• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polaron effects in cylindrical GaAs/Al x Ga1?x As core-shell nanowires?

    2017-08-30 08:26:28HuiSun孫慧BingCanLiu劉炳燦andQiangTian田強
    Chinese Physics B 2017年9期

    Hui Sun(孫慧),Bing-Can Liu(劉炳燦),and Qiang Tian(田強),?

    1 Department of Physics,Beijing Normal University,Beijing 100875,China

    2 Department of Fundamental Courses,Academy of Armored Forces Engineering,Beijing 100072,China

    Polaron effects in cylindrical GaAs/AlxGa1?xAs core-shell nanowires?

    Hui Sun(孫慧)1,Bing-Can Liu(劉炳燦)2,and Qiang Tian(田強)1,?

    1 Department of Physics,Beijing Normal University,Beijing 100875,China

    2 Department of Fundamental Courses,Academy of Armored Forces Engineering,Beijing 100072,China

    By the fractal dimension method,the polaron properties in cylindrical GaAs/AlxGa1?xAs core-shell nanowire are explored.In this study,the polaron effects in GaAs/AlxGa1?xAs core-shell nanowire at different values of shell width and aluminum concentration are discussed.The polaron binding energy,polaron mass shift and fractal dimension parameter are numerically worked out each as a function of core radius.The calculation results show that the binding energy and mass shift of the polaron first increase and then decrease as the core radius increases,forming their corresponding maximum values for different aluminum concentrations at a given shell width.Polaron problems in the cylindrical GaAs/AlxGa1?xAs core-shell nanowire are solved simply by using the fractal dimension method to avoid complex and lengthy calculations.

    core-shell nanowire,core radius,polaron effects,fractal dimension

    1.Introduction

    Over the last few years,a lot of experimental research has been done in the low-dimensional semiconductor systems. Polaron effects play important roles in determining various optical and electronic properties observed in these systems.Polaron effects in these systems can be studied simply by using the fractal dimension framework with good accuracy.[1–7]In the past few years,the fractal dimension method has aroused a lot of interest.[1–17]The fractal dimension method proposed by He[1]has been successfully applied to model excitons,[7–11]polarons,[12]and impurities[13–16]in semiconductor materials.Among these materials,core-shell nanowires are extensively regarded as the next frontier in the applications of numerous optoelectronic and electronic equipments.[18–20]

    GaAs/AlxGa1?xAs are the important materials mainly used to fabricate these semiconductor nanowires.[21–23]However,few research studies of core-shell nanowires deal with the polaron properties,especially for GaAs/AlxGa1?xAs coreshell nanowires consisting of AlxGa1?xAs core surrounded by GaAs shell,which is of great importance for applications.[18]

    The polaron problems in heterostructures are so complicated due to the presence of a variety of phonon modes such as bulk-like phonons,interface phonons,half-space phonons, and slab phonons.Smondyrev et al.[24]proposed a simplified polaron model,in which these effects are taken into account.Polaron problems in multilayered heterostructures then can be solved simply by dealing with only one bulk phonon mode and the effective confining potential.On the basis of Smondyrev,Matos-Abiague[4]formulated a more simplified model to solve polaron problems in GaAs/AlxGa1?xAs quantum wells by the fractal dimension method.Then polaron corrections can be calculated by dealing with only one bulk phonon mode and the fractal dimension.

    In the present work,we extend the fractal dimension method formulated by Matos-Abiague to the exploration of polaron problems in GaAs shell of GaAs/AlxGa1?xAs core–shell nanowires consisting of AlxGa1?xAs core and GaAs shell.By the fractal dimension method,anisotropic interactions in the real space are assumed as isotropic interactions in an effective fractal dimension environment.The dimension parameter measures the degree of anisotropy in the real physical environment.Accordingly,all relevant anisotropic problems can be solved by introducing a single quantity,i.e.,the dimension.Thus we can model the real physical environment in a simple analyzable way by justconsidering this quantity.During the development of this work,the solution of Schr?dinger equation is involved and this is important for solving many problems in physics.[25–28]

    The rest of this paper is organized as follows.In Section 2,the fractal dimension method of dealing with the polaron effects in cylindrical GaAs/AlxGa1?xAs core-shell nanowires are explained theoretically.Numeric results and analyses are provided in Section 3.Finally some conclusions are drawn from the present study in Section 4.

    2.Model and theory

    Now we consider the problem of a bound polaron in a cylindrical GaAs/AlxGa1?xAs core-shell nanowire consisting of AlxGa1?xAs core(0≤r<r1)surrounded by GaAs shell (r1≤r<r2).We suppose that no electron can escape fromthe structure.The potential of the system is described by

    where V0is the band offset between the conduction bands of core and shell material with the shell width rw=r2?r1, and r is the radius in the cylindrical coordinate system.The GaAs/AlxGa1?xAs material has a weak electron–LO phonon coupling constant(α?1),and we will explore the case of weak coupling.The model of the structure is shown in Fig.1.

