• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Voltage-controlled Kosterlitz–Thouless transitions and various kinds of Kondo behaviors in a triple dot device?

    2017-08-30 08:26:20YongChenXiong熊永臣JunZhang張俊WangHuaiZhou周望懷andAmelLaref
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張俊

    Yong-Chen Xiong(熊永臣),Jun Zhang(張俊),Wang-Huai Zhou(周望懷),and Amel Laref,3

    1 School of Science,and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology,Shiyan 442002,China

    2 Department of Physics,Faculty of Science,National University of Singapore,Singapore 117551,Singapore

    3 Department of Physics and Astronomy,Science Faculty,King Saud University,Riyadh 11451,Saudi Arabia

    Voltage-controlled Kosterlitz–Thouless transitions and various kinds of Kondo behaviors in a triple dot device?

    Yong-Chen Xiong(熊永臣)1,2,?,Jun Zhang(張俊)1,Wang-Huai Zhou(周望懷)1,and Amel Laref1,3

    1 School of Science,and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology,Shiyan 442002,China

    2 Department of Physics,Faculty of Science,National University of Singapore,Singapore 117551,Singapore

    3 Department of Physics and Astronomy,Science Faculty,King Saud University,Riyadh 11451,Saudi Arabia

    The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson’s numerical renormalization group technique,focusing on the effects of level spacings between neighboring dot sites.By keeping dot 2 at the half-filled level and tuning the level differences,it is demonstrated that the system transits from local spin quadruplet to triplet and doublet sequently,and three kinds of Kondo peaks at the Fermi surface could be found,which are separated by two Kosterlitz–Thouless type quantum phase transitions and correspond to spin-3/2,spin-1,and spin-1/2 Kondo effect, respectively.To obtain a detailed understanding of these problems,the charge occupation,the spin–spin correlation,the transmission coefficient,and the temperature-dependent magnetic moment are shown,and necessary physical arguments are given.

    triple quantum dot,Kosterlitz–Thouless transition,Kondo effect,critical phenomena

    1.Introduction

    For the last several years,systems of coupled multi-quantum dots have gained significant interests both experimentally[1–6]and theoretically,due to rapid progress in spintronics[7–9]and quantum information.[10,11]An important example of a multi-dot system is the triple quantum dots(TQD).Such structure exhibits many interesting quantum phenomena in the strong correlation limit.For instance,the Aharanov–Bohm(AB)effect and magnetic frustration are studied in systems with triangular geometry,[12–15]and the multi-channel Kondo effect related to a number of Fermi-liquid and non-Fermi-liquid behaviors are investigated in various TQD models.[16–20]Furthermore,TQD systems are also considered as ideal models to show the Ruderman–Kittel–Kasuya–Yosida(RKKY)interaction,[21,22]the quantum interference,[23–26]and various kinds of quantum phase transition(QPT).[13,15,27–32]Basically,these behaviors depend closely on the organizations of the quantum dots and the conduction leads,as well as the coupling/interaction elements which have been taken into account.

    Within the above phenomena,the level difference plays an important role as suggested in some double quantum dot (DQD)structures.For instance,a local spin triplet–singlet transition of Kosterlitz–Thouless(KT)type is found as the difference increases.[33]For a parallel DQD system,it is revealed that the triplet–doublet transition could be KT type orfirst order depends on the breaking of the spin-rotation SU(2) symmetry,[34]and the linear conductance is shown to have an asymmetric line shape of the Fano resonance when the interdot tunneling coupling is taken into account.[35]In a spinless two-level dot system,charge oscillation occurs in the presence of level spacing as the gate voltage sweeps.[36]These works are limited in the double dot structures,but less is studied in the TQD system.Compared to the double dot system,TQD structure exhibits more attractive behaviors,owing to its complex geometry and much more Feynman paths for the electron transmission.[25]Furthermore,experimentally speaking,scaling up the number of spin-1/2 qubits is an inevitable step towards the realization of quantum computation, not only for extending the qubit system,but also for performing practical quantum algorithms.[37]Very recently,plenty of experimental works have been carried out on this topic in TQD systems,[5,6,38–41]therefore,to illustrate the electronic transport,phase transition and relevant quantum phenomena in such systems also becomes an emergent task.

    In this paper,we consider a parallel TQD system with level spacings between neighboring dot sites.With the help of the numerical renormalization group(NRG)method,and fixing dot 2 at the half-filled level,we demonstrated that the level spacings play important roles in the linear conductance and the QPT.Our main findings include the following:by tuning the level differences,the ground state of the system transitsfrom local spin quadruplet to triplet,then doublet sequentially, and three kinds of Kondo peaks at the Fermi surface could be found,corresponding to spin-3/2,spin-1,and spin-1/2 Kondo effect,respectively.Two Kosterlitz–Thouless(KT)type transitions are clarified,resulting from asymmetric Kondo couplings between conduction leads and different dots,as well as the unequal charge occupation of three dots.To handle these problems,some important physical quantities are shown,and necessary physical arguments are given.

    The outline of the paper is as follows.In Section 2,we define the model Hamiltonian of the TQD system,and present the calculation algorithms and formulations.In Section 3,we show the quantum phase transitions and transport properties with respect to the increasing level spacings.Finally,a summary is given in Section 4.

