doping position from the source to the drain region.Figure 3 shows the mobility,conductance,and current as functions of the doping position along the central line of the nanowire.We notice that the fluctuations of conductance are relatively regular,no matter whether the discrete donor is added in the source,the channel,or the drain region.This is similar to the usual universal conductance fluctuation behavior.On the other hand,the mobility is higher when the donor is added in the source region compared to that added in the drain region.The reason could be that the single donor induced quasi-localized state is easier to be activated in the source than that in the drain due to the higher Fermi level in the source. When the donor is added between the source and channel regions,we can observe the largest mobility.The variation of the current with the doping position in the source and drain regions is more sensitive than that in the channel,as shown in Fig.3.

    In order to further investigate the relation between the energy sub-bands and the doping position,we add four discrete dopantsin the source and drain regionsalong the centralline of the nanowire.For continuous doping in the source and drain, we observe in Fig.4(a)the usual sub-band structure.The drain voltage can be controlled accurately even at a short channel length.For four discrete dopants in the source and drain regions,we observe four sharp dips in Fig.4(b)corresponding to the donor positions in the source and drain regions.The energy positions and the charging of these states are extremely sensitive in the source and drain regions due to charge sloshing around the impurities.The attractive potential near the source region creates electron quasi-bound states,which can influence the mobility and the current flow.The sub-band profi le and therefore the currents cannot be accurately controlled as expected at narrow size.

    Fig.3.(color online)(a)Electron mobility(in units of cm2/(V·s)),(b) conductance(in units of ??1),and(c)current(in units of A)versus the varied doping position of the single dopant added in the central line of the nanowire transistor.

    Fig.4.(color online)The energy profile of the first sub-band along the central line of the silicon nano-wire(a)with continuous doping,and (b)with four discrete dopants added in the source and drain regions as shown in Fig.1(c).

    We further show in Fig.5(b)that the electron density has short range charge sloshing in the doped source region before reaching the drain region at low gate voltage when the device is at the off region.This is quite different from the counterpart of continuous doping shown in Fig.5(a),where all defected modes are simultaneously activated in the source and drain regions without spatial delay.This implies continuous doping in the source and drain could underestimate the access resistance from dopants.Besides,we find that the defected modes are activated with short range charge sloshing and spatially related with the increase of the gate voltage in Fig.6.The short range charge sloshing and the way of mode by mode activating also indicate the quantum nature of the current.There could be a spatial delay in activating the doping defect modes for the realistic case compared to the continuous doping case.

    Fig.5.(color online)The electron density(in units of m?3)of a middle cross section for(a)continuous doping,and(b)four discrete dopants added in the source and drain regions as shown in Fig.1(c).Here V G=0.2 V and V DS=0.1 V.

    Fig.6.(color online)The electron density(in units of m?3)of a cross section with four discrete dopants added in the source and drain regions as shown in Fig.1(c)at V G=0.5 V and V DS=0.1 V.

    4.Conclusion

    We incorporate a real space Kerker method selfconsistently into our NEGF simulator.It has significant improvements in avoiding divergence over the usual Schr?dinger–Poisson simulator when including discrete dopants in the source and drain regions.Realistic dopants could have bigger influences on the key electrical parameters than the case assuming continuous doping in the source and drain.The charging of doping defects in the source experiences oscillation and spatial delay before reaching the drain region at low gate voltage.The charging of realistic dopants and their short range oscillations of the charge density from the source to the drain region are essential to the large variability of the ultimate GAA nanowire transistors.

    [1]Martinez A,Bescond M,Barker J R,Svizhenkov A,Anantram A,Millar C and Asenov A 2007 IEEE Trans.Electron Dev.54 2213

    [2]Markov S,Cheng B and Asenov A 2012 IEEE Electron Dev.Lett.33 315

    [3]Zhang L N,He J,Zhou W,Chen L and Xu Y W 2010 Chin.Phys.B 19 47306

    [4]Liu Y,He J,Chan M,Du C X,Ye Y,Zhao W,Wu W,Deng W L and Wang W P 2014 Chin.Phys.B 23 097102

    [5]Mayank C,Kinshuk G and Babu V G 2015 J.Nanosci.Nanoeng.Appl. 5 20

    [6]Chen L,Cai F,Otuonye U and Lu W D 2016 Nano Lett.16 420

    [7]Seo J H,Yoon Y J,Lee S,Lee J H,Cho S and Kang I M 2015 Current Applied Physics 15 208