    Fig.1.Model of GaAs/Al x Ga1?x As core-shell nanowire.

    Under the effective mass approximation,we write the Schr?dinger equation of the system as

    Here,H3Ddenotes the effective mass Hamiltonian,

    In a cylindrical core-shell nanowire grown along the z direction,the corresponding eigenfunction has the form of

    where C=const,? is the polar angle,and kzis a quantum number representing the translational symmetry along the z direction.It reduces the complexity of the eigenvalue problem to two coordinates,r and ?,

    where

    We can further reduce the complexity by invoking the axial symmetry,

    wherelrefers to the electron orbital quantum number which denotes the quantized z projection of the angular momentum. The Schr?dinger equation for ψ is then

    Since the computation of kz/0 states does not bring any qualitative difference to the obtained results,we only consider the case kz=0.The Schr?dinger equation then becomes

    By means of the fractal dimension method,the polaron in actual low-dimensional structure is transformed into free polaron in a fractal dimension system.On the basis of second order perturbation theory,polaron corrections in fractal dimension can be obtained.The polaron energy shift can be calculated from[2–5]

    and we have the effective mass of the polaron as[2–5]

    In Eqs.(11)and(12),ωLOrefers to LO-phonon limiting frequency approximation without dispersive effects,D indicates the fractal dimension,α is the Fr?hlich constant,m is the effective mass of electron,functions G1(D)and G2(D)depending on D are obtained from

    and

    In Eqs.(13)and(14),Γ(x)refers to the Gamma function.The fractal dimensionality of our system is determined by[2–5]

    where k1refers to the electron wave vector in core and it can be obtained from the relationship

    The ground state eigenenergy E of the electron is then obtained by solving the Schr?dinger equation(10).

    In a cylindrical GaAs/AlxGa1?xAs core-shell nanowire, the material parameters characterizing the polaron properties in the core are different from those in the shell.Taking into account this problem,we introduce the average parameter method over all the effective fractal dimension regions. The average parameter values of the material which characterize the fractal dimension electron–phonon interaction have the forms[4]

    In Eqs.(17)–(20),ωirepresent the phonon frequencies,αiare the Fr?hlich constants in different regions,and

    represent the appearance chances of the electron in core (AlxGa1?xAs)and shell(GaAs)regions.The polaron binding energy and mass shift in cylindrical GaAs/AlxGa1?xAs coreshell nanowire then can be calculated in a quick and simple manner according to Eqs.(11),(12),and(14).Then the shell width-dependent polaron properties can be obtained on the basis of the average material parameters given by Eqs.(17)–(21).

    3.Numeric results and analyses

    As a function of the core radius in the GaAs/AlxGa1?xAs core-shell nanowire for different Al content at a given shell width rw=40?A,the polaron binding energies are worked out and shown in Fig.2.The data show that the corresponding numeric values first increase at different Al content as core radius r1increases.Then the binding energies decrease monotonically as core radius continues to increase. For large core radius the polaron binding energy stays constant over the whole range.The maximum values appear at the AlxGa1?xAs core radius r1=23?A for x=0.35,r1=28?A for x=0.3,and r1=40?A for x=0.25,respectively.The same behavior of the core-radius-dependent polaron mass shiftis observed in Fig.3.It is worth noting that different Al content obviously affects the polaron binding energy and mass shift over all the core radius range. Their values decrease with decreasing aluminum content.

    Fig.2.Variations of fractal dimension polaron binding energy with core radius in GaAs/Al x Ga1?x As core-shell nanowire at the shell width r w=40?A.

    Fig.3.Variations of fractal dimension polaron mass shift with core radius in GaAs/Al x Ga1?x As core-shell nanowire at the shell width r w=40?A.

    Figures 2 and 3 show that the polaron binding energy and mass shift first increase with increasing core radius,reaching their maximum values and then decrease.It is noted that this behavior is predicted by the research of a polaron confined in the finite-potential quantum wire.[9]

    As a function of the core radius,the values of fractal dimension parameter D relating to Figs.2 and 3 are shown in Fig.4.In Fig.4,we can see that the fractal dimension is not sensitive to the change of core radius over the whole range.It is easy for us to explain this phenomenon.The core radius, to some extent,does not exert much influence on the fractional dimension because the main polaron wave function is constrained inside the shell.Figure 4 shows that the fractal dimension tends to be a constant for very large core radius. As the core radius decreases,the fractal dimension first increases slowly,reaching peaks at the core radius r1=40?A for x=0.35,r1=45?A for x=0.3,and r1=72?A for x=0.25, respectively.Then the fractal dimension decreases slowly as core radius continues to decrease.

