• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods?

    2017-08-30 08:25:20YunGuangZhang張?jiān)乒?/span>HuaZhang張華andGeDou竇戈
    Chinese Physics B 2017年9期
    關(guān)鍵詞:張華

    Yun-Guang Zhang(張?jiān)乒?,Hua Zhang(張華),and Ge Dou(竇戈)

    School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods?

    Yun-Guang Zhang(張?jiān)乒??,Hua Zhang(張華),and Ge Dou(竇戈)

    School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    The feasibility of spin-forbidden cooling of the InH molecule is investigated based on ab initio quantum chemistry calculations.The potential energy curves for thestates of InH are obtained based on multi-reference configuration interaction plus the Davidson corrections method.The calculated spectroscopic constants are in good agreement with the available experimental data.In addition,the influences of the active space and spin–orbit coupling effects on the potential energy curves and spectroscopic constants are also studied.For Reof a3Π0?,a3Π0+,a3Π1,and a3Π2states,the error from large active space is small.The potential energy curve of the A1Π1state is not smooth for small active space.The spin–orbit coupling effects have great influences on the potential well depth and equilibrium internuclear distance of the A1Π state.The Franck–Condon factors and radiative lifetimes are obtained on the basis of the transition dipole moments of thetransitions.Our calculation indicates that thetransition provides a highly diagonally distributed Franck– Condon factor and a short radiative lifetime for the a3Π1state,which can ensure rapid and efficient laser cooling of InH. The proposed laser drivestransitions by using three wavelengths.

    spectroscopic constants,Franck–Condon factors,transition dipole moments,spin-forbidden cooling transition

    1.Introduction

    Laser cooling to create unique ultracold molecules has aroused considerable interest[1–4]because of their promising applications,for example,new platforms for quantum computing,[5]quantum controlled chemistry,[6,7]precision measurement,[8–10]and quantum simulation.[11,12]Naturally the search for potential laser cooling candidates is attracting more and more interest.The direct cooling of a diatomic molecule to the order of microkelvin was firstly achieved in SrF using only three laser beams in 2010,[1]which has initiated a search for more molecules that may be controlled in a similar way.Later,successful laser cooling experiments have been performed for YO,[13]CaF,[14]BH,[15]and BaH.[16]Besides the experimental studies on laser cooling candidates,theoretical optical schemes have been suggested for MgCl,[17]MgBr,[17]BeI,[18]MgI,[18]BeCl,[19]BeBr,[19]BeF,[20]MgF,[21]LiBe,[22]as well as for M H(M=Be,Mg, Ca,Sr,and Ba).[23]According to the previous investigations, the Doppler laser-cooling process must meet these significant criteria:highly diagonal Franck–Condon factors(FCFs),limiting number of lasers required to keep the molecule in a closed-loop cooling cycle,and short radiative lifetime τ describing rapid laser cooling.In theory,most of the studies have focused on spin-allowed transitions(A2Π?X2Σ+or A1Π? X1Σ+).While Kobayashi et al.experimentally confirmed that the spin-forbidden transition B3Π→X1Σ+is well suited for laser cooling of the KRb[3]molecule in 2014.In addition,the laser cooling scheme using the spin-forbidden transition has also been theoretically studied on AlF,[24]BBr,[25]BCl,[25]and LiRb.[26]These results open the door to all-optical production of polar molecules at sub-microkelvin temperatures and highlight the possibility of finding similar molecules that can be laser cooled.

    Indium monohalides have been attracting interest for a long time because of their applications in the etching process of semiconductor devices.Experimental studies and theoretical calculations have been performed for InH over the past several decades.In 1939,the electronic spectrum of InH was reported,and bands of two transitions(i.e.,Σ–Σ and Π–Σ) were rotationally analyzed by Grundstr?m.[27,28]Garton[29]presented a band system in the wavelength region of 233–250 nm in 1951,but the system was not assigned.Subsequently,Neuhaus et al.[30,31]measured the A1Π–X1Σ+and a3Π–X1Σ+absorption spectra of InH and obtained the spectroscopic constants.Ginter[32–34]fitted the Rydberg–Klein– Rees curves of,and a3Π1states,and foundandtransitions.Ogilvie[35]later determined the potential energy and coefficients of radialfunc-tions of InH in the ground state X1Σ+from the rovibrational spectrum.In 1993,Rajamanickam et al.[36]refitted the Rydberg–Klein–Rees curves of theand a3Π1states, and obtained the FCFs of thesystem.In 2003, Zou et al.[37]investigated the potential energy curves(PECs) and the spectroscopic constants of the,a3Π0?,a3Π0+, a3Π1,a3Π2,and A1Π1states using the second order CI and relativistic CI methods,and predicted the transition properties of the excited states.Most recently,analytic potential energy functions were computed for theand a3Π0+states of InH using a dict-potenial-fit analysis by Alireza Shayesteh et al.[38]However,a systematic study of laser cooling of InH is, to the best of our knowledge,is so far unavailable.We focus in the present work on the theoretical study of the laser cooling of InH molecule employing different active spaces.The electronic structures and transition properties associated with the laser cooling of InH are calculated,including FCFs,transition dipole moments(TDMs),and radiative lifetimes of thetransitions of the InH molecule.A scheme for a feasible laser cooling cycle of InH is designed briefly.