    [8]Seoane N,Martinez A,Brown A R,Barker J R and Asenov A 2009 IEEE Trans.Electron Dev.56 1388

    [9]Martinez A,Seoane N,Brown A R,Barker J R and Asenov A 2009 IEEE Trans.Nanotechnol.8 603

    [10]Yoon J S,Rim T,Kim J,Kim K and Baek C K 2015 Appl.Phys.Lett. 106 103507

    [11]Bagwell P F 1990 Phys.Rev.B 41 10354

    [12]Kim C S,Satanin A M,Joe Y S and Cosby R M 1999 Phys.Rev.B 60 10962

    [13]Bardarson J H,Magnusdottir I,Gudmundsdottir G,Tang C S, Manolescu A and Gudmundsson V 2004 Phys.Rev.B 70 245308

    [14]Mondal P,Ghosh B,Bal P,Akram M W and Salimath A 2015 Appl. Phys.A 119 127

    [15]Nayak K,Agarwal S and Bajaj M 2015 IEEE Trans.Electron Dev.62 685

    [16]Sylvia S S,Habib K M M,Khayer M A,Alam K,Neupane M and Lake R K 2014 IEEE Trans.Electron Dev.61 2208

    [17]Georgiev V P,Towie E and Asenov A 2013 IEEE Trans.Electron Dev. 60 965

    [18]Arias T A,Payne M C and Joannopoulos J D 1992 Phys.Rev.Lett.69 1077

    [19]Kresse G and Hafner J 1993 Phys.Rev.B 48 13115

    [20]Kerker G P 1981 Phys.Rev.B 23 3082

    [21]Tassone F,Mauri F and Car R 1994 Phys.Rev.B 50 10561

    [22]David R,Canning A and Wang L 2001 Phys.Rev.B 64 121101

    [23]Marks L D and Luke D R 2008 Phys.Rev.B 78 075114

    [24]Manninen M T,Nieminen R M,Hautojarvi P and Arponen J S 1975 Phys.Rev.B 12 4012

    [25]Shiihara Y,Kuwazuru O and Yoshikawa N 2008 Modelling and Simulation in Materials Science and Engineering 16 3

    [26]Tan I H,Snider G L,Chang L D and Hu E L 1990 J.Appl.Phys.68 4071

    [27]Wang J,Rahman A,Ghosh A,Klimech Gand Lundstrom M 2005 IEEE Trans.Electron Dev.52 1589

    [28]Bescond M,Autran J L,Munteanu D and Lannoo M 2004 Solid-State Electron 48 567

    [29]Jin S,Tang T W and Fischetti M V 2008 IEEE Trans.Electron Dev.55 727

    [30]Bescond M,lannoo M,Raymond L and Michelini F 2010 J.Appl.Phys. 107 093703

    [31]Nehari K,Cavassilas N,Michelini F,Bescond M,Autran J L and Lannoo M 2007 Appl.Phys.Lett.90 132112

    [32]Carrillo N H,Bescond M,Cavassilas N,Dib E and Lannoo M 2014 J. Appl.Phys.116 164505

    [33]Datta S 1997 Electronic Transport in Mesoscopic Systems(Cambridge: Cambridge University Press)p.300

    [34]Jauho A P,Wingreen N S and Meir Y 1994 Phys.Rev.B 50 5528

    2 April 2017;revised manuscript

    12 June 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/097301

    ?Project supported by the National Natural Science Foundation of China(Grant No.11104069).