    In order to prove that the numeric results are reasonable,we consider the limit case.When the core radius is very large,we take x=0.3 for example,and the cylindrical GaAs/AlxGa1?xAs core-shell nanowire system is the same as a GaAs thin film quantum well with Al0.3Ga0.7As finite barriers for a polaron.In Fig.4,we can see that the fractal dimension tends to be 2.627(D≈2.627)when the core radius is very large.The polaron binding energy and polaron mass shift corresponding to D≈2.627 can be found in Figs.2 and 3.Their numerical results are E≈2.94 meV and m≈1.42,respectively,which are consistent with the results given by Matos-Abiague[4]for the same fractal dimension parameter.

    Fig.4.Variations of corresponding fractal dimension with core radius in GaAs/Al x Ga1?x As core-shell nanowire at the shell width r w=40?A.

    Fig.5.Effective length of the quantum confinement versus core radius in GaAs/Al x Ga1?x As core-shell nanowire for x=0.3 at the shell width r w=40?A.

    Furthermore,in order to explain the change regularity of the fractal dimension clearly,we relate the effective length of the quantum confinement to polaron diameter as displayed in Figs.5 and 6.In Fig.5,we can see that the effective length of the quantum confinement first increases when core radius decreases for large core radius.This is because the decrease of core radius causes the decrease of the whole core-shell nanowire radius r2,and then leads to enhanced confinement effect of the polaron.Thus the polaron wave function will spread into the core,causing the effective length of the quantum confinement to increase.Moreover,increasing effective length of the quantum confinement will lead to increasing fractal dimension parameter.When the core radius is reduced to a small enough value,the effective length of the quantum confinement decreases for polaron to tunnel the core.

    Fig.6.Polaron diameter versus core radius in GaAs/Al x Ga1?x As coreshell nanowire for x=0.3 at the shell width r w=40?A.

    In Figs.5 and 6,we take the Al content x=0.3 for example.As indicated in Eq.(15),the fractal dimension is determined by the effective length of quantum confinement and polaron diameter.A comparison between Figs.5 and 6 shows that for large core radius r1>138 A? the effective length of quantum confinement increases with core radius decreasing. On the other hand,the polaron diameter decreases as core radius decreases over the whole range,for the polaron becomes increasingly confined and compressed.Thus the effective fractal dimension increases as core radius decreases in the region r1>138 A?.When r1≤138 A?,both the effective length of quantum confinement and polaron diameter decrease as core radius decreases.However,in the region 45 A?≤r1≤138 A?, the polaron diameter decreases more intensely than the effective length of quantum confinement.Consequently,the fractal dimension continues to increase as core radius decreases in this region and reaches a peak value at the core radius r1=45 A?.In the region r1<45 A?,the scenario is just opposite,the effective length of quantum confinement decreases more intensely and the fractal dimension begins to decreasefinally.

    In Figs.2–4,we can see that the peaks of polaron binding energy,mass shift and fractal dimension drop with increasing the Al content in the core.The values of polaron binding energy and mass shift rise as Al content increases for narrow shell width,while the fractal dimension behaves in the opposite way.

    The variation relationships between core radius and the polaron binding energy in the GaAs shell at different values of Al0.3Ga0.7As and shell widths rw=30,35,40 A?,are shown in Fig.7.Corresponding function relationships of polaron mass shift are shown in Fig.8.In the case of different shell widths, the curves of polaron binding energy and mass shift also first increase for different Al content as core radius r1increases. Then they decrease as the core radius continues to increase. Their maximum values appear at the AlxGa1?xAs core radii of 72,40,and 30?A,respectively.From Figs.7 and 8,we notice that the values of polaron binding energy and mass shift drop as shell width decreases.

    Fig.7.Variations of fractal dimension polaron binding energy with core radius in GaAs/Al0.3Ga0.7As core-shell nanowire at different values of shell width r w=30,35,40?A,respectively.

    Fig.8.Variations of fractal dimension polaron mass shift with the core radius in GaAs/Al0.3Ga0.7As core-shell nanowire at different values of shell width r w=30,35,40?A,respectively.

    Fig.9.Variations of corresponding fractal dimension with core radius in GaAs/Al0.3Ga0.7As core-shell nanowire at different values of shell width r w=30,35,40?A,respectively.

    The plots of fractal dimension parameter D versus core radius for different shell width values,corresponding to Figs.7 and 8 are displayed in Fig.9.For different values of the shell width,we can see that the fractal dimension tends to be a constant for very large core radius.As the core radius decreases, the values of fractal dimension first increase slowly,reaching their peaks at core radii r1=90?A for rw=30?A,r1=60?A for rw=35?A,and r1=45?A for rw=40?A,respectively.Then the fractal dimension decreases slowly and continues to decrease as core radius increases.Remarkably,the data in Fig.9 show that the core radius,in a certain range,does not exert much influence on fractional dimension.However,the shell width has a more significant influence on fractional dimension for the three non-overlapping discrete curves,because the main polaron wave function is constrained inside the shell and the change of shell width will influence the effective length of the quantum confinement directly.

