• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lattice stability and the effect of Co and Re on the ideal strength of Ni:First-principles study of uniaxial tensile deformation?

    2017-08-30 08:25:26MinruWen文敏儒andChongYuWang王崇愚
    Chinese Physics B 2017年9期

    Minru Wen(文敏儒)and Chong-Yu Wang(王崇愚)

    Department of Physics,Tsinghua University,Beijing 100084,China

    Lattice stability and the effect of Co and Re on the ideal strength of Ni:First-principles study of uniaxial tensile deformation?

    Minru Wen(文敏儒)and Chong-Yu Wang(王崇愚)?

    Department of Physics,Tsinghua University,Beijing 100084,China

    Using first-principles density functional calculations,lattice stability of γ-Ni under[001],[110],and[111]uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-Ni were studied in this paper. With elastic constants and phonon spectra calculations,we examined the mechanical stability and phonon stability of Ni during the uniaxial tensions along the three characteristic directions.The results show that the mechanical stability and phonon stability of a lattice occurs before the maximum stress–strain point under the[001]and[111]tension,respectively. The effects of Co and Re on the ideal tensile strength of γ-Ni show a significant directivity:Co and Re have little effect on the stresses in[001]and[111]directions,but increases the ideal strength of the system in the weakest uniaxial tensile direction.Moreover,the strengthening effect of Re is significantly better than that of Co.By further analyzing electronic structure,it is found that the effect of alloying elements on the uniaxial tensile behavior of γ-Nicomes from their interactions with host atoms.

    lattice stability,first-principles,alloying elements,uniaxial tension

    1.Introduction

    The ideal strength of solid materials is the minimum stress required to make a defect-free crystal instable.[1,2]The ideal strength,which is related to the fracture of chemical bond and the initiation of cracks and dislocations,is an intrinsic mechanical parameter of the crystal material.Besides discussing the gap between the ideal strength and real strength of a material,the studying of ideal strength is also important for the investigation of fractures in applications.[2]For example,in some special materials,the width of the dislocation core is related to the size of its ideal shear strength,and the local stress of cleavage crack nucleation must be greater than its ideal uniaxial tensile strength.[3–5]

    The ideal strength sets an upper bound for the strength of a real material.The simplest approach to determine the ideal strength is calculating the stress–strain curve of a system in the deformation process,and takes the first maximum or minimum point of the stress–strain curves as the ideal strength of materials.[6–14]Herein,the corresponding stress at this point is defined as the ideal peak stress(σIP).However,instability in other forms may occur before the lattice reaches the ideal peak stress,such as mechanical instability(also known as elastic instability)and phonon instability(also known as dynamic instability).Born and Fürth[15,16]first proposed that a series of stability conditions should be examined during the deformation processes.These stability conditions are called the mechanical stability conditions(or elastic stability conditions),which are obtained by the positive definiteness of the elastic stiffness coefficient matrix.Mechanical stability is examined for many crystal structures.[17–26]Milstein and Farber[25]found that Fe and Ni have an elastic instability mode of C22=C23before reaching their stress–strain maximum when they studied the phase transition of Fe and Ni under[100]tensile loading. Breidi et al.[24]also verified the mechanical stability during compression when they studied the〈001〉uniaxial compression of FCC-Ni,and found that the mechanical instability occurs after the ideal peak stress.

    Mechanical stability considers the lattice stability of adjacent atoms in crystal under the action of central force,which is related to the macroscopic deformation of crystal.However,microscopic deformation in a solid material,such as soft phonon,may also reduce the energy of crystal.[2,28–30]This microscopic deformation leads to spatially periodic lattice distortion,which reduces the energy of crystal and results in lattice instability.In the first-principles calculations,soft phonon corresponds to the virtual frequency phonon,and such lattice instability is called phonon instability.Clatterbuck et al.[6]found that the phonon instability of a lattice occurs earlier than the maximum point of its stress–strain curve for Al during the〈100〉,〈110〉,and〈111〉tensile and{111}〈112〉shear processes.It can be seen that calculating other instability(such as mechanical instability and phonon instability)in crystal deformation is very important for the study of ideal strength.However,no theoretical study has focused on the lattice stability ofNi under the〈110〉and〈111〉uniaxial tensions.

    As important structural materials,nickel-based singlecrystal super alloys have been widely used as turbine blades for advanced aeroplanes and gas turbines.[31,32]A variety of alloying elements(such as Ta,W,Ti,Co,Cr,Re,Mo,and Ru) are added to modern commercial nickel-based super alloys to improve mechanical properties of alloys.The investigation of mechanical properties of γ-Ni,which is the matrix phase in nickel-based single-crystal super alloys,is extremely important for the applications of alloys.Previous studies of the effects of alloying elements on the mechanical properties mainly focus on the elastic constants and modulus.[33–37]However,scant attention has been paid to the ideal strength.In fact,alloying elements can have a significant influence on the strength of alloys.[38–40]

    Using the first-principles calculations and combining with mechanical stability and phonon stability examinations, this paper studied uniaxial tensile behaviors of γ-Ni along the [001],[110],and[111]directions and the effects of alloying element Re and Co on the ideal tensile strength of γ-Ni.Furthermore,the electronic mechanism underlying the strengthening effect of Re and Co is determined by analyzing the charge density difference.