    2.Model and method

    We illustrate the second-quantized form of the model Hamiltonian for the triple dot device in Fig.1,

    where the first part is for the electrons in the dots,

    Here,εiis the energy level for the i-th dot.For simplicity, we label two level spacings as Δ1=ε2?ε1and Δ2=ε3?ε2, which could be controlled by external gate voltage.is the creation operator for the electron with spin-σ(=↑or↓).U is the on-site(intra-dot)Coulomb repulsion,andni=ni↑+ni↓are the number operators.

    Fig.1.Schematic view of the parallel TQD device connected to the L and R leads.

    The second part is for the non-interacting electrons in the conduction lead,wherecreate a spin-σ electron of wave vector k and energy εkin lead ν(ν=R or L).By contrast,the last term is for the coupling interaction energy between the conduction lead and the dots,where Vkis the tunnel matrix element,and is assumed to be σ-independent,identical for three dots,and also symmetric to the right and left leads.

    In the following discussion,we concentrate on the quantum behaviors in the strong correlation limit,hence a sophisticated theoretical technique must be adopted.Therefore,we use the celebrated NRG method[42–44]to solve Eq.(1).To simplify the problem into a more convenient form,we first assume the density of state for the conduction lead ρ0=1/(2D)and the hybridization function(dot–lead coupling)Γ=2πρ0|Vk|2are constant.Here,D is the half width of the conduction band, and is chosen for the energy unit throughout this paper.The strong correlation limit is defined as U?Γ,and the number of low-lying states kept at each iteration is about 3000.Furthermore,the discretization parameter Λ,which characterizes the logarithmic discretization of the conduction band,is set to be 1.8–2.2.

    The total charge number Ntotand the local spinare defined as

    where Siis the local spin operator of dot i.

    The linear conductance through the device G is determined by the Landauer formula[45]

    Here,f(ω)is the Fermi function and T(ω)is the transmission probability.The retarded dot Green function is written asThus

    If we choose the Fermi energy at εkf=0,G at zero temperature in the limit of zero bias is given by

    Finally,we define the temperature-dependent magnetic moment of the dotsμ2(T)at temperature T as

    where χ(T)is the magnetic susceptibility,kBis the Boltzmann constant,g andμBare the electronic g factor and the Bohr magneton,respectively.〈...〉denotes the thermodynamic expectation value,and the subscript 0 labels the case without quantum dots.

    3.Results and discussion

    In this section,we study the phase transition and the electronic transport of the TQD device in the strongly correlated regime,focusing on the phenomena when the level differences sweep upwards.The on-site Coulomb repulsion,the dot-lead coupling,and the charge energy of dot 2 are fixed at U=0.1, Γ=0.01,and ε2=?U/2,respectively,throughout this paper. For convenience,we choose Δ2=Δ1/2.However,it is worth noting that our conclusions are robust for general cases,and do not really require Δ1and Δ2to satisfy the above relation.

    Fig.2.(color online)(a)Charge occupation〈ni〉on each dot,(b)spin correlation〈SiS j〉between dotsiand j,and(c)local spinof the dots at zero temperature as functions of Δ1.Here,Γ=0.01,U=0.1, ε2=?U/2 and Δ2=Δ1/2.

    Let us start our discussion from the quantum phase transition for the TQD system.In Figs.2(a)–2(c),we depict the charge occupation〈ni〉of each dot,the spin correlation〈SiSj〉 between dotsiand j,and the localspinon the dots as functions of Δ1.We can see when the level differences are absent, three dots are singly occupied with〈ni〉=1.0,since the intradot repulsion U is strong enough.In this case,〈SiSj〉≈0.20 and≈3.20,implying the local spins on three dots are arranged parallelly and a local spin quadruplet is generated,owing to the ferromagnetic RKKY interaction mediated by the Kondo exchange coupling between electrons on the leads and those on the dots.It is noted that〈SiSj〉andcould not reach the ideal values of 1/4 and 15/4 for spin quadruplet,as a finite U/Γ is adopted.With increasing Δ1,the level ε1decreases,while ε3increases but with a lower speed.Therefore,〈n1〉grows to 2.0 gradually,while〈n2〉and〈n3〉retain nearly at 1.0.In this process,changes continuously to about 1.75,describing that the ground state is dominated by the spin triplet.In this triplet,dot 1 is almost doubly occupied,hence〈S1S2〉and〈S1S3〉decrease to about 0,while〈S2S3〉has nearly no change.As Δ1increases continuously,〈n3〉decreases to the regime n3≈0.In this case,the system maps to the single impurity case and the ground state is a local spin doublet with〈SiSj〉≈0 and≈0.75.

    Fig.3.(color online)(a)–(c)Transmission coefficient T(ω)at zero temperature for various Δ1.The remaining parameters are the same as in Fig.2.