    ?Corresponding author.E-mail:lcs135@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    長(zhǎng)生
    手工制作之長(zhǎng)生花
    望 鄉(xiāng)
    金沙江文藝(2019年2期)2019-11-13 13:12:10
    從“長(zhǎng)生之術(shù)”到“養(yǎng)生之術(shù)”——中醫(yī)怎么抗衰老
    孫思邈的長(zhǎng)生之道——飲食之道
    如何才能做到回歸課本
    《擇天記》CP:喜歡你是我的秘密
    我的長(zhǎng)生天 我的厚土地
    草原歌聲(2016年1期)2016-11-15 05:46:52
    圣主本命長(zhǎng)生祝延碑
    十長(zhǎng)生王國(guó)安:開(kāi)啟韓后大牌時(shí)代
    桃花朵朵開(kāi)
    作家(2009年11期)2009-12-04 07:51:08
    成人国语在线视频| 夜夜躁狠狠躁天天躁| 脱女人内裤的视频| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| videosex国产| 欧美色欧美亚洲另类二区| 亚洲在线自拍视频| 国产成人欧美| 1024香蕉在线观看| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 国产久久久一区二区三区| 午夜激情福利司机影院| 国产一区在线观看成人免费| 女人高潮潮喷娇喘18禁视频| 欧美三级亚洲精品| 岛国在线观看网站| 老司机深夜福利视频在线观看| 人人澡人人妻人| 黄色丝袜av网址大全| 十分钟在线观看高清视频www| xxxwww97欧美| 国产v大片淫在线免费观看| 成人三级做爰电影| 欧美日韩亚洲国产一区二区在线观看| 午夜福利一区二区在线看| 午夜福利欧美成人| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色| netflix在线观看网站| 999久久久国产精品视频| 99精品欧美一区二区三区四区| www.www免费av| 欧美中文综合在线视频| 亚洲三区欧美一区| 18禁国产床啪视频网站| 1024手机看黄色片| 一区二区三区国产精品乱码| 91字幕亚洲| 亚洲熟妇熟女久久| 99精品久久久久人妻精品| 看免费av毛片| 成人国产综合亚洲| 日韩欧美 国产精品| 999久久久精品免费观看国产| а√天堂www在线а√下载| 亚洲精品中文字幕一二三四区| 久久亚洲真实| 午夜老司机福利片| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 欧美日韩精品网址| 久久欧美精品欧美久久欧美| 男女午夜视频在线观看| 久久99热这里只有精品18| 琪琪午夜伦伦电影理论片6080| 一区二区日韩欧美中文字幕| 亚洲精品美女久久久久99蜜臀| 长腿黑丝高跟| 国产精品精品国产色婷婷| 欧美性猛交黑人性爽| 国产亚洲精品久久久久5区| 夜夜爽天天搞| 黄色视频,在线免费观看| 黄片大片在线免费观看| 免费在线观看亚洲国产| 成人18禁在线播放| 精品久久久久久久人妻蜜臀av| 欧美精品啪啪一区二区三区| 欧美三级亚洲精品| 美女大奶头视频| 久久久久久久久久黄片| 亚洲性夜色夜夜综合| www.www免费av| aaaaa片日本免费| 成人18禁在线播放| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区mp4| 人人妻,人人澡人人爽秒播| 99re在线观看精品视频| 国产真人三级小视频在线观看| 正在播放国产对白刺激| 日韩大尺度精品在线看网址| 两性午夜刺激爽爽歪歪视频在线观看 | 成人亚洲精品一区在线观看| 99国产精品一区二区蜜桃av| 后天国语完整版免费观看| 亚洲成av人片免费观看| 在线看三级毛片| 精品久久蜜臀av无| 高潮久久久久久久久久久不卡| 日韩国内少妇激情av| 国产爱豆传媒在线观看 | 国产精品,欧美在线| 男人的好看免费观看在线视频 | 亚洲五月天丁香| 男人舔奶头视频| 天天躁夜夜躁狠狠躁躁| 精品电影一区二区在线| 色综合亚洲欧美另类图片| 叶爱在线成人免费视频播放| 黄片大片在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 看免费av毛片| 国语自产精品视频在线第100页| 午夜福利在线在线| 99久久无色码亚洲精品果冻| xxx96com| 午夜视频精品福利| 亚洲av第一区精品v没综合| 99久久综合精品五月天人人| 亚洲 欧美 日韩 在线 免费| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 国产精品综合久久久久久久免费| av在线天堂中文字幕| 十分钟在线观看高清视频www| 欧美激情久久久久久爽电影| 久久国产乱子伦精品免费另类| 一a级毛片在线观看| 午夜免费鲁丝| 91九色精品人成在线观看| 少妇 在线观看| 2021天堂中文幕一二区在线观 | 国产av又大| 国产久久久一区二区三区| 亚洲中文日韩欧美视频| 亚洲国产高清在线一区二区三 | 免费看美女性在线毛片视频| 