    2.Computational methodology

    For uniaxial tensile deformation,the stress σ is obtained from the derivation of energy to strain

    where E(ε)and V(ε)are the total energy and the volume of a crystal when strain isε.To simulate the stress–strain curve,we apply an increasing uniaxial tensile strain to crystals.The lattice basis vectors perpendicular to the loading direction were sufficiently relaxed.To ensure the continuity of stress–strain curves,the initial atomic positions of each step in the deformation process are taken from the relaxed configurations of the previous step.

    For a crystal under zero loading,the mechanical stability criteria can be expressed in terms of elastic constants.[41]

    we get a symmetric tensor λ.The tensor λ has full Voigt symmetry and its positive definiteness is the same as that of the elastic stiffness tensor.Consequently,by using Voigt notation (11→1,22→2,33→3,23→4,13→5,12→6),[43]the conditions of elastic stability can also be expressed in the elements of λ

    where α,β={1,2,3,4,5,6}.

    Under a[100]uniaxial loading,

    initial FCC-Ni becomes tetragonal(422,4mm,42m,4/m) and the tensor λ takes the following form:

    According to Eq.(4),the relation between λαβand Cαβis

    The determinant of λ is

    Consequently,the elastic stability criteria of tetragonal lattice under[100]uniaxial stress are

    Under a[110]uniaxial tension

    To test the mechanical stability of a lattice during the tensile processes,we calculate the elastic constants Cijof the lattice at every tensile strain and examine the mechanical stability conditions for the corresponding crystal according to Eqs.(9), (13),and(15).To calculate elastic constants of tetragonal, orthorhombic,and trigonal crystals,we apply specific deformation tensors listed in Ref.[44]to each crystal and calculate the energy–strain relationship,where the deformation parameter δ increases from?0.03 to 0.03 in steps of 0.005.Then the elastic constant of each crystal is obtained by fitting the energy–strain curve by polynomial.

    In the present study,we adopt a 2×2×2 supercell model to investigate the effect of alloying elements Re and Co on the uniaxial tensile behavior of γ-Ni.The alloying elements are located at the center of the supercell.Based on the density functional theory(DFT),[45,46]our calculations are carried out using the VASP package.[47]The generalized gradient approximation of PBE potential[48]is used to describe the exchange-correlation function.The projector augmented wave(PAW)method[49]is used to describe the ion–electron interaction.The plane wave cutoff is set to 350 eV.Following the Monkhorst–Pack scheme,[50]we adopt an 11×11× 11 k-point mesh.The convergence condition of electron self consistent energy is 10?5eV.The ionic relaxation is stopped until the forces on all of the atoms are less than 0.01 eV/?A.

    The phonon spectrum is calculated with the density functional perturbation theory,[51]which was achieved via VASPPHONOPY using a 2×2×2 supercell.[47,52,53]As the phonon spectrum calculation requires high precision,500 eV is taken as the plane wave cutoff and the k-point mesh is 11× 11×11 for phonon calculations.The convergence conditions of electron self-consistent and ionic relaxation are 10?8eV and 10?7eV,respectively.

    3.Results and discussion

    3.1.Lattice stability of Ni under uniaxial tensile deformation

    The energy–strain relationships of γ-Ni under[001], [110],and[111]tensile loadings are shown in Fig.1(a),and the corresponding stress–strain curves(Fig.1(b))are obtained by Eq.(1).As shown in Fig.1,the energy and stress of γ-Ni under[001]uniaxial tension increase with the increase in strain.At the strain ε=0.32,the stress reaches the maximum value of 26.76 GPa.This point is the ideal peak stress σIPin the[001]direction.Similar to the[001]direction,the stress reaches the ideal peak stress of 26.61 GPa at the strain of 0.22 under[111]tension.For the[110]tensile process,the stress of Ni gets its peak point at small strain(ε=0.08),and its ideal peak stress is only 6.03 GPa.Obviously,compared to the large σIPin[001]and[111]directions,[110]is the weakest uniaxial tensile direction for γ-Ni.Table 1 summarizes our calculated ideal peak stresses of γ-Ni in[001],[110],and[111]directions along with calculation results of Milstein et al.[25]As shown in the table,our calculated results are in good agreement with that of Milstein et al.[25]

    Fig.1.(color online)(a)Energy–strain curve and(b)stress–strain curve of Ni31 X(X=Ni,Co,and Re).The black,red,and blue data represent the[001],[110],and[111]tension,respectively.

    Fig.2.(color online)(a)–(c)Element of tensor λ(upper half)and the corresponding mechanical stability conditions(lower half)of γ-Ni under[001],[110],and[111]tension,respectively.The vertical dashed line marks the maximum mechanical stability point of the lattice.