    Figures 3(a)–3(c)show the transmission coefficient T(ω) at zero temperature for various Δ1.It is seen that the spectral weight is symmetric to the Fermi level ω=0 when Δ1=0, since Eq.(2)satisfies particle–hole(p–h)symmetry.Two Coulomb peaks located at ω=±U/2 are found,referring to the process of annihilating(creating)an additional electron (hole)on the bonding orbitalBesides,a Kondo peak could also be seen at the Fermi level, which reaches the unitary limit of 2e2/h corresponding to full conductance.It could be attributed to the process where the itinerant electron screens a local spin-1/2 degree of freedom and results in a partially screened spin-3/2 Kondo effect.[15,21]As Δ1increases,the spectral weight moves to the left and is not symmetric to ω=0,for the p–h symmetry is broken and Ntotis away from a triply occupied state.In this process,the amplitude of the Kondo resonance peak decreases, implying that the linear conductance is reduced slightly(see Δ1=0.043 in panel(a)).As Δ1exceeds the first critical point=0.0462,a sharp Kondo peak appears at ω=0 (see Δ1=0.05 in Fig.3(b)),which is related to the partially screened spin-1 Kondo effect,and originates from the screen-ing of the local spin triplet between dot 2 and 3 by the conduction electrons.With increasing Δ1,the spectral weight moves away from ω=0 and the Kondo peak is broadened,indicating a decrease of the conductance(e.g.,Δ1=0.07).When Δ1grows larger than the second critical=0.0863,another sharp Kondo peak is observed at the Fermi surface(see Δ1=0.10 in panel(c)),which results from the antiferromag-netic Kondo coupling between the conduction leads and dot 2, since dot 1 is almost doubly occupied and dot 3 is empty.As Δ1grows continuously,the Kondo peak keeps at ω=0,for the TQD is stable in the spin doublet(see Δ1=0.16).

    To get more information about the phase transition,we show T(ω)on the triplet side near=0.0462 in Fig.4(a). One finds that the width of the spin-1 Kondo peak W1enlarges with increasing Δ1.Here,the width of the spin-1 Kondo peak is defined as the half width at half maximum of the Kondo peak.Figure 4(b)suggests that W1depends exponentially on the distance to the critical pointand can be adequately described using an exponential functionwhere the fitting parameters are given by P1=?0.0192,P2=3.9409,and P3=0.0552. It is seen that the fitting function(solid line)agrees very well with our NRG results(scatter dots).This behavior describes that the quadruplet–triplet transition atis a KT transition.Figure 4(c)gives T(ω)for various Δ1on the doublet side near.One may also find that the width of the spin-1/2 Kondo peak W2approaches zero exponentially as Δ1is close to,and can be described by an exponential functionHere,the fitting parameters are P4=?0.0019,P5=6.4015,P6=0.0431.Figure 4(d)indicates that the fitting function(solid line)agrees very well with the NRG results(scatter dots),illustrating the triplet–doublet transition is also of the KT type.

    To exhibit more information about the low-temperature scenario,we presentμ2(T)for different Δ1in Fig.5.The upmost curve is for the case of Δ1=0.It is seen that TQD goes through four different regimes as T decreases.For example,when T is high enough(e.g.,T>U),the electrons on three dots are independent,then each dot contributes 1/8 toμ2(T).As T decreases to T<U(e.g.,T~0.01),the electrons are then in the local moment regime,thus the full-and zero-occupied states are strongly suppressed.Therefore, each of them contributes 1/4 toμ2(T).When T decreases to the order of the RKKY interaction(e.g.,T~0.001),the electrons on three dots form a spin quadruplet and contribute Sdot(Sdot+1)/3=5/4 toμ2(T).As a result,μ2(T)grows to a higher spin stage.Here,μ2(T)in the local moment regime (μ2(T)~0.62)and the RKKY regime(μ2(T)~0.80)are smaller than the ideal values,for the TQD is not in a pure ground state in these temperature regimes.When T reduces to the Kondo temperature scale(e.g.,T~10?7),the itinerant electron screens a local spin-1/2 degree of freedom,thus one finds an obvious drop in μ2(T)and μ2(T)~0.67 at low temperature.As Δ1increases,the height ofμ2(T)in the RKKY regime is reduced,since the possibilities of generating the RKKY interaction decreases due to increasing double occupancy on dot 1.On the other hand,μ2(T)at low temperature μ2(T=0)decreases exponentially.When Δ1is large enough (e.g.,Δ1=0.052),μ2(T=0)≈0.25,since in this case the spin triplet is partially screened by the conduction leads,and the remaining spin-1/2 degree of freedom contribute toμ2(T). As Δ1grows continuously,μ2(T=0)reduces exponentially again.When Δ>,μ2(T)→0 at low temperature,for in this regime the local spin singlet is totally screened by the conduction electrons.

    Fig.4.(color online)(a)T(ω)on the triplet side near the first critical points=0.0462.The curves from top to bottom on the left side are for Δ1=0.051 to 0.060 in steps of 0.001.(b)Width of the spin-1 Kondo peak W1 (scatter dots)and its fitting exponential functions(solid lines).(c)T(ω)on the doublet side near the second critical point=0.0863.The curves from top to bottom on the right side are for Δ1=0.091 to 0.099 in steps of 0.001.(d) Width of the spin-1/2 Kondo peak W2(scatter dots)and its stimulant functions (solid lines).The remaining parameters are the same as in Fig.2.

    Fig.5.Total magnetic moment of the TQDμ2(T)as a function of temperature T according to different Δ1,the curves from top to bottom are for Δ1=0,0.04,0.046 to 0.050 in steps of 0.001,0.052(dash line),and Δ1=0.08,0.087 to 0.09 in steps of 0.001,0.094,0.1,respectively.The remaining parameters are the same as in Fig.2.