    Section 2 describes the ab initio methods and basis sets used in the calculations of the electronic states of InH.Section 3 presents the results and discussion of the data,outlining laser cooling schemes for InH.We draw a conclusion for this work in Section 4.

    2.Computational details

    All the ab initio calculations are performed using the MOLPRO package.[39]The electronic states X1Σ+,a3Π,A1Π, and 13Σ+of InH molecule have been calculated with multi-reference configuration interaction(MRCI)plus Davidson corrections(MRCI+Q)method,[40–42]which is based on the complete active space self-consistent-field(CASSCF)[43,44]wave functions.Scalar relativistic effects are included throughout the Douglas–Kroll–Hess[45,46]transformation of the relativistic Hamiltonian.The spin–orbit coupling(SOC) effects are also taken into account following the MRCI+Q calculations for the InH molecule.Due to the limitation of the symmetry of the MOLPRO program package,the computations are performed within the C2νpoint group symmetry, which has four irreducible representations(A1,B1,B2,and A2).In the CASSCF and MRCI+Q calculations,23 or 14 molecular orbitals are chosen as the active space,including eleven or seven a1,five or three b1,five or three b2,and two or one a2symmetry.Fourteen electrons are distributed in(11552) or(7331)active space.The aug-ccpV5Z(AV5Z)basis set is used for the H atom.For the In atom,we take the small-core scalar relativistic effective core potential(ECP)ECP28MDFAV5Z with the corresponding valence basis sets.

    The nuclear Schr?dinger equation is solved using the LEVEL 8.2 program[47]to evaluate the spectroscopic constants,including the equilibrium bond length(Re),harmonic and in harmonic vibrational constants(ωeand ωexe),rotational constant(Be),adiabatic relative electronic energy referred to the ground state(Te),and dissociation energy(De)for the ground and the low-lying states of InH.The 13Σ+states are repulsive;therefore,they are not discussed in detail.All PECs are calculated with an interval of 0.05?A over the distance from 1.1?A to 9?A.To obtain accurate results,the interval value is reduced to 0.02?A near the equilibrium bond distance.The permanent dipole moments(PDMs)and TDMs are computed by the MRCI+Q method.The FCFs and radiative lifetimes of the various vibrational levels forandtransitions of InH are also determined from the LEVEL 8.2 program with the PECs and TDMs of different electronic states.

    3.Results and discussion

    3.1.PECs and spectroscopic constants

    In order to understand the possibility of laser-cooling InH molecule,we investigate the X1Σ+,a3Π,A1Π,and 13Σ+states of InH with the lowest dissociation channel In(2P)+ H(2S)at the MRCI+Q level.Because InH is a heavy nuclear molecule,the SOC effects are considered in calculations.The dissociation limit In(2P)+H(2S)splits into two asymptotes, namely,In(2P1/2)+H(2S1/2)and In(2P3/2)+H(2S1/2).These two dissociation limits produce eight ? states.The PECs for theandstates of InH are plotted in Fig.1.The corresponding spectroscopic constants are tabulated in Table 1 along with available experimental data[48]for comparison.

    Fig.1.(color online)The PECs including ? splitting of the low-lying electronic states of InH molecule.

    Table 1.Spectroscopic constants for InH molecule at the MRCI+Q level.