    Furthermore,we calculate elastic constants of the lattice during the tensile tests to examine the mechanical stability conditions of crystal(Eqs.(9),(13),and(15)).Figures 2(a)–2(c)show λijand the corresponding mechanical stability criteria of crystal along the[001],[110],and[111]loading,respectively.As shown in Fig.2(a),when the strain is not applied to the lattice,the crystal only has three independent λij: λ11=λ22,λ12=λ23,and λ44=λ55.As loading strain ε increases in the[001]direction,elastic modulus λ11,λ22,λ12, and λ55decrease,and λ44and λ23increase.When tensile strain ε=0.11,λ22is equal to λ23.After this strain(ε>0.11), the elastic modulus λ22is less than λ23and the mechanical stability condition Eq.(9c)of the tetragonal system is invalid. Herein,the corresponding point and stress at which the mechanical stability conditions are first violated are defined as the maximum mechanical stability point and maximum mechanical stability stress(σMMS).As shown in Fig.1(b),the stress at the strain ε=0.11 is 14.11 GPa under[001]tension,so the maximum mechanical stability stress of[001]uniaxial tension is σMMS=14.11 GPa.Similarly,as shown in Figs.2(b)and 2(c),the maximum mechanical stability points are at ε=0.07 and ε=0.23 during tension in the[110] and[111]directions,respectively.The instability modes are λ11λ22λ33+2λ12λ13λ23?λ11λ223?λ22λ213?λ33λ212=0 and λ44=0 for[110]and[111]loading,respectively.Correspondingly,the maximum mechanical stability stresses in the[110] and[111]directions are 6.03 GPa and 25.56 GPa,respectively, according to Fig.1(b).

    Table 1.Calculated ideal peak stress σIP,maximum mechanical stability stress σMMS,and maximum phonon stability stress σMPS of γ-Ni under[001],[110],and[111]tensions.Numbers in round brackets represent the strain corresponding to each stress.

    Furthermore,we calculate the phonon spectra of γ-Ni during the tensile loading in[001],[110],and[111]directions to examine the phonon stability.Figures 3(a)–3(c)show phonon frequencies of γ-Ni as a function of strain for[001], [110],and[111]tension,respectively.Note that we have included only the first band and the high symmetry directions in the Brillouin zone along which phonon instabilities are found to occur.As shown in Fig.3(a),a softening occurs between ?!鶻(q=[0.5,0.5,1])as the tensile strain ε increases in the [001]direction.When ε=0.19,imaginary frequency first occurs in Fig.3(a),which is exactly the phonon instability point of the system.Herein,the corresponding stress and strain at which the phonon frequency is firstly imaginary is defined as the maximum phonon stability stress(σMPS)and maximum mechanical stability strain(εMPS),respectively.As shown in Figs.1 and 2,the phonon instability point in the[001]direction occurs earlier than that of the peak stress point,but later than the occurrence of the mechanical instability point.Similarly,it can be seen from Figs.3(b)and 3(c)that phonon instability of Ni occurs at ε=0.12 and ε=0.17 during tension along the[110]and[111]directions,respectively.

    Table 1 summarizes σIP,σMMS,andσMPSalong with their corresponding strain for γ-Ni under the[001],[110],and[111] tensile deformations.It can be seen that εMMS<εMPS<εISfor[001]tension and εMPS<εIS<εMMSfor[111]tension. Therefore,the ideal strength σISof Ni under[001]and[111] tensions is determined by the σMMSand σMPS,respectively. Unlike the[001]and[111]directions,the lattice instability point of Ni under[110]loading is equal to its ideal peak point. After considering mechanical stability and phonon stability of lattice during the deformations,the ideal tensile strengths of γ-Ni in[001],[110],and[111]directions are 14.11 GPa,6.03 GPa,and 25.47 GPa,respectively.

    Fig.3.(color online)(a)–(c)First band of phonon of γ-Ni as a function of strain for[001],[110],and[111]tension,respectively.

    3.2.Effects of Re and Co on the ideal tensile strength

    The response of energy and stress to strain for Ni31Co and Ni31Re are also shown in Fig.1.As shown in the figure,effects of alloying elements Co and Re on the stress show obvious directionality.Compared to the stress of pure Ni,stresses of Ni31Co and Ni31Re show only a very small increase before the yield point for the[001]and[111]directions.Note that by doping with Co and Re,the systems reach their ideal peak stress at a smaller strain as compared with pure γ-Ni.Therefore,doping with Co and Re decreases the ideal peak stress of the system.Unlike the[001]and[111]directions,doping with Co and Re can significantly increase the ideal peak stress in the[110]direction.The value of σIPin the[110]direction increases from 6.03 GPa to 6.32 GPa for Ni31Co and to 7.50 GPa for Ni31Re.It can be seen that refractory elements Co and Re can significantly improve the ideal strength of γ-Ni in the weakest tensile direction,and the strengthening effect of Re is significantly stronger than that of Co.