    To explore the physical origination of the KT transitions, we change Eq.(1)to a three impurities spin-1/2 Kondo model by adopting the Schrieffer–Wolff transformation.[?,21]The effective Hamiltonian then could be written as

    With increasing Δ1,Jkiare asymmetric.On the other hand,the charge occupation in three dots also become different.The symmetric broken by these features are the origination of the KT transitions,similar to a two-level dot system with level difference[33]and inter-dot Coulomb repulsion.[34]Furthermore,it is worth noting that one can estimate the critical points by considering the energy levels of an isolated TQD model.For instance,the energy level for the spin quadruplet can be written as EQ=ε1+ε2+ε3=?3U/2.While that for the triplet is ET=2ε1+ε2+ε3+U=?U?3Δ1/2, and the level for the doublet is given by ED=2ε1+ε2+U=?U/2?2Δ1.As Δ1increases,the energy levels for the triplet and the singlet are pulled down,and eventually degenerate with the quadruplet at Δ1=U/3 and the triplet at U respectively.As a result,two QPTs of the KT type can be found atand

    4.Summary

    In conclusion,we have studied the phase transition and Kondo behavior in a triple quantum dot device with parallel organization in the strongly correlated regime.We concentrate on the effect of the level differences Δ1=ε2?ε1and Δ2=ε3?ε2.By keeping dot 2 at the half-filled level and tuning the level differences,it is shown that the ground state of the system transits from local spin quadruplet to triplet,then doublet sequentially,three kinds of Kondo peaks at the Fermi surface could be found in the transmission coefficient,which correspond to spin-3/2,spin-1,and spin-1/2 Kondo effect,respectively.Two KT type phase transitions are clarified,resulting from asymmetric Kondo couplings between the conduction leads and different dots,as well as unequal electron occupation of three dots.We believe our work not only clarifies the effect of the level difference on the phase transition and the electronic transport in a triple dot structure,but it may also afford useful guidance for spintronics and molecular electronics devices.

    [1]Vidan A,Westervelt R M,Stopa M,Hanson M and Gossard A C 2004 Appl.Phys.Lett.85 3602

    [2]Schr?er D,Greentree A D,Gaudreau L,Eberl K,Hollenberg L C L, Kotthaus J P and Ludwig S 2007 Phys.Rev.B 76 075306

    [3]Amaha S,Hatano T,Teraoka S,Tarucha S,Tokura Y,Miyazaki T,Oshima T,Usuki t,Yokoyama N 2008 Appl.Phys.Lett.92 202109

    [4]Gaudreau L,Kam A,Granger G,Studenikin S A,Zawadzki P and Sachrajda A S 2009 Appl.Phys.Lett.95 193101

    [5]Takakura T,Pioro-Ladrière M,Obata T,Shin Y S,Brunner R,Yoshida K,Taniyama T and Tarucha S 2010 Appl.Phys.Lett.97 212104

    [6]Gaudreau L,Granger G,Kam A,Aers G C,Studenikin S A,Zawadzki P,Pioro-Ladrière M,Wasilewski Z R and Sachrajda A S 2012 Nat. Phys.8 54

    [7]?uti? I,Fabian J and Sarma S D 2004 Rev.Mod.Phys.76 323

    [8]Prinz G A 1998 Science 282 1660

    [9]Wolf S A,Awschalom D D,Buhrman R A,Daughton J M,von Molnar S,Roukes K L,Chtchelkanova A Y and Treger D M 2001 Science 294 1488

    [10]Loss D and DiVincenzo D P 1998 Phys.Rev.A 57 120

    [11]DiVincenzo D P 2005 Science 309 2173

    [12]Delgado F,Shim Y P,Korkusinski M,Gaudreau L,Studenikin S A, Sachrajda A S and Hawrylak P 2008 Phys.Rev.Lett.101 226810

    [13]Wang W Z 2008 Phys.Rev.B 78 235316

    [14]Anderson P W 1973 Mater.Res.Bull.8 153

    [15]Wang W Z 2007 Phys.Rev.B 76 115114

    [16]Kuzmenko T,Kikoin K and Avishai Y 2003 Europhys.Lett.64 218

    [17]?itko R and Bon?a J 2008 Phys.Rev.B 77 245112

    [18]Mitchell A K,Logan D E and Krishnamurthy H R 2011 Phys.Rev.B 84 035119

    [19]Mitchell A K,Galpin M R,Wilson-Fletcher S,Logan D E and Bulla R 2014 Phys.Rev.B 89 121105(R)

    [20]Tooski S B,Ram?ak A and Bu?ka B R 2016 Physica E 82 366

    [21]?itko R and Bon?a J 2006 Phys.Rev.B 74 045312

    [22]Xiong Y C,Wang W Z,Luo S J,Yang J T and Huang H M 2016 J. Magn.Magn.Mater.399 5

    [23]Ladrón de Guevara M L and Orellana P A 2006 Phys.Rev.B 73 205303

    [24]Webb R A,Washburn S,Umbach C P and Laibowitz R B 1985 Phys. Rev.Lett.54 2696

    [25]Fu H H and Yao K L 2010 J.Appl.Phys.108 084510

    [26]Huang R,Ming S W and Wang Y 2012 Chin.Phys.Lett.29 47201

    [27]?itko R and Bon?a J 2007 Phys.Rev.B 76 241305(R)

    [28]Mitchell A K,Jarrold T F and Logan D E 2009 Phys.Rev.B 79 085124

    [29]Mitchell A K and Logan D E 2010 Phys.Rev.B 81 075126

    [30]Mitchell A K,Jarrold T F,Galpin M R and Logan D E 2013 J.Phys. Chem.B 117 12777