    4.Conclusions

    We present for the first time the polaron binding energy and mass shift in GaAs/AlxGa1?xAs core–shell nanowires. We use the fractal dimension method,with which the actual GaAs/AlxGa1?xAs core–shell nanowire is taken as an effective fractal dimension system.In this system,the polaron is assumed to behave in an unconfined manner.The fractal dimension measures the extent of the confinement in the real environment.In this case,polaron effects in GaAs/AlxGa1?xAs core–shell nanowires at different values of shell width and aluminum content are studied.The fractal dimension method allows the polaron properties such as polaron binding energy and mass shift to be measured in a simple analyzable way, avoiding complex calculations caused by traditional methods.In this article,core-radius-affected polaron binding energy and mass shift are obtained for GaAs/AlxGa1?xAs core–shell nanowire.It shows that both the polaron binding energy and mass shift initially rise by raising the core radius, reaching a maximum,and then decrease as the core radius in GaAs/AlxGa1?xAs core-shell nanowires continues to increase. Our calculations have some reference values for the change regulations of optical and electronic properties when the core radius or shell width changes,which are important properties of the GaAs/AlxGa1?xAs core-shell nanowires.[20,29,30]

    [1]He X F 1991 Phys.Rev.B 43 2063

    [2]Matos-Abiague A 2002 J.Phys.Condens.Matter 14 4543

    [3]Matos-Abiague A 2002 Semicond.Sci.Technol.17 150

    [4]Matos-Abiague A 2002 Phys.Rev.B 65 165321

    [5]Wu Z H,Li H,Yan L X,Liu B C and Tian Q 2013 Physica B 410 28

    [6]Wu Z H,Li H,Yan L X,Liu B C and Tian Q 2013 Superlattices Microstruct.55 16

    [7]Li H,Liu B C,Shi B X,Dong S Y and Tian Q 2015 Front.Phys.10 107302

    [8]Wu Z H,Chen L and Tian Q 2015 Int.J.Mod Phys B 29 1550213

    [9]Vartanian A L,Asatryan A L and Vardanyan L A 2013 Physica E 47 134

    [10]Christol P,Lefebvre P and Mathieu H 1993 J.Appl.Phys.5626 74

    [11]Lefebvre P,Christol P and Mathieu H 1992 Phys.Rev.B 46 13603

    [12]Thilagam A and Matos-Abiague A 2004 J.Phys.:Condens.Matter 16 3981

    [13]Gómez E R,Oliveira L E and de Dios-Leyva M 1999 J.Appl.Phys.85 4045

    [14]Mikhailov I D,Betancur F J,Escorcia R A and Sierra-Ortega J 2003 Phys.Rev.B 67 115317

    [15]Kundrotas J,Cer?kus A,A?montas S,Valusis G,Sherlikerl B and Harrison M P 2005 Phys.Rev.B 72 235322

    [16]Kundrotas J,Cer?kus A,A?montas S,Valu?is G,Halsall M P,Johannessen E and Harrison P 2007 Semicond.Sci.Technol.22 1070

    [17]Gao J and Zhang M C 2016 Chin.Phys.Lett.33 010303

    [18]Mayer B,Rudolph D,Schnell J,Mork?tter S,Winnerl J,Treu J,Müller K,Bracher G,Abstreiter G,Koblmüller G and Finley J J 2013 Nat. Commun.4 2931

    [19]Lubk A,Wolf D,Prete P,Lovergine N,Niermann T,Sturm S and Lichte H 2014 Phys.Rev.B 90 125404

    [20]Mork?tter S,Jeon N,Rudolph D,Loitsch B,Spirkoska D,Hoffmann E,D?blinger M,Matich S,Finley J J,Lauhon L J,Abstreiter G and Koblmüller G 2015 Nano Lett.15 3295

    [21]Jiang N,Parkinson P,Gao Q,Breuer S,Tan H H,Wong-Leung J and Jagadish C 2012 Appl.Phys.Lett.101 023111

    [22]Rudolph D,Funk S,D?blinger M,Mork?tter S,Hertenberger S, Schweickert L,Becker J,Matich S,Bichler M,Spirkoska D,Zardo I,Finley J J,Abstreiter G and Koblmüller G 2013 Nano Lett.13 1522

    [23]Aciksoz E,Bayrak O and Soylu A 2016 Chin.Phys.B 25 100302

    [24]Smondyrev M A,Gerlach B and Dzero M O 2000 Phys.Rev.B 62 16692

    [25]Cheng R J and Cheng Y M 2016 Chin.Phys.B 25 020203

    [26]Song X D,Dong S H and Zhang Y 2016 Chin.Phys.B 25 050302

    [27]Khalid S A 2014 Chin.Phys.Lett.31 120301

    [28]Diwaker and Chakraborty A 2015 Chin.Phys.Lett.32 070301

    [29]Hocevar M,Giang L T T,Songmuang R,Hertog M D,Besombes L, Bleuse J,Niquet Y and Pelekanos N T 2013 Appl.Phys.Lett.102 191103

    [30]Songmuang R,Giang L T T,Bleuse J,Hertog M D,Niquet Y M,Dang L S and Mariette H 2016 Nano Lett.16 3426

    10.1088/1674-1056/26/9/097302

    (Received 3 February 2017;revised manuscript received 1 June 2017;published online 31 July 2017)

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.10574011 and 10974017).