    To understand the different improvements due to Co and Re on the weakest tensile direction and the anisotropy effects of alloying elements on the ideal strength,we further calculate and analyze the charge density difference(Δρ)of Ni31X. Charge density difference reflects the charge transfer before and after atomic bonding,which shows the interaction between atoms.Figures 4(a)–4(c)show the charge density difference of Ni31X(X=Ni,Co,and Re)without strain loaded, where yellow and cyan isosurface represents charge accumulation and depletion,respectively.As shown in Fig.4,the Δρof Ni31Co exhibits nearly the same feature as the Δρ of un-doped Ni.However,there is a strong redistribution of charge density around Re atoms in Ni31Re.Moreover,the charge redistribution in Ni31Re shows obvious directionality:Δρ mainly accumulates between Re and the host atoms(i.e.,in the[110] direction),while there is very little charge redistribution in the [001]and[111]directions.In addition,the bonding between Re and Ni atoms significantly exhibits covalent-like bond features.This feature of charge redistribution suggests that the addition of refractory element Re can enhance bonding in the [110]direction and has little effect on the bonding of[001] and[111]directions.This is consistent with the results of our calculated stress–strain curves(Fig.1(b)).The strengthening effect of Re on the ideal strength along the[110]direction is significantly greater than that of Co,but enhancement in[001] and[111]directions is negligible.

    Figures 4(d)–4(f)show Δρ of Ni31Re under tension along the[001],[110],and[111]directions at strain ε=0.06,respectively.As shown in Figs.4(d)–4(f),the redistribution of charge density of Ni31Re decreases in the loading direction for the three characteristic directional deformations.However,although under the same tensile strain,the decrease of Δρ in the loading direction varies to certain extents for the three characteristic directions.The decrease of Δρ caused by the[110] tension is the largest,followed by that due to the[111]tension, and variation of Δρ caused by[001]loading is the weakest.It can be implied that the deformation resistance of Ni31Re in [001]and[111]directions is obviously better than that in the [110]direction.This is consistent with the previous results of stress–strain curves(Fig.1(b)):the yield pointof[110]tension occurs much earlier than those of the[001]and[111]tensions.

    Fig.4.(color online)Charge density differences of Ni31 X(isosurface±0.0695 e/?A3).(a)X=Ni,ε=0.00;(b)X=Co,ε=0.00; (c)X=Re,ε=0.00;(d)X=Re,ε=0.06,[001]tension;(e)X=Re,ε=0.06,[110]tension;(f)X=Re,ε=0.06,[111]tension. Yellow(cyan)isosurface represents charge accumulation(depletion).Each structure is a central X atom surrounded by 12 Ni atoms.

    4.Conclusions

    Using density functional theory,we studied the lattice stability and the effect of alloying elements on the tensile strength of γ-Ni under three uniaxial characteristic directions.With mechanical stability and phonon stability examinations,it is found that mechanical instability and phonon instability of γ-Ni under uniaxial tension occurs before the ideal peak stress for the[001]and[111]directions,respectively.The ideal tensile strengths of γ-Ni in[001],[110]and[111]directions are determined to be 14.11 GPa,6.03 GPa,and 25.47 GPa,respectively.Doping with Co and Re can increase the ideal peak stress of γ-Ni in the[110]direction by 4.8%and 24.4%,respectively.However,Re and Co have a negligible effect on the ideal strength in[001]and[111]directions.Further analysis of charge density difference of these alloying systems showed that the effects of alloying elements on the uniaxial tensile behavior arise from their interaction with host atoms.There is a strong charge redistribution around the Re atom along the〈110〉direction in Ni31Re,while charge redistribution of Ni31Co is nearly the same as that of un-doped Ni.

    Acknowledgment

    The simulations were carried out on the“Explorer 100”cluster system of the Tsinghua National Laboratory for Information Science and Technology,Beijing,China.

    [1]Kelly A and Macmillan N H 1986 Strong Solids,3rd edn(Oxford: Clarendon Press)

    [2]Pokluda J,?erny M,?ob M and Umeno Y 2015 Prog.Mater.Sci.73 127

    [3]Krenn C R,Roundy D,Morris J W and Cohen M L 2001 Mater.Sci. Eng.:A 319 111

    [4]Chrzan D C,Sherburne M P,Hanlumyuang Y,Li T and Morris Jr J W 2010 Phys.Rev.B 82 184202

    [5]Sawyer C A,Morris Jr J W and Chrzan D C 2013 Phys.Rev.B 87 134106

    [6]Clatterbuck D M,Krenn C R,Cohen M L and Morris Jr J W 2003 Phys. Rev.Lett.91 135501

    [7]Ogata S,Li J and Yip S 2002 Science 298 807

    [8]Clatterbuck D M,Chrzan D C and Morris J W 2003 Acta Mater.51 2271

    [9]Ogata S,Li J,Hirosaki N,Shibutani Y and Yip S 2004 Phys.Rev.B 70 104104

    [10]Liu Y L,Zhang Y,Zhou H B,Lu G H and Kohyama M 2008 J.Phys.: Condens.Matter 20 335216

    [11]Wu X and Wang C 2016 RSC Adv.6 20551

    [12]Shang S L,Wang W Y,Wang Y,Du Y,Zhang J X,Patel A D and Liu Z K 2012 J.Phys.:Condens.Matter 24 155402

    [13]Liu Y L,Zhang Y,Hong R J and Lu G H 2009 Chin.Phys.B 18 1923

    [14]Zhang C L,Han P D,Wang X H,Zhang Z X,Wang L P and Xu H X 2013 Chin.Phys.B 22 126802