    [31]Xiong Y C,Huang J and Wang W Z 2012 J.Phys.:Condens.Matter. 24 455604

    [32]Xiong Y C,Wang W Z,Yang J T and Huang H M 2015 Chin.Phys.B 24 027501

    [33]Hofstetter W and Schoeller H 2001 Phys.Rev.Lett.88 016803

    [34]Wang W Z 2011 Nanotechnology 22 205203

    [35]Ding G H,Kim C K and Nahm K 2005 Phys.Rev.B 71 205313

    [36]SindelM,Silva A,Oreg Y and von Delft J 2005 Phys.Rev.B 72 125316

    [37]Steffen L,Salathe Y,Oppliger M,Kurpiers P,Baur M,Lang C,Eichler C,Puebla-Hellmann G,Fedorov A and Wallraff A 2013 Nature 500 319

    [38]Medford J,Beil J,Taylor J M,Rashba E I,Lu H,Gossard A C and Marcus C M 2013 Phys.Rev.Lett.111 050501

    [39]Medford J,Beil J,Taylor J M,Bartlett S D,Doherty A C,Rashba E I,DiVincenzo D P,Lu H,Gossard A C and Marcus C M 2013 Nat. Nanotechnol.8 654

    [40]Takakura T,A Noiri,Obata T,Otsuka T,Yoneda J,Yoshida K and Tarucha S 2014 Appl.Phys.Lett.104 113109

    [41]Noiri A,Yoneda J,Nakajima T,Otsuka T,Delbecq M R,Takeda K, Amaha S,Allison G,Ludwig A,Wieck A D and Tarucha S 2016 Appl. Phys.Lett.108 153101

    [42]Krishna-Murthy H R,Wilkins J W and Wilson K G 1980 Phys.Rev.B 21 1003

    [43]Krishna-Murthy H R,Wilkins J W and Wilson K G 1980 Phys.Rev.B 21 1044

    [44]Bulla R,Costi T A and Pruschke T 2008 Rev.Mod.Phys.80 395

    [45]Meir Y,Wingreen N S and Lee P A 1993 Phys.Rev.Lett.70 2601

    [46]Schrieffer J R and Wolff P A 1966 Phys.Rev.149 491

    2 May 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/097102

    ?Project supported by the National Natural Science Foundation of China(Grant No.11504102),the Scientific Research Items Foundation of Hubei Educational Committee,China(Grant Nos.Q20161803 and B2016091),the Doctoral Scientific Research Foundation(Grant No.BK201407),and the Major Scientific Research Project Pre-funds of Hubei University of Automotive Technology,China(Grant No.2014XY06).