在线观看免费日韩欧美大片| 色综合欧美亚洲国产小说| 欧美一级a爱片免费观看看 | 黄网站色视频无遮挡免费观看| 午夜福利一区二区在线看| 午夜精品在线福利| 欧美 亚洲 国产 日韩一| 国产蜜桃级精品一区二区三区| 给我免费播放毛片高清在线观看| 中文资源天堂在线| 国产精品免费一区二区三区在线| 国产视频内射| 午夜激情av网站| 十八禁网站免费在线| 午夜激情福利司机影院| 久久国产精品影院| av在线天堂中文字幕| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 国产一区二区在线av高清观看| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费| 久久久久久国产a免费观看| xxxwww97欧美| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| 日本免费a在线| 男人操女人黄网站| 色婷婷久久久亚洲欧美| АⅤ资源中文在线天堂| 午夜久久久在线观看| 亚洲中文字幕一区二区三区有码在线看 | 麻豆成人av在线观看| 亚洲av成人av| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 天天添夜夜摸| 亚洲第一电影网av| 亚洲精品在线观看二区| 青草久久国产| 又黄又爽又免费观看的视频| 长腿黑丝高跟| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 亚洲国产精品久久男人天堂| 午夜福利在线在线| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 亚洲av成人av| 色av中文字幕| 人人妻,人人澡人人爽秒播| 欧美黑人巨大hd| 日日夜夜操网爽| 97人妻精品一区二区三区麻豆 | 成年版毛片免费区| 国产三级黄色录像| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 亚洲五月天丁香| 国产1区2区3区精品| 搡老岳熟女国产| 久久性视频一级片| 美女国产高潮福利片在线看| 天堂√8在线中文| 黄片大片在线免费观看| videosex国产| 免费看美女性在线毛片视频| 给我免费播放毛片高清在线观看| svipshipincom国产片| 757午夜福利合集在线观看| 午夜福利在线在线| 一二三四社区在线视频社区8| 亚洲av第一区精品v没综合| 最新在线观看一区二区三区| 热re99久久国产66热| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 色播亚洲综合网| 欧美成人免费av一区二区三区| 又黄又粗又硬又大视频| 午夜福利18| 淫秽高清视频在线观看| 精品一区二区三区四区五区乱码| 亚洲国产精品合色在线| 亚洲av日韩精品久久久久久密| 久久伊人香网站| 好男人电影高清在线观看| 一级片免费观看大全| 亚洲av中文字字幕乱码综合 | 91麻豆av在线| 国产高清视频在线播放一区| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| av有码第一页| 欧美久久黑人一区二区| 搡老岳熟女国产| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | av电影中文网址| 精品乱码久久久久久99久播| 亚洲精品国产一区二区精华液| 成人av一区二区三区在线看| 丝袜人妻中文字幕| 欧美激情久久久久久爽电影| 国内毛片毛片毛片毛片毛片| 久久青草综合色| 亚洲精品久久成人aⅴ小说| 99久久国产精品久久久| 一区二区三区激情视频| a级毛片在线看网站| 热re99久久国产66热| 1024香蕉在线观看| 性欧美人与动物交配| 老司机靠b影院| 久久久久久久精品吃奶| 亚洲专区字幕在线| a级毛片a级免费在线| 91大片在线观看| 亚洲成人精品中文字幕电影| 国内精品久久久久久久电影| 成人特级黄色片久久久久久久| 制服丝袜大香蕉在线| 怎么达到女性高潮| 国产精品,欧美在线| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| av在线播放免费不卡| 黄色成人免费大全| 中文字幕人成人乱码亚洲影| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲av嫩草精品影院| 黑人欧美特级aaaaaa片| 午夜两性在线视频| 午夜免费观看网址| 久9热在线精品视频| 黄片播放在线免费| 一区二区三区高清视频在线| 久久精品影院6| 可以在线观看的亚洲视频| 日日夜夜操网爽| av中文乱码字幕在线| 丝袜美腿诱惑在线| 操出白浆在线播放| 婷婷亚洲欧美| 精品乱码久久久久久99久播| 午夜激情福利司机影院| 日本熟妇午夜| 两个人免费观看高清视频| 香蕉国产在线看| 日日爽夜夜爽网站| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 亚洲第一av免费看| 性欧美人与动物交配| 大型黄色视频在线免费观看| 1024手机看黄色片| 亚洲电影在线观看av| 一个人观看的视频www高清免费观看 | 亚洲一码二码三码区别大吗| 亚洲专区字幕在线| 