    ?Corresponding author.E-mail:qiangtian163@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 精品久久久久久电影网| 久久久国产一区二区| 午夜日韩欧美国产| 动漫黄色视频在线观看| 国产伦理片在线播放av一区| 亚洲黑人精品在线| 最新在线观看一区二区三区| 美国免费a级毛片| 悠悠久久av| 国产av一区二区精品久久| 18禁美女被吸乳视频| 欧美人与性动交α欧美精品济南到| 国产精品免费大片| 下体分泌物呈黄色| 国产高清激情床上av| 性色av乱码一区二区三区2| 午夜老司机福利片| 热re99久久国产66热| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久网| 午夜福利在线观看吧| 午夜激情久久久久久久| 欧美精品亚洲一区二区| 手机成人av网站| 亚洲伊人色综图| 大香蕉久久网| 亚洲成a人片在线一区二区| 国产精品电影一区二区三区 | 亚洲成人免费av在线播放| 性高湖久久久久久久久免费观看| 国产成人一区二区三区免费视频网站| 精品少妇久久久久久888优播| 国产日韩欧美视频二区| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 伦理电影免费视频| 侵犯人妻中文字幕一二三四区| 一区福利在线观看| 一边摸一边抽搐一进一小说 | 色老头精品视频在线观看| 少妇精品久久久久久久| 亚洲黑人精品在线| √禁漫天堂资源中文www| 美女国产高潮福利片在线看| 国产主播在线观看一区二区| 纵有疾风起免费观看全集完整版| 美女扒开内裤让男人捅视频| 一边摸一边抽搐一进一出视频| 国产成人系列免费观看| 久久中文字幕人妻熟女| 午夜激情久久久久久久| 一边摸一边做爽爽视频免费| 欧美变态另类bdsm刘玥| 两性夫妻黄色片| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 免费观看a级毛片全部| 黄色a级毛片大全视频| 国产亚洲一区二区精品| 欧美老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 亚洲精品av麻豆狂野| 国产成人欧美| 人人妻人人澡人人爽人人夜夜| 一夜夜www| 欧美日韩视频精品一区| 精品一区二区三区四区五区乱码| 多毛熟女@视频| 国产亚洲精品一区二区www | 国产精品一区二区精品视频观看| 午夜两性在线视频| 99在线人妻在线中文字幕 | 啦啦啦在线免费观看视频4| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 精品亚洲乱码少妇综合久久| 亚洲七黄色美女视频| 大片电影免费在线观看免费| 亚洲三区欧美一区| 成年人免费黄色播放视频| 操出白浆在线播放| 美国免费a级毛片| 国产日韩欧美在线精品| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 亚洲 国产 在线| 人人妻人人澡人人爽人人夜夜| 亚洲成a人片在线一区二区| 我要看黄色一级片免费的| 国产精品久久久av美女十八| 久久99一区二区三区| 2018国产大陆天天弄谢| 少妇 在线观看| 久久中文看片网| 两性夫妻黄色片| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 99国产综合亚洲精品| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久成人av| 久久国产精品男人的天堂亚洲| 夜夜爽天天搞| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线| 国产一区二区三区在线臀色熟女 | 午夜精品久久久久久毛片777| 久久国产亚洲av麻豆专区| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 丝袜美足系列| 久热这里只有精品99| 欧美亚洲 丝袜 人妻 在线| 91老司机精品| 好男人电影高清在线观看| 一区福利在线观看| 91av网站免费观看| 无人区码免费观看不卡 | 国产午夜精品久久久久久| bbb黄色大片| 丰满少妇做爰视频| 久久久欧美国产精品| 欧美精品一区二区免费开放| 天天躁日日躁夜夜躁夜夜| 天天影视国产精品| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 精品亚洲成国产av| 一级片免费观看大全| 两个人看的免费小视频| 91成人精品电影| 亚洲一码二码三码区别大吗| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 母亲3免费完整高清在线观看| 久久人妻av系列| 午夜视频精品福利| 俄罗斯特黄特色一大片| 国产片内射在线| 