    [15]Born M and Fürth R 1940 MPCPS,pp.454–465

    [16]Born M 1940 MPCPS,pp.160–172

    [17]Pokluda J,?erny M,?andera P and ?ob M 2004 J.Comput.Aided Mater.Des.11 1-28

    [18]Hill R and Milstein F 1977 Phys.Rev.B 15 3087

    [19]Milstein F 1971 Phys.Rev.B 3 1130

    [20]Wang J,Li J,Yip S,Phillpot S and Wolf D 1995 Phys.Rev.B 52 12627

    [21]Wang J,Yip S,Phillpot S R and Wolf D 1993 Phys.Rev.Lett.71 4182

    [22]Zhou Z and Joós B 1996 Phys.Rev.B 54 3841

    [23]Morris J W and Krenn C R 2000 Philos.Mag.A 80 2827

    [24]Breidi A,Fries S G and Ruban A V 2016 Phys.Rev.B 93 144106

    [25]Milstein F and Farber B 1980 Phys.Rev.Lett.44 277

    [26]?ehák P,?erny M and ?ob M 2015 Modell.Simul.Mater.Sci.Eng.23 055010

    [27]Mouhat F and Coudert F X 2014 Phys.Rev.B 90 224104

    [28]Zhao G L and Harmon B N 1992 Phys.Rev.B 45 2818

    [29]Reháy P,Cerny M and Pokluda J 2012 J.Phys.:Condens.Matter 24 215403

    [30]Miao L,Liu H J,Hu Y,Zhou X,Hu C Z and Shi J 2010 Chin.Phys.B 19 016301

    [31]Reed RC 2006 The Superalloys:Fundamentals and Applications(New York:Cambridge university press)

    [32]Reed R,Tao T and Warnken N 2009 Acta Mater.57 5898

    [33]Kim D,Shang S L and Liu Z K 2009 Comput.Mater.Sci.47 254

    [34]Wang Y,Wang J J,Zhang H,Manga V R,Shang S L,Chen L Q and Liu Z K 2010 J.Phys.:Condens.Matter 22 225404

    [35]Shang S L,Kim D E,Zacherl C L,Wang Y,Du Y and Liu Z K 2012 J. Appl.Phys.112 053515

    [36]Wu X and Wang C 2015 J.Phys.:Condens.Matter 27 295401

    [37]Wang Y and Wang C 2009 MRS Proceedings,pp.1224-FF1205-1231

    [38]Yeh A C and Tin S 2005 Scripta Mater.52 519

    [39]Tian C,Han G,Cui C and Sun X 2015 Mater.Des.88 123

    [40]Fleischmann E,Miller M K,Affeldt E and Glatzel U 2015 Acta Mater. 87 350

    [41]Nye J F 1985 Physical Properties of Crystals:their Representation by Tensors and Matrices(New York:Oxford university press)

    [42]Wallace D C 1998 Thermodynamics of Crystals(New York:Dover Publications)

    [43]Voigt W 1928 Lehrbuch der Kristallphysik(Leipzig Berlin:Ann Arbor, Mich)

    [44]Wen M and Wang C Y 2016 RSC Adv.6 77489

    [45]Hohenberg P and Kohn W 1964 Phys.Rev.136 B864

    [46]Kohn W and Sham L J 1965 Phys.Rev.140 A1133

    [47]Kresse G and Furthmüller J 1996 Phys.Rev.B 54 11169

    [48]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [49]Kresse G and Joubert D 1999 Phys.Rev.B 59 1758

    [50]Monkhorst H J and Pack J D 1976 Phys.Rev.B 13 5188

    [51]Baroni S,De Gironcoli S,Dal Corso A and Giannozzi P 2001 Rev. Mod.Phys.73 515

    [52]Togo A,Oba F and Tanaka I 2008 Phys.Rev.B 78 134106

    [53]Togo A and Tanaka I 2015 Scripta Mater.108 1

    11 June 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/093106

    ?Project supported by Beijing Municipality Science and Technology Commission,China(Grant No.D161100002416001)and the National Key Ramp;D Program of China(Grant No.2017YFB0701502).