天天添夜夜摸| 国产亚洲精品av在线| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 国产精品久久久av美女十八| 久99久视频精品免费| 亚洲三区欧美一区| 久久久久九九精品影院| 精品不卡国产一区二区三区| 日本 欧美在线| 日本熟妇午夜| 日日干狠狠操夜夜爽| 99久久99久久久精品蜜桃| 午夜福利一区二区在线看| 91麻豆av在线| 国产真人三级小视频在线观看| 两人在一起打扑克的视频| 一进一出抽搐gif免费好疼| 欧美成人性av电影在线观看| 伦理电影免费视频| 桃色一区二区三区在线观看| 国产精品电影一区二区三区| 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美精品济南到| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 一区二区三区精品91| 50天的宝宝边吃奶边哭怎么回事| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 中文在线观看免费www的网站 | 曰老女人黄片| 中文字幕人妻丝袜一区二区| 精品一区二区三区四区五区乱码| xxx96com| 午夜免费成人在线视频| 免费女性裸体啪啪无遮挡网站| 中文在线观看免费www的网站 | 国产精品日韩av在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品二区激情视频| 日韩欧美国产在线观看| 国产91精品成人一区二区三区| 免费在线观看成人毛片| 高潮久久久久久久久久久不卡| 久久久久精品国产欧美久久久| 亚洲三区欧美一区| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 又大又爽又粗| 一级毛片女人18水好多| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 日本一本二区三区精品| 黄色 视频免费看| 久久中文字幕人妻熟女| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 亚洲国产毛片av蜜桃av| 桃红色精品国产亚洲av| 热re99久久国产66热| 久久精品夜夜夜夜夜久久蜜豆 | 日韩三级视频一区二区三区| 成人亚洲精品av一区二区| 国产在线观看jvid| 老司机福利观看| 国产一区在线观看成人免费| √禁漫天堂资源中文www| 国产主播在线观看一区二区| 国产精品 欧美亚洲| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品电影一区二区三区| 欧美性猛交黑人性爽| 一区二区三区国产精品乱码| 俄罗斯特黄特色一大片| 欧美精品啪啪一区二区三区| 日本 欧美在线| 久热爱精品视频在线9| av超薄肉色丝袜交足视频| 欧美不卡视频在线免费观看 | 亚洲第一电影网av| 亚洲av美国av| 亚洲精品av麻豆狂野| 国产一区二区在线av高清观看| 国产激情欧美一区二区| 免费高清在线观看日韩| 熟妇人妻久久中文字幕3abv| 国产成人精品无人区| 欧美日韩精品网址| 一区二区三区精品91| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 久久婷婷成人综合色麻豆| 中文字幕人妻熟女乱码| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 亚洲自拍偷在线| 久久久久国产一级毛片高清牌| 亚洲国产看品久久| 国产人伦9x9x在线观看| 天堂√8在线中文| 久久 成人 亚洲| 国产精品爽爽va在线观看网站 | 99在线人妻在线中文字幕| 免费在线观看日本一区| 日韩视频一区二区在线观看| 99国产精品一区二区三区| 亚洲一码二码三码区别大吗| 精品少妇一区二区三区视频日本电影| 久久午夜亚洲精品久久| www.自偷自拍.com| 久久精品国产99精品国产亚洲性色| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看| 国产一卡二卡三卡精品| 啦啦啦观看免费观看视频高清| 日韩三级视频一区二区三区| 搡老熟女国产l中国老女人| 免费女性裸体啪啪无遮挡网站| 日韩精品中文字幕看吧| 日韩高清综合在线| 999精品在线视频| 操出白浆在线播放| 在线视频色国产色| 亚洲国产中文字幕在线视频| 日韩欧美三级三区| 男男h啪啪无遮挡| 日韩视频一区二区在线观看| 欧美日韩瑟瑟在线播放| 久久精品91无色码中文字幕| 999精品在线视频| 午夜老司机福利片| 巨乳人妻的诱惑在线观看| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 9191精品国产免费久久| av视频在线观看入口| 又黄又爽又免费观看的视频| 大香蕉久久成人网| 日韩精品青青久久久久久| svipshipincom国产片| 久久精品亚洲精品国产色婷小说| 色播亚洲综合网| 国产视频一区二区在线看| 1024手机看黄色片| 女人高潮潮喷娇喘18禁视频| 国产精品久久电影中文字幕| 精品乱码久久久久久99久播| 精品高清国产在线一区| 国产亚洲精品久久久久5区| 午夜激情av网站| 午夜福利视频1000在线观看| 