亚洲精品国产区一区二| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级| 12—13女人毛片做爰片一| 一个人免费在线观看的高清视频| 日韩中文字幕视频在线看片| 亚洲欧美激情在线| 国产在线免费精品| 国产精品久久电影中文字幕 | 精品第一国产精品| 青青草视频在线视频观看| 一本大道久久a久久精品| 一区二区三区激情视频| 人妻 亚洲 视频| 国产av精品麻豆| 女人精品久久久久毛片| 免费不卡黄色视频| 性少妇av在线| 99久久99久久久精品蜜桃| 纯流量卡能插随身wifi吗| 久久久国产精品麻豆| 99香蕉大伊视频| 色视频在线一区二区三区| 欧美日韩黄片免| 精品一品国产午夜福利视频| 丝袜美腿诱惑在线| 一本色道久久久久久精品综合| 99九九在线精品视频| 成人国产一区最新在线观看| 啦啦啦 在线观看视频| 久久精品亚洲av国产电影网| 最新美女视频免费是黄的| 麻豆成人av在线观看| 深夜精品福利| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 又黄又粗又硬又大视频| 国产高清视频在线播放一区| 人人妻人人爽人人添夜夜欢视频| 啪啪无遮挡十八禁网站| 亚洲免费av在线视频| 亚洲午夜理论影院| 狠狠精品人妻久久久久久综合| 十八禁网站免费在线| 久9热在线精品视频| 亚洲色图综合在线观看| 亚洲成人免费电影在线观看| 少妇精品久久久久久久| 国产精品av久久久久免费| 人人妻人人澡人人看| 高潮久久久久久久久久久不卡| 国产精品1区2区在线观看. | 色尼玛亚洲综合影院| 亚洲自偷自拍图片 自拍| 狠狠精品人妻久久久久久综合| 考比视频在线观看| 亚洲精品美女久久av网站| av有码第一页| 国产精品久久久久久人妻精品电影 | 国产一卡二卡三卡精品| 亚洲一区二区三区欧美精品| 两个人看的免费小视频| 日韩免费av在线播放| 老司机影院毛片| av又黄又爽大尺度在线免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 精品卡一卡二卡四卡免费| 热re99久久国产66热| 日韩欧美国产一区二区入口| 天堂动漫精品| 亚洲精华国产精华精| 热99re8久久精品国产| 国产精品一区二区在线不卡| 黑人欧美特级aaaaaa片| 我要看黄色一级片免费的| 久久久精品区二区三区| 18禁国产床啪视频网站| 一个人免费在线观看的高清视频| 午夜老司机福利片| 精品高清国产在线一区| 999久久久国产精品视频| 深夜精品福利| 一级,二级,三级黄色视频| 国产一区二区在线观看av| 国产精品一区二区免费欧美| 在线观看66精品国产| av在线播放免费不卡| 免费高清在线观看日韩| 午夜精品久久久久久毛片777| 国产一区二区 视频在线| 亚洲专区国产一区二区| 亚洲精品久久成人aⅴ小说| 亚洲一码二码三码区别大吗| 国产精品电影一区二区三区 | 国产福利在线免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 午夜福利,免费看| 成人国语在线视频| 老熟女久久久| 亚洲人成电影免费在线| 久久久精品区二区三区| 国产精品久久久久久人妻精品电影 | h视频一区二区三区| 99热国产这里只有精品6| 亚洲色图av天堂| 国产精品.久久久| 国产高清国产精品国产三级| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 日韩一区二区三区影片| 国产精品久久久久久人妻精品电影 | 亚洲视频免费观看视频| 亚洲伊人久久精品综合| 在线观看www视频免费| 国产福利在线免费观看视频| 亚洲专区字幕在线| 女人久久www免费人成看片| 欧美精品av麻豆av| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 亚洲专区字幕在线| 欧美午夜高清在线| 国产精品欧美亚洲77777| videos熟女内射| tocl精华| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 亚洲九九香蕉| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 国产亚洲欧美精品永久| 亚洲美女黄片视频| 精品熟女少妇八av免费久了| 另类精品久久| 99riav亚洲国产免费| 热99国产精品久久久久久7| 国产精品久久久人人做人人爽| 亚洲伊人久久精品综合| 老汉色∧v一级毛片| 中亚洲国语对白在线视频| 午夜福利影视在线免费观看| 国产免费现黄频在线看| 中文字幕av电影在线播放| 宅男免费午夜| 久久影院123| 精品视频人人做人人爽| 极品人妻少妇av视频| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站 | 久久精品国产99精品国产亚洲性色 | 久久久水蜜桃国产精品网| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| bbb黄色大片| 