    ?Corresponding author.E-mail:xiongyc lx@huat.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張俊
    音樂教育家 張俊
    Effect of a static pedestrian as an exit obstacle on evacuation
    玩轉(zhuǎn)課本題
    Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials*
    Experimental study on age and gender differences in microscopic movement characteristics of students?
    鋼軌預(yù)打磨在地鐵線路中的運用相關(guān)闡述
    Microstructure,optical,and photoluminescence properties of β-Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures?
    唐《張俊墓志》考
    精編課本題改編練習(xí)(圓錐曲線)
    對一個數(shù)學(xué)模型的思考
    欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 丝袜脚勾引网站| 丰满人妻熟妇乱又伦精品不卡| 人成视频在线观看免费观看| 他把我摸到了高潮在线观看 | 中文字幕人妻熟女乱码| 精品国产乱码久久久久久男人| 久久精品aⅴ一区二区三区四区| a 毛片基地| 爱豆传媒免费全集在线观看| 免费女性裸体啪啪无遮挡网站| 午夜福利乱码中文字幕| 黄网站色视频无遮挡免费观看| 99九九在线精品视频| 国产高清videossex| 69精品国产乱码久久久| 母亲3免费完整高清在线观看| 国产欧美亚洲国产| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 久久免费观看电影| 精品人妻熟女毛片av久久网站| av欧美777| 人人妻,人人澡人人爽秒播| 国产亚洲av高清不卡| 中文字幕av电影在线播放| 国产精品亚洲av一区麻豆| 久久九九热精品免费| 久久女婷五月综合色啪小说| 欧美老熟妇乱子伦牲交| 国产精品影院久久| 午夜两性在线视频| 丰满少妇做爰视频| 久久影院123| 亚洲人成电影免费在线| 一区二区三区乱码不卡18| 老熟妇仑乱视频hdxx| 人妻久久中文字幕网| 亚洲精品国产av成人精品| 一个人免费在线观看的高清视频 | 久久久精品94久久精品| 亚洲人成电影观看| 午夜福利免费观看在线| 日本欧美视频一区| 黄色 视频免费看| 下体分泌物呈黄色| 国产亚洲精品一区二区www | 老司机在亚洲福利影院| 啦啦啦视频在线资源免费观看| 大片电影免费在线观看免费| 一进一出抽搐动态| 汤姆久久久久久久影院中文字幕| 免费高清在线观看日韩| 亚洲成av片中文字幕在线观看| 搡老岳熟女国产| 亚洲专区中文字幕在线| 曰老女人黄片| 美女福利国产在线| 国产亚洲午夜精品一区二区久久| 三级毛片av免费| 久久精品成人免费网站| 免费观看人在逋| 人人妻人人爽人人添夜夜欢视频| 青春草视频在线免费观看| 超碰97精品在线观看| 老司机亚洲免费影院| www.精华液| 日本一区二区免费在线视频| 51午夜福利影视在线观看| 19禁男女啪啪无遮挡网站| 一区福利在线观看| 涩涩av久久男人的天堂| 九色亚洲精品在线播放| 夫妻午夜视频| 中文字幕人妻熟女乱码| 国产精品 国内视频| 亚洲九九香蕉| 亚洲国产精品999| 欧美精品高潮呻吟av久久| 亚洲精品国产区一区二| 老司机影院成人| 久久 成人 亚洲| 午夜久久久在线观看| 亚洲熟女精品中文字幕| 久久精品成人免费网站| 久久99一区二区三区| 黄色视频,在线免费观看| 人妻一区二区av| 午夜免费观看性视频| 丝瓜视频免费看黄片| 亚洲中文字幕日韩| 国产精品熟女久久久久浪| 国产成人免费无遮挡视频| 午夜成年电影在线免费观看| 一区二区av电影网| 久久九九热精品免费| 桃红色精品国产亚洲av| 天堂中文最新版在线下载| 美女脱内裤让男人舔精品视频| 国产一区二区三区综合在线观看| 黄片小视频在线播放| 考比视频在线观看| 国产亚洲av片在线观看秒播厂| 狠狠精品人妻久久久久久综合| 久久久久国产精品人妻一区二区| 国产成+人综合+亚洲专区| 久久热在线av| 精品一区在线观看国产| av又黄又爽大尺度在线免费看| 国产一区二区在线观看av| 在线观看免费午夜福利视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av国产av综合av卡| 亚洲国产精品一区二区三区在线| 国产免费福利视频在线观看| videosex国产| 国产精品久久久久久人妻精品电影 | 国产国语露脸激情在线看| 最黄视频免费看| 一区在线观看完整版| 国产熟女午夜一区二区三区| 一区在线观看完整版| 午夜精品久久久久久毛片777| av又黄又爽大尺度在线免费看| 9色porny在线观看| 久久午夜综合久久蜜桃| 动漫黄色视频在线观看| 热99国产精品久久久久久7| 免费日韩欧美在线观看| 久久精品亚洲熟妇少妇任你| 老熟妇乱子伦视频在线观看 | 欧美成人午夜精品| 老司机影院成人| 精品少妇一区二区三区视频日本电影| 热re99久久精品国产66热6| 久久人人爽人人片av| 丰满饥渴人妻一区二区三| 热re99久久精品国产66热6| 国产欧美日韩一区二区三区在线| 精品人妻1区二区| 巨乳人妻的诱惑在线观看| 丝袜喷水一区| avwww免费| 在线观看免费视频网站a站| 考比视频在线观看| 国产欧美亚洲国产| 狠狠狠狠99中文字幕| 久久中文字幕一级| 99精国产麻豆久久婷婷| 亚洲久久久国产精品| 天天影视国产精品| 国产xxxxx性猛交| 在线观看人妻少妇| 亚洲专区中文字幕在线| 91字幕亚洲| 亚洲中文字幕日韩| 午夜视频精品福利| 好男人电影高清在线观看| 18禁观看日本| 丁香六月天网| av在线app专区| 亚洲成人免费电影在线观看| 国产精品一二三区在线看| 99热全是精品| 在线亚洲精品国产二区图片欧美| 免费在线观看影片大全网站| 飞空精品影院首页| 免费在线观看影片大全网站| 老汉色∧v一级毛片| 久久久久网色| 777久久人妻少妇嫩草av网站| 超碰成人久久| 成年人午夜在线观看视频| 中文字幕精品免费在线观看视频| av电影中文网址| 97人妻天天添夜夜摸| 欧美日韩av久久| 亚洲欧美日韩另类电影网站| 黄网站色视频无遮挡免费观看| 老司机靠b影院| 亚洲专区中文字幕在线| 国产一区有黄有色的免费视频| 丝袜喷水一区| 日韩欧美一区二区三区在线观看 | 