亚洲 国产 在线| 久久草成人影院| 日韩欧美一区视频在线观看| 91老司机精品| 淫秽高清视频在线观看| 亚洲一区中文字幕在线| 91国产中文字幕| 午夜视频精品福利| 狂野欧美激情性xxxx| 黄色女人牲交| 中文字幕av电影在线播放| 国内毛片毛片毛片毛片毛片| 少妇 在线观看| 久久香蕉激情| 97人妻精品一区二区三区麻豆 | 欧美在线黄色| 两个人看的免费小视频| 久久久国产精品麻豆| 欧美精品啪啪一区二区三区| 国产亚洲av嫩草精品影院| 亚洲全国av大片| 在线av久久热| 国产欧美日韩一区二区三| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人| 亚洲电影在线观看av| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 日韩欧美国产在线观看| a级毛片a级免费在线| 成人国产综合亚洲| 国产欧美日韩一区二区精品| 国产亚洲精品第一综合不卡| 天堂影院成人在线观看| 视频区欧美日本亚洲| www日本在线高清视频| 丝袜人妻中文字幕| 久久欧美精品欧美久久欧美| 国产激情久久老熟女| 亚洲av成人av| 超碰成人久久| 久久九九热精品免费| 国产av在哪里看| svipshipincom国产片| 啦啦啦 在线观看视频| 搞女人的毛片| 国产色视频综合| 最好的美女福利视频网| 国产av一区在线观看免费| 国产三级黄色录像| 亚洲一区中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品999在线| 国产又黄又爽又无遮挡在线| 亚洲性夜色夜夜综合| 国产精品免费视频内射| 人人妻人人澡人人看| 国产精品香港三级国产av潘金莲| 看免费av毛片| 亚洲一码二码三码区别大吗| 99久久久亚洲精品蜜臀av| 国产单亲对白刺激| 亚洲久久久国产精品| av电影中文网址| 久久久久九九精品影院| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| 听说在线观看完整版免费高清| 久热爱精品视频在线9| 人人妻人人澡人人看| 亚洲片人在线观看| 看片在线看免费视频| 亚洲黑人精品在线| 日韩欧美 国产精品| 色综合欧美亚洲国产小说| 免费高清视频大片| 女性被躁到高潮视频| 一本一本综合久久| 亚洲国产毛片av蜜桃av| 国内精品久久久久精免费| 性色av乱码一区二区三区2| 妹子高潮喷水视频| 在线观看日韩欧美| 午夜福利在线在线| 成年女人毛片免费观看观看9| 国产一区在线观看成人免费| 午夜福利成人在线免费观看| 国产真人三级小视频在线观看| 亚洲欧美精品综合久久99| 久久国产乱子伦精品免费另类| 免费看日本二区| 波多野结衣高清无吗| 免费在线观看成人毛片| 亚洲真实伦在线观看| 国产成人欧美在线观看| 97人妻精品一区二区三区麻豆 | 欧美成人午夜精品| 国产精华一区二区三区| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 日韩免费av在线播放| 最新在线观看一区二区三区| 午夜福利欧美成人| 级片在线观看| 老汉色av国产亚洲站长工具| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 又黄又爽又免费观看的视频| 欧美成人一区二区免费高清观看 | 午夜福利成人在线免费观看| 国产精品久久久人人做人人爽| 久久久久久久久免费视频了| 波多野结衣高清作品| 免费一级毛片在线播放高清视频| 黄色视频,在线免费观看| 女性被躁到高潮视频| 这个男人来自地球电影免费观看| 悠悠久久av| 日韩一卡2卡3卡4卡2021年| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品1区2区在线观看.| 99热6这里只有精品| 在线永久观看黄色视频| 一本综合久久免费| 国产欧美日韩一区二区精品| 久久精品aⅴ一区二区三区四区| 亚洲av成人一区二区三| а√天堂www在线а√下载| 美女国产高潮福利片在线看| 黄片大片在线免费观看| 亚洲全国av大片| 精品日产1卡2卡| 亚洲精品国产精品久久久不卡| 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 久久久久久久久久黄片| 岛国在线观看网站| 99热6这里只有精品| 久久久久久久久久黄片| 色婷婷久久久亚洲欧美| 午夜激情福利司机影院| 亚洲av美国av| 欧美不卡视频在线免费观看 | 国产精品亚洲美女久久久| 最近在线观看免费完整版| 婷婷六月久久综合丁香| 黑人操中国人逼视频| tocl精华| 久久精品国产亚洲av香蕉五月| 亚洲一区二区三区不卡视频| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇被粗大的猛进出69影院| 又黄又粗又硬又大视频| 国产极品粉嫩免费观看在线| 欧美午夜高清在线| 搞女人的毛片| 国产国语露脸激情在线看| 在线免费观看的www视频| 美女国产高潮福利片在线看| 亚洲欧美激情综合另类| 亚洲激情在线av| 欧美性长视频在线观看| 黄色片一级片一级黄色片| 欧美黄色片欧美黄色片| 国产精品亚洲美女久久久| 亚洲精品久久国产高清桃花| 999久久久国产精品视频|