国产精品久久久久久精品古装| 亚洲一区二区三区欧美精品| 国产精品免费视频内射| 免费观看人在逋| 啦啦啦在线免费观看视频4| 欧美激情 高清一区二区三区| 国产成人啪精品午夜网站| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 女人被躁到高潮嗷嗷叫费观| 久久香蕉激情| 久久久久久久大尺度免费视频| 最新的欧美精品一区二区| 美女国产高潮福利片在线看| 69av精品久久久久久 | 国产黄色免费在线视频| www日本在线高清视频| 亚洲性夜色夜夜综合| 久久 成人 亚洲| 免费在线观看完整版高清| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三卡| 操美女的视频在线观看| 亚洲精品国产区一区二| 99riav亚洲国产免费| 成年版毛片免费区| 51午夜福利影视在线观看| 香蕉久久夜色| 俄罗斯特黄特色一大片| 精品少妇内射三级| 19禁男女啪啪无遮挡网站| 最近最新中文字幕大全电影3 | 成人免费观看视频高清| 国产成人av激情在线播放| 蜜桃在线观看..| √禁漫天堂资源中文www| 精品一区二区三卡| 成年女人毛片免费观看观看9 | 91麻豆精品激情在线观看国产 | 国产精品亚洲av一区麻豆| 久久精品国产a三级三级三级| 操出白浆在线播放| 丝袜在线中文字幕| 成年人黄色毛片网站| 在线观看免费视频日本深夜| 最新的欧美精品一区二区| 亚洲专区国产一区二区| 欧美精品人与动牲交sv欧美| 97人妻天天添夜夜摸| 69av精品久久久久久 | tocl精华| 久久久久久人人人人人| 久久久国产成人免费| 丰满饥渴人妻一区二区三| 嫁个100分男人电影在线观看| 又紧又爽又黄一区二区| 久久天躁狠狠躁夜夜2o2o| 水蜜桃什么品种好| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲| 最近最新中文字幕大全免费视频| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区欧美精品| 亚洲三区欧美一区| 免费人妻精品一区二区三区视频| 国产精品免费视频内射| 一级,二级,三级黄色视频| 国产精品1区2区在线观看. | av片东京热男人的天堂| www.自偷自拍.com| 国产成人av教育| 成人国产一区最新在线观看| 女人精品久久久久毛片| 亚洲成人免费av在线播放| 欧美黄色淫秽网站| 极品少妇高潮喷水抽搐| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 操美女的视频在线观看| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 国产成人免费观看mmmm| 日本五十路高清| 最新在线观看一区二区三区| 日韩视频在线欧美| 国产精品免费大片| 人妻 亚洲 视频| 高清在线国产一区| 国产欧美日韩一区二区三| 久久久久精品国产欧美久久久| 1024香蕉在线观看| 国产在线精品亚洲第一网站| 亚洲精品国产精品久久久不卡| 国产av国产精品国产| 五月开心婷婷网| 91精品国产国语对白视频| 亚洲av日韩精品久久久久久密| 午夜福利视频精品| 国产精品自产拍在线观看55亚洲 | 波多野结衣av一区二区av| 成年女人毛片免费观看观看9 | 精品一区二区三区四区五区乱码| 丝袜喷水一区| av网站在线播放免费| 国产淫语在线视频| 黑人猛操日本美女一级片| 日韩 欧美 亚洲 中文字幕| 国产激情久久老熟女| 精品一品国产午夜福利视频| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| 精品高清国产在线一区| 国产精品av久久久久免费| 两性午夜刺激爽爽歪歪视频在线观看 | 精品视频人人做人人爽| 一级毛片电影观看| 国产91精品成人一区二区三区 | 欧美激情高清一区二区三区| 国产精品熟女久久久久浪| 夜夜爽天天搞| 欧美日韩黄片免| 99热国产这里只有精品6| av天堂在线播放| e午夜精品久久久久久久| 无遮挡黄片免费观看| 高清av免费在线| 一进一出好大好爽视频| 欧美久久黑人一区二区| 精品少妇黑人巨大在线播放| 亚洲国产毛片av蜜桃av| 黄色片一级片一级黄色片| 国产男靠女视频免费网站| 操美女的视频在线观看| 亚洲 国产 在线| 桃花免费在线播放| 一区二区日韩欧美中文字幕| 午夜免费鲁丝| 天天添夜夜摸| 激情在线观看视频在线高清 | 久久人妻av系列| 日韩三级视频一区二区三区| 一本综合久久免费| 一级,二级,三级黄色视频| 另类精品久久| 日本撒尿小便嘘嘘汇集6| 国产精品麻豆人妻色哟哟久久| 2018国产大陆天天弄谢| 高清视频免费观看一区二区| 黑人操中国人逼视频| 亚洲七黄色美女视频| 亚洲欧美日韩另类电影网站| 国产熟女午夜一区二区三区| 免费看a级黄色片| 亚洲国产欧美在线一区| 亚洲,欧美精品.