    ?Corresponding author.E-mail:cywang@mail.tsinghua.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    亚洲视频免费观看视频| 成人国语在线视频| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 欧美黑人欧美精品刺激| 久久精品成人免费网站| 久久久精品94久久精品| 精品福利观看| 赤兔流量卡办理| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 国产91精品成人一区二区三区 | 国产野战对白在线观看| 国产精品一区二区在线观看99| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 免费看av在线观看网站| 日本黄色日本黄色录像| 香蕉国产在线看| 中文字幕最新亚洲高清| 激情视频va一区二区三区| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 中文字幕色久视频| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲 | 久久人人爽人人片av| 午夜免费观看性视频| 国产福利在线免费观看视频| 欧美中文综合在线视频| 亚洲专区国产一区二区| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 欧美精品av麻豆av| 秋霞在线观看毛片| 国产成人一区二区在线| 免费在线观看黄色视频的| 日本av手机在线免费观看| 在线观看www视频免费| 赤兔流量卡办理| 麻豆av在线久日| 欧美少妇被猛烈插入视频| 欧美日韩av久久| 国产淫语在线视频| 亚洲五月婷婷丁香| 中文字幕av电影在线播放| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人爽人人夜夜| 男人操女人黄网站| 亚洲精品乱久久久久久| 99香蕉大伊视频| 亚洲国产精品国产精品| 80岁老熟妇乱子伦牲交| 大型av网站在线播放| 少妇人妻久久综合中文| 999久久久国产精品视频| 国产在线一区二区三区精| 国产淫语在线视频| 国产一卡二卡三卡精品| 乱人伦中国视频| 夫妻午夜视频| av不卡在线播放| 亚洲精品国产区一区二| 美女午夜性视频免费| 精品人妻熟女毛片av久久网站| 日韩,欧美,国产一区二区三区| 最近中文字幕2019免费版| 久久天躁狠狠躁夜夜2o2o | 下体分泌物呈黄色| 在线亚洲精品国产二区图片欧美| 久久国产精品男人的天堂亚洲| 成年人免费黄色播放视频| 久久人妻熟女aⅴ| 女警被强在线播放| 国产高清videossex| 大片免费播放器 马上看| 国产精品国产三级国产专区5o| 丝瓜视频免费看黄片| 亚洲视频免费观看视频| 国产亚洲精品久久久久5区| 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 亚洲精品av麻豆狂野| 日韩 亚洲 欧美在线| 乱人伦中国视频| 人妻一区二区av| 国产成人精品无人区| 又大又爽又粗| 99国产精品99久久久久| 女人高潮潮喷娇喘18禁视频| 电影成人av| 久久久精品94久久精品| 在线亚洲精品国产二区图片欧美| 欧美xxⅹ黑人| 丰满迷人的少妇在线观看| 亚洲精品国产区一区二| 久久人妻福利社区极品人妻图片 | 国产伦理片在线播放av一区| 人人妻人人澡人人看| 久久精品国产综合久久久| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 99国产精品99久久久久| 精品亚洲成国产av| 中国美女看黄片| 9色porny在线观看| 国产亚洲av片在线观看秒播厂| 肉色欧美久久久久久久蜜桃| 久久影院123| 久久久久久免费高清国产稀缺| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 9热在线视频观看99| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 日日夜夜操网爽| 国产爽快片一区二区三区| 久久中文字幕一级| 久久久精品94久久精品| 老熟女久久久| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 亚洲黑人精品在线| 久久国产亚洲av麻豆专区| 精品人妻一区二区三区麻豆| cao死你这个sao货| 一区二区三区四区激情视频| 国产又爽黄色视频| 成年人黄色毛片网站| 国产成人a∨麻豆精品| 丝袜喷水一区| 国产精品一国产av| 亚洲欧美清纯卡通| 考比视频在线观看| 少妇人妻久久综合中文| 手机成人av网站| a级片在线免费高清观看视频| 日本色播在线视频| 9191精品国产免费久久| 国产av一区二区精品久久| 日本av免费视频播放| 99国产精品99久久久久| 中文字幕亚洲精品专区| 欧美黄色片欧美黄色片| 老鸭窝网址在线观看| 久久久国产一区二区| 人妻人人澡人人爽人人| 免费看av在线观看网站| 国产不卡av网站在线观看| 满18在线观看网站| 一区二区av电影网| 欧美久久黑人一区二区| 久热爱精品视频在线9| 国产成人一区二区在线| 久久这里只有精品19| 欧美 亚洲 国产 日韩一| 久久久精品免费免费高清| 成年人黄色毛片网站| 久久精品国产综合久久久| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜制服| 一级毛片女人18水好多 | 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 黄频高清免费视频| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 日本a在线网址| 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美| 天天躁夜夜躁狠狠久久av| 啦啦啦在线免费观看视频4| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 国产精品秋霞免费鲁丝片| 成年人午夜在线观看视频| 亚洲,欧美,日韩| 久久久久久亚洲精品国产蜜桃av| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 免费在线观看日本一区| 国产一区二区 视频在线| 一边摸一边做爽爽视频免费| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 女人高潮潮喷娇喘18禁视频| 亚洲天堂av无毛| 我要看黄色一级片免费的| 