    As can be seen from Table 1,the influence of the SOC effect on the spectroscopic constants for the ground state seems to be weak.For example,the vibrational frequency ωeand an harmonic vibrational constants ωexeof the X1Σ+state are computed to be 1439.7738 cm?1and 21.6642 cm?1, which differ from the values ofby 0.4825 cm?1and 0.101 cm?1,respectively.The SOC effects are considered in the calculations for the a3Π state,which splits into four ? states(a3Π0?,a3Π0+,a3Π1,and a3Π2).In addition,to obtain accurate results,the effects of the active space are also considered for the InH molecule.The study of spectroscopic constants mainly focuses on two active spaces(11552) and(7331).The active space has a weak influence on the spectroscopic constants of the X1Σ+and a3Π states.For the X1Σ+state,the values of ωeand Befrom active spaces (11552)and(7331)are very close.For the a3Π state,the calculated ωeand Beresults for active space(11552)are only 1.462 cm?1and 0.030 cm?1larger than those for active space(7331).Meanwhile,the effects of the different active spaces(11552)and(7331)on the spectroscopic constants of the ? sub-states,a3Π0?,a3Π0+,a3Π1,and a3Π2are considered.The results indicate that the effects of the active space on the spectroscopic constants of these states are insignificant.The ωevalues of the a3Π0?and a3Π2sub-states for active space(11552)are 1496.8152 cm?1and 1511.6053 cm?1,which are in excellent agreement with the values of 1494.6673 cm?1and 1505.7961 cm?1for active space(7331).Our values of ωexeof the a3Π0?and a3Π2states for active space(11552)are slightly larger than those for active space(7331).Thus the following analyses mainly focus on the results on the basis of active space (11552).For,a3Π0+,and a3Π1states,the equilibrium bond distances Reare calculated to be 1.8683?A,1.7871?A, and 1.7881?A,and the corresponding percentage errors are only 1.65%,0.43%,and 1.15%with respect to the experimental values,respectively;the differences in the rotational constant Befor the three states are 0.1613 cm?1,0.0289 cm?1, 0.1076 cm?1,respectively;and notably,the calculated Tefor the,a3Π0+,and a3Π1states are 0,15374.570 cm?1, and 15956.470 cm?1,which match well with the experimental values of 0,16278.15 cm?1,and 16941.61 cm?1.The spectroscopic constants for the a3Π0?and a3Π2states are also predicted:ωe=1496.8152 cm?1and 1511.6053 cm?1, ωexe=61.4561 cm?1and 70.9483 cm?1.However,the equilibrium distances Reof the,a3Π0?,a3Π0+,a3Π1,and a3Π2states for active space(11552)are respectively 1.8683?A, 1.7871?A,1.7871?A,1.7881?A,and 1.7878?A,which are closer to the experimental data[48]than those for active space(7331). Because the equilibrium separation has an important influence on FCFs,the results from active space(11552)are more suitable to evaluate the effect of laser cooling.

    As shown in Fig.2,the influence of the SOC effects and active space on the PECs of the A1Π state is significant.The dissociation limit of the ? state is greater than that of the Λ–S state.The PECs of the active space(11552)are smoother than those of the active space(7331),which implies that active space(11552)is more conducive to research laser cooling.The PECs of the A1Π and A1Π1states have two potential wells.Moreover,the second potential well and the second equilibrium bond length have a distinct change with the SOC effects.It can be seen from Table 1,for the A1Π state,the second well is placed at 22057.855 cm?1above the ground state and the depth is 44.360 cm?1.For the A1Π1state,the second well is placed at 22646.205 cm?1above the ground state, and the depth is 126.628 cm?1.The equilibrium internuclear distances of the second potential well for the A1Π and A1Π1states are 3.9783 cm?1and 3.1884 cm?1,respectively.In addition,the ωe,ωexe,and Beof the first potential well and ωexeof the second potential well cannot be obtained because the A1Π state has two so shallow potential wells that there is only one vibrational level in them.So no experimental data were available for the A1Π and A1Π1states before.

    Fig.2.(color online)The PECs for the A1Π and A1Π1 states based on two different active spaces.

    3.2.PDMs and TDMs

    Fig.3.(color online)The PDMs of(a)X1Σ+,,A1Π,A1Π1,and (b)a3Π,a3Π0?,a3Π0+,a3Π1,a3Π2 states of InH molecule.

    Fig.4.(color online)The TDMs of the A1Π1→,a3Π0+→,andtransitions of InH molecule.

    3.3.FCFs and spontaneous radiative lifetimes

    The calculated FCFs can be used to describe the overlap of the vibrational wave functions for the cooling transition. To demonstrate the distributions of FCFs(qν′ν)for the different vibrational states ofandtransitions,we have sketched all possible transitions between 0≤ν≤3 and 0≤ν′≤1 in Table 2 to show the obvious characteristic that the transitions of Δν=ν?ν′=0 have the largest probabilities. Highly diagonal FCFs obey the first criterion to be a potential laser-cooling candidate which could limit the number of lasers required to keep the molecule in a closed-loop cooling cycle. Unfortunately,the FCFs of thetransition are very small.Therefore,it is not possible to cool the InH molecule based on the spin-allowed transition.

    Table 2.The calculated