国产一卡二卡三卡精品| 亚洲精品美女久久久久99蜜臀| 日本精品一区二区三区蜜桃| 久久精品人人爽人人爽视色| 狠狠婷婷综合久久久久久88av| 国产一区二区三区在线臀色熟女 | 久久久精品免费免费高清| 他把我摸到了高潮在线观看 | 亚洲国产看品久久| 久久亚洲国产成人精品v| 亚洲精品粉嫩美女一区| 亚洲av日韩精品久久久久久密| 亚洲精品中文字幕一二三四区 | 中文字幕人妻丝袜制服| 成人亚洲精品一区在线观看| 天堂中文最新版在线下载| 男女边摸边吃奶| 一区在线观看完整版| 爱豆传媒免费全集在线观看| 男女国产视频网站| 午夜成年电影在线免费观看| 91精品国产国语对白视频| 欧美性长视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 日韩欧美一区视频在线观看| 他把我摸到了高潮在线观看 | 亚洲 国产 在线| 国产精品久久久av美女十八| 国产91精品成人一区二区三区 | 新久久久久国产一级毛片| 男人添女人高潮全过程视频| 亚洲第一青青草原| 啪啪无遮挡十八禁网站| 国产成人免费观看mmmm| 性少妇av在线| 欧美另类亚洲清纯唯美| 久久久精品国产亚洲av高清涩受| 各种免费的搞黄视频| 亚洲精品国产色婷婷电影| 真人做人爱边吃奶动态| 美女国产高潮福利片在线看| 老司机靠b影院| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲视频免费观看视频| 女人久久www免费人成看片| 99国产精品一区二区蜜桃av | 一级,二级,三级黄色视频| 人成视频在线观看免费观看| 性色av乱码一区二区三区2| 后天国语完整版免费观看| 女人精品久久久久毛片| 久久久久久久精品精品| 久久久久网色| 国产高清视频在线播放一区 | 久久精品久久久久久噜噜老黄| 亚洲综合色网址| 国产99久久九九免费精品| 亚洲一区中文字幕在线| 国产成人欧美| av在线老鸭窝| 欧美日本中文国产一区发布| 日韩人妻精品一区2区三区| 99精品久久久久人妻精品| 欧美国产精品一级二级三级| 91精品伊人久久大香线蕉| 国产精品1区2区在线观看. | 久久久久精品人妻al黑| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 少妇的丰满在线观看| 免费在线观看日本一区| 亚洲国产精品成人久久小说| 亚洲专区中文字幕在线| 一本一本久久a久久精品综合妖精| 免费高清在线观看日韩| 两性夫妻黄色片| 日韩中文字幕视频在线看片| 看免费av毛片| 啦啦啦啦在线视频资源| 无遮挡黄片免费观看| 亚洲久久久国产精品| 日韩视频一区二区在线观看| 国产不卡av网站在线观看| 女警被强在线播放| 欧美中文综合在线视频| 日日摸夜夜添夜夜添小说| 国产亚洲欧美精品永久| 欧美另类一区| 中文字幕精品免费在线观看视频| 丝袜在线中文字幕| h视频一区二区三区| 欧美xxⅹ黑人| 精品一区二区三区四区五区乱码| 男女国产视频网站| 欧美乱码精品一区二区三区| 亚洲精品国产区一区二| 天天躁狠狠躁夜夜躁狠狠躁| 日韩熟女老妇一区二区性免费视频| 在线看a的网站| 两人在一起打扑克的视频| 精品国产乱子伦一区二区三区 | 国产真人三级小视频在线观看| 宅男免费午夜| 国产伦人伦偷精品视频| 亚洲人成电影免费在线| 黑人猛操日本美女一级片| 9191精品国产免费久久| 99热全是精品| av欧美777| 久久人妻熟女aⅴ| 国产欧美日韩综合在线一区二区| 夜夜夜夜夜久久久久| 精品第一国产精品| 美女国产高潮福利片在线看| 老熟女久久久| 亚洲精品粉嫩美女一区| 久久性视频一级片| 91麻豆av在线| 亚洲 欧美一区二区三区| 亚洲国产成人一精品久久久| 日韩视频在线欧美| 午夜福利免费观看在线| 久久性视频一级片| 午夜成年电影在线免费观看| 亚洲欧美一区二区三区久久| 中文字幕制服av| 老汉色av国产亚洲站长工具| 国产精品 国内视频| 高清av免费在线| 我要看黄色一级片免费的| 亚洲国产成人一精品久久久| 久久毛片免费看一区二区三区| 人成视频在线观看免费观看| 日韩一卡2卡3卡4卡2021年| 91老司机精品| 国产精品一二三区在线看| 国产精品香港三级国产av潘金莲| 久久国产精品大桥未久av| 女警被强在线播放| 啦啦啦中文免费视频观看日本| av天堂在线播放| 免费观看av网站的网址| 日本一区二区免费在线视频| 亚洲精品美女久久av网站| 久久久国产精品麻豆| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 妹子高潮喷水视频| 国产一卡二卡三卡精品| 欧美激情高清一区二区三区| 国产一区二区三区av在线| 一级毛片电影观看| 亚洲国产精品成人久久小说| 青春草视频在线免费观看| 叶爱在线成人免费视频播放| 国产精品秋霞免费鲁丝片| av天堂久久9| 狂野欧美激情性bbbbbb| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 高清av免费在线| 国产日韩欧美视频二区| 日韩欧美一区二区三区在线观看 | 欧美精品人与动牲交sv欧美| 99久久精品国产亚洲精品| 淫妇啪啪啪对白视频 | 欧美在线黄色| 母亲3免费完整高清在线观看| 99久久国产精品久久久| 91精品国产国语对白视频| 老熟妇仑乱视频hdxx| 考比视频在线观看| 亚洲精品自拍成人| svipshipincom国产片| 热99国产精品久久久久久7| 精品一区二区三卡| 大陆偷拍与自拍| 国产国语露脸激情在线看| 王馨瑶露胸无遮挡在线观看| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 中文字幕人妻熟女乱码| 9色porny在线观看| 亚洲专区国产一区二区| 国产精品国产av在线观看| 亚洲激情五月婷婷啪啪| 欧美另类一区| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 一区二区三区精品91| 精品国产乱子伦一区二区三区 | 亚洲黑人精品在线| 国产日韩一区二区三区精品不卡| 国产精品一二三区在线看| 成年人免费黄色播放视频| 黄色片一级片一级黄色片| 精品少妇久久久久久888优播| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 黄色片一级片一级黄色片| 久久人人爽av亚洲精品天堂| 午夜视频精品福利| 人人妻人人澡人人爽人人夜夜| 青草久久国产| 脱女人内裤的视频| 黄色 视频免费看| av有码第一页| 成人国产av品久久久| 丝袜美腿诱惑在线| 三级毛片av免费| 亚洲精品国产av成人精品| 男人添女人高潮全过程视频| 亚洲精品自拍成人| 欧美久久黑人一区二区| 丝袜在线中文字幕| 女人久久www免费人成看片| 欧美黄色淫秽网站| 