亚洲第一青青草原| av网站在线播放免费| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| 热re99久久精品国产66热6| 欧美老熟妇乱子伦牲交| 男人舔女人的私密视频| 亚洲欧美激情在线| 人人妻人人爽人人添夜夜欢视频| 十八禁人妻一区二区| 黄色怎么调成土黄色| 久久久久久人人人人人| 啦啦啦 在线观看视频| 久久人妻福利社区极品人妻图片 | 美女视频免费永久观看网站| 色网站视频免费| av天堂久久9| 在线观看人妻少妇| 18禁黄网站禁片午夜丰满| 欧美日韩精品网址| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区| 国产成人91sexporn| 亚洲中文字幕日韩| 伊人亚洲综合成人网| 欧美国产精品一级二级三级| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 十八禁网站网址无遮挡| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 国产精品 国内视频| 美女福利国产在线| 99re6热这里在线精品视频| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 国产在线免费精品| 久久人人爽av亚洲精品天堂| 亚洲人成网站在线观看播放| 久久久久久亚洲精品国产蜜桃av| 成人国产一区最新在线观看 | 最新在线观看一区二区三区 | 香蕉国产在线看| 午夜免费鲁丝| 午夜福利视频在线观看免费| 久久久久久久久久久久大奶| 久久久精品94久久精品| 亚洲 欧美一区二区三区| 久久久久久人人人人人| 国产精品二区激情视频| 国产伦人伦偷精品视频| 日韩一卡2卡3卡4卡2021年| 国产成人a∨麻豆精品| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 久久久久精品国产欧美久久久 | 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 国产精品麻豆人妻色哟哟久久| 久久狼人影院| 欧美xxⅹ黑人| 亚洲精品乱久久久久久| 一本久久精品| 中文字幕亚洲精品专区| 美女中出高潮动态图| 大型av网站在线播放| 搡老乐熟女国产| 亚洲国产最新在线播放| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产中文字幕在线视频| 脱女人内裤的视频| 成年动漫av网址| 久久九九热精品免费| 91老司机精品| 每晚都被弄得嗷嗷叫到高潮| 在线天堂中文资源库| 最新在线观看一区二区三区 | 久久久久久免费高清国产稀缺| 在线天堂中文资源库| 国产精品秋霞免费鲁丝片| 丝袜美足系列| 少妇精品久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 国产亚洲av高清不卡| 高清视频免费观看一区二区| 一区二区三区精品91| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 亚洲黑人精品在线| 男女高潮啪啪啪动态图| 在线观看www视频免费| 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 免费看十八禁软件| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 久久女婷五月综合色啪小说| 国产一区亚洲一区在线观看| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 麻豆国产av国片精品| 精品国产国语对白av| 国产亚洲av片在线观看秒播厂| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩高清在线视频 | 精品一区二区三区四区五区乱码 | 欧美 日韩 精品 国产| 午夜福利在线免费观看网站| 国产成人免费观看mmmm| 97精品久久久久久久久久精品| 深夜精品福利| 永久免费av网站大全| 各种免费的搞黄视频| 国产在视频线精品| 国产淫语在线视频| 99精品久久久久人妻精品| 亚洲色图综合在线观看| 日本a在线网址| 亚洲精品美女久久久久99蜜臀 | 国产99久久九九免费精品| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av | 丝袜在线中文字幕| 久久中文字幕一级| 一级毛片电影观看| 欧美亚洲日本最大视频资源| 国产成人精品久久久久久| 男女国产视频网站| 国产高清视频在线播放一区 | 亚洲国产精品999| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品一区二区蜜桃av | 一级a爱视频在线免费观看| 大香蕉久久网| 国产亚洲欧美精品永久| 另类精品久久| 中文字幕人妻丝袜制服| 久久人人爽av亚洲精品天堂| 免费黄频网站在线观看国产| 国产一区二区三区av在线| 久久久久久久精品精品| tube8黄色片| 日本午夜av视频| 我要看黄色一级片免费的| 宅男免费午夜| 桃花免费在线播放| 性色av一级| 狠狠婷婷综合久久久久久88av| 久久综合国产亚洲精品| 午夜福利视频在线观看免费| 亚洲人成电影观看| 一级毛片我不卡| 欧美老熟妇乱子伦牲交| 亚洲免费av在线视频| 韩国高清视频一区二区三区| 日本a在线网址| 国产成人免费无遮挡视频| 国产真人三级小视频在线观看| 日本av免费视频播放| 黄色视频在线播放观看不卡| 色94色欧美一区二区| av一本久久久久| 91成人精品电影| 日本色播在线视频| www日本在线高清视频| 亚洲精品美女久久av网站| 一级毛片电影观看| 亚洲成人免费av在线播放| 国产精品偷伦视频观看了| 啦啦啦在线观看免费高清www| 国产成人欧美| 大型av网站在线播放| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 一级片'在线观看视频| 男人舔女人的私密视频| 一区二区三区精品91| 五月天丁香电影| 久久女婷五月综合色啪小说| 久久影院123| 亚洲国产毛片av蜜桃av| 青草久久国产| 手机成人av网站| 大陆偷拍与自拍| 亚洲国产精品一区三区| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 99国产精品一区二区三区| 女人久久www免费人成看片| 两个人看的免费小视频| 男人添女人高潮全过程视频| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91| 午夜91福利影院| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久| 