| 亚洲色图综合在线观看| 91av网站免费观看| 亚洲精品成人av观看孕妇| 国产色视频综合| 久久人人97超碰香蕉20202| 一本—道久久a久久精品蜜桃钙片| 久久狼人影院| 午夜免费鲁丝| 久久人妻福利社区极品人妻图片| 黄色视频在线播放观看不卡| 成年人黄色毛片网站| 久久精品国产a三级三级三级| 777米奇影视久久| 日韩欧美一区二区三区在线观看 | 99国产精品一区二区三区| 中国美女看黄片| 亚洲国产成人一精品久久久| 老司机午夜福利在线观看视频 | 中文字幕色久视频| 宅男免费午夜| 99九九在线精品视频| 最近最新中文字幕大全免费视频| 一边摸一边做爽爽视频免费| 国产麻豆69| 亚洲国产看品久久| 色视频在线一区二区三区| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 免费观看a级毛片全部| 涩涩av久久男人的天堂| 正在播放国产对白刺激| 岛国毛片在线播放| 亚洲av片天天在线观看| 最近最新免费中文字幕在线| 日韩免费av在线播放| 精品久久蜜臀av无| 人人妻人人爽人人添夜夜欢视频| 久久99热这里只频精品6学生| 欧美日韩亚洲综合一区二区三区_| 欧美精品啪啪一区二区三区| 国产av又大| 91字幕亚洲| 熟女少妇亚洲综合色aaa.| 91精品三级在线观看| 午夜福利影视在线免费观看| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 久久久国产一区二区| 另类亚洲欧美激情| 丁香六月欧美| 天堂中文最新版在线下载| av免费在线观看网站| 男女边摸边吃奶| 久久久久久免费高清国产稀缺| 夜夜夜夜夜久久久久| 久久天堂一区二区三区四区| 久久精品国产综合久久久| 麻豆av在线久日| 狠狠精品人妻久久久久久综合| 老司机福利观看| 捣出白浆h1v1| av不卡在线播放| 两性夫妻黄色片| 色在线成人网| 国产成人av激情在线播放| 肉色欧美久久久久久久蜜桃| 午夜两性在线视频| 国产97色在线日韩免费| 午夜福利,免费看| 美国免费a级毛片| 一区二区三区精品91| 亚洲伊人色综图| 黑人猛操日本美女一级片| 国产午夜精品久久久久久| 一区二区三区国产精品乱码| 天堂中文最新版在线下载| 黄网站色视频无遮挡免费观看| 亚洲成a人片在线一区二区| 国产一卡二卡三卡精品| 亚洲国产欧美网| 久久免费观看电影| 大型黄色视频在线免费观看| 成人18禁在线播放| 亚洲男人天堂网一区| 王馨瑶露胸无遮挡在线观看| 日韩大码丰满熟妇| 涩涩av久久男人的天堂| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 在线观看www视频免费| 少妇的丰满在线观看| 亚洲av美国av| 高清欧美精品videossex| 在线观看免费日韩欧美大片| 人人妻,人人澡人人爽秒播| 成人18禁在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 国产高清视频在线播放一区| 亚洲国产av影院在线观看| 日韩精品免费视频一区二区三区| 久久国产亚洲av麻豆专区| 亚洲精华国产精华精| 亚洲精品在线观看二区| 精品第一国产精品| 亚洲欧美一区二区三区黑人| 悠悠久久av| www.精华液| 亚洲av电影在线进入| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡动漫免费视频| 91精品三级在线观看| 美女国产高潮福利片在线看| 三级毛片av免费| 18禁国产床啪视频网站| 我要看黄色一级片免费的| 一区在线观看完整版| 在线观看免费视频网站a站| 国精品久久久久久国模美| 国产精品 国内视频| 97在线人人人人妻| 我的亚洲天堂| 久久亚洲真实| 免费看a级黄色片| 人人妻人人添人人爽欧美一区卜| 亚洲一码二码三码区别大吗| 日韩制服丝袜自拍偷拍| 欧美大码av| 日韩欧美免费精品| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 国产av精品麻豆| 999精品在线视频| 午夜成年电影在线免费观看| 精品国产一区二区三区久久久樱花| 国产无遮挡羞羞视频在线观看| 亚洲综合色网址| 久久久国产精品麻豆| 欧美成人午夜精品| 狂野欧美激情性xxxx| 国产亚洲欧美在线一区二区| 日韩一区二区三区影片| 自拍欧美九色日韩亚洲蝌蚪91| videosex国产| 国产亚洲一区二区精品| 欧美另类亚洲清纯唯美| 国产男女超爽视频在线观看| 国产一区二区三区视频了| √禁漫天堂资源中文www| 国内毛片毛片毛片毛片毛片| 女人被躁到高潮嗷嗷叫费观| 伦理电影免费视频| 亚洲欧美一区二区三区黑人| 嫩草影视91久久| 91老司机精品| 69av精品久久久久久 | 国产高清videossex| 精品免费久久久久久久清纯 | 黑丝袜美女国产一区| 亚洲色图综合在线观看| 丝袜人妻中文字幕| 日韩视频在线欧美|