丝袜脚勾引网站| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| av天堂久久9| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 亚洲精品一卡2卡三卡4卡5卡 | 大型av网站在线播放| 久久久国产一区二区| 亚洲欧美精品综合一区二区三区| 亚洲第一青青草原| 99热国产这里只有精品6| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 99久久99久久久精品蜜桃| 亚洲第一av免费看| 亚洲人成电影观看| 久久 成人 亚洲| 久久国产精品男人的天堂亚洲| 1024视频免费在线观看| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中国美女看黄片| 亚洲精品av麻豆狂野| 美女午夜性视频免费| 91国产中文字幕| 亚洲成人手机| 精品一品国产午夜福利视频| 麻豆国产av国片精品| 精品国产国语对白av| av欧美777| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 美女中出高潮动态图| 欧美精品一区二区免费开放| av电影中文网址| 亚洲av美国av| 一本—道久久a久久精品蜜桃钙片| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 午夜激情久久久久久久| 国产精品久久久久久精品古装| 免费观看av网站的网址| 亚洲情色 制服丝袜| 午夜免费成人在线视频| 久久久久国内视频| 亚洲av片天天在线观看| 午夜影院在线不卡| 后天国语完整版免费观看| e午夜精品久久久久久久| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站| av有码第一页| 男女国产视频网站| 国产精品影院久久| 亚洲国产欧美一区二区综合| 国产免费视频播放在线视频| 一区福利在线观看| 久久久国产成人免费| 亚洲精品国产av成人精品| 国产一卡二卡三卡精品| 夜夜夜夜夜久久久久| 国产视频一区二区在线看| 精品国产一区二区三区久久久樱花| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 麻豆av在线久日| 搡老熟女国产l中国老女人| 午夜福利,免费看| 成年女人毛片免费观看观看9 | 亚洲第一av免费看| 国产色视频综合| 国产在视频线精品| a级片在线免费高清观看视频| 日本撒尿小便嘘嘘汇集6| 少妇 在线观看| 久久久水蜜桃国产精品网| 久久久国产一区二区| 天天躁夜夜躁狠狠躁躁| 男女边摸边吃奶| 天天躁日日躁夜夜躁夜夜| 国产伦理片在线播放av一区| 可以免费在线观看a视频的电影网站| 亚洲精品中文字幕在线视频| 成年美女黄网站色视频大全免费| 久久 成人 亚洲| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 亚洲精品第二区| 香蕉丝袜av| 日日夜夜操网爽| 欧美老熟妇乱子伦牲交| 可以免费在线观看a视频的电影网站| 婷婷色av中文字幕| 69av精品久久久久久 | 免费av中文字幕在线| 免费黄频网站在线观看国产| 欧美日韩视频精品一区| 九色亚洲精品在线播放| 国产免费现黄频在线看| 久久影院123| 男女无遮挡免费网站观看| 国产成人av教育| 亚洲成人免费电影在线观看| 久久99一区二区三区| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 多毛熟女@视频| videos熟女内射| 国产一区二区三区av在线| 9热在线视频观看99| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 亚洲成人国产一区在线观看| 狂野欧美激情性xxxx| 韩国精品一区二区三区| 免费高清在线观看视频在线观看| 免费日韩欧美在线观看| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| h视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 桃红色精品国产亚洲av| 欧美激情久久久久久爽电影 | av不卡在线播放| 国产三级黄色录像| 黑人猛操日本美女一级片| 欧美97在线视频| 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 亚洲一区二区三区欧美精品| 欧美精品亚洲一区二区| 69av精品久久久久久 | 王馨瑶露胸无遮挡在线观看| 在线天堂中文资源库| 青青草视频在线视频观看| kizo精华| 制服人妻中文乱码| 国产精品国产av在线观看| 亚洲欧洲日产国产| 日韩 欧美 亚洲 中文字幕| 夜夜夜夜夜久久久久| av线在线观看网站| 亚洲国产av影院在线观看| 欧美日韩黄片免| 国产黄频视频在线观看| 亚洲成人免费电影在线观看| 男女边摸边吃奶| 国产精品1区2区在线观看. | 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月 | h视频一区二区三区| 777米奇影视久久| 免费少妇av软件| 十分钟在线观看高清视频www| 国产野战对白在线观看| av福利片在线| 欧美 日韩 精品 国产| 免费观看a级毛片全部| 国产一级毛片在线| 国产av又大| 啦啦啦啦在线视频资源| 国产色视频综合| 妹子高潮喷水视频| 两性夫妻黄色片| 国产无遮挡羞羞视频在线观看| 久久九九热精品免费| 欧美亚洲日本最大视频资源| 亚洲美女黄色视频免费看| 日韩中文字幕欧美一区二区| 久久性视频一级片| 久久久久久免费高清国产稀缺| 亚洲美女黄色视频免费看| 少妇粗大呻吟视频| 国产极品粉嫩免费观看在线| 成人国产一区最新在线观看| 亚洲国产av影院在线观看| 十八禁高潮呻吟视频| 国产精品亚洲av一区麻豆| 国产日韩欧美亚洲二区| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 老鸭窝网址在线观看| 亚洲国产欧美网| 深夜精品福利| 美女扒开内裤让男人捅视频| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 国产亚洲一区二区精品| 国产熟女午夜一区二区三区| 国产深夜福利视频在线观看| 大码成人一级视频| 久热这里只有精品99| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 如日韩欧美国产精品一区二区三区| 久久久久久久国产电影| e午夜精品久久久久久久| avwww免费| av网站在线播放免费| 91麻豆精品激情在线观看国产 | 国产高清国产精品国产三级| 久久亚洲国产成人精品v|