亚洲伊人色综图| 中文欧美无线码| 97人妻天天添夜夜摸| 男女免费视频国产| 国产免费一区二区三区四区乱码| 男女无遮挡免费网站观看| 色婷婷av一区二区三区视频| 亚洲中文字幕日韩| 欧美xxⅹ黑人| 亚洲成人手机| 在线精品无人区一区二区三| 国产精品三级大全| 99久久人妻综合| 日本午夜av视频| 日本欧美国产在线视频| 欧美日本中文国产一区发布| 在线观看国产h片| 久久亚洲精品不卡| 国产一区亚洲一区在线观看| 成年av动漫网址| 如日韩欧美国产精品一区二区三区| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 啦啦啦中文免费视频观看日本| 亚洲精品自拍成人| 亚洲中文日韩欧美视频| 亚洲久久久国产精品| 大码成人一级视频| 亚洲成人免费av在线播放| 国产国语露脸激情在线看| 久久久精品区二区三区| 男的添女的下面高潮视频| 免费日韩欧美在线观看| 久久中文字幕一级| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀 | 人妻 亚洲 视频| 午夜激情久久久久久久| 中文字幕亚洲精品专区| 只有这里有精品99| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 国产av国产精品国产| www.999成人在线观看| 久久影院123| 久久久精品免费免费高清| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频在线观看免费| 亚洲国产av新网站| 国产欧美日韩一区二区三区在线| 国产一区二区三区av在线| 老熟女久久久| 欧美精品人与动牲交sv欧美| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 久久久久久久精品精品| 99国产精品免费福利视频| 黄色a级毛片大全视频| 亚洲精品一二三| 欧美国产精品一级二级三级| 美女中出高潮动态图| av网站在线播放免费| 日本欧美视频一区| 操出白浆在线播放| 欧美成人精品欧美一级黄| 久久九九热精品免费| 国产无遮挡羞羞视频在线观看| 国产色视频综合| 激情视频va一区二区三区| 久久99精品国语久久久| 亚洲精品一卡2卡三卡4卡5卡 | 黄色视频不卡| 看免费av毛片| 在线精品无人区一区二区三| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 欧美日韩视频高清一区二区三区二| 欧美老熟妇乱子伦牲交| 久久久久精品国产欧美久久久 | 人人妻,人人澡人人爽秒播 | 男人爽女人下面视频在线观看| 天堂中文最新版在线下载| 婷婷色综合www| 精品国产乱码久久久久久男人| 亚洲欧美清纯卡通| 免费观看人在逋| av不卡在线播放| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色综合www| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 大话2 男鬼变身卡| 手机成人av网站| 日韩人妻精品一区2区三区| 亚洲专区国产一区二区| 免费看十八禁软件| 一级黄片播放器| 久久性视频一级片| 亚洲精品在线美女| 后天国语完整版免费观看| 女人被躁到高潮嗷嗷叫费观| 日本一区二区免费在线视频| 成年av动漫网址| 国产精品秋霞免费鲁丝片| videos熟女内射| 国产成人欧美在线观看 | 久久久久久免费高清国产稀缺| 久久人妻熟女aⅴ| 国产片特级美女逼逼视频| 母亲3免费完整高清在线观看| 国产黄色视频一区二区在线观看| 亚洲一区二区三区欧美精品| 亚洲欧美激情在线| 两性夫妻黄色片| 亚洲国产欧美日韩在线播放| 欧美日韩福利视频一区二区| 三上悠亚av全集在线观看| 国产成人一区二区三区免费视频网站 | 日韩制服丝袜自拍偷拍| 午夜老司机福利片| 精品人妻1区二区| 日韩大片免费观看网站| 免费少妇av软件| 国产精品免费大片| 久久久欧美国产精品| 青青草视频在线视频观看| 在线天堂中文资源库| 丝袜美足系列| 狠狠婷婷综合久久久久久88av| 五月天丁香电影| 美女大奶头黄色视频| 午夜两性在线视频| 中文字幕人妻熟女乱码| 老熟女久久久| 国产一区亚洲一区在线观看| 一区二区日韩欧美中文字幕| 丰满迷人的少妇在线观看| www.999成人在线观看| 国产免费视频播放在线视频| 香蕉丝袜av| 精品福利观看| 亚洲五月婷婷丁香| 中文字幕亚洲精品专区| 99热网站在线观看| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 一本一本久久a久久精品综合妖精| 亚洲 欧美一区二区三区| 波野结衣二区三区在线| 午夜福利影视在线免费观看| 天天操日日干夜夜撸| 天堂俺去俺来也www色官网| 亚洲人成电影免费在线| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 久久久国产精品麻豆| 日韩免费高清中文字幕av| av网站免费在线观看视频| 在线观看www视频免费| 亚洲欧美成人综合另类久久久| 国产亚洲精品第一综合不卡| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美视频二区| 一区在线观看完整版| 国产野战对白在线观看| www.精华液| 免费在线观看完整版高清| 色播在线永久视频| 亚洲av日韩在线播放| 亚洲精品成人av观看孕妇| 美女主播在线视频| 国产亚洲精品第一综合不卡| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 国精品久久久久久国模美| 免费女性裸体啪啪无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡 | 老鸭窝网址在线观看| 另类精品久久| 极品人妻少妇av视频| 午夜福利乱码中文字幕| 人人澡人人妻人| 国产一区二区激情短视频 | 蜜桃在线观看..| 校园人妻丝袜中文字幕| 成人亚洲欧美一区二区av| 欧美日韩精品网址| 欧美精品一区二区免费开放| 丝瓜视频免费看黄片| 熟女少妇亚洲综合色aaa.| 欧美黄色片欧美黄色片| 亚洲成人手机| av网站免费在线观看视频| 欧美日韩黄片免| 成人国产av品久久久| 欧美精品av麻豆av| 美女高潮到喷水免费观看| 免费在线观看视频国产中文字幕亚洲 | 黄色一级大片看看| 免费日韩欧美在线观看| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| 又粗又硬又长又爽又黄的视频| 黄片小视频在线播放| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 午夜视频精品福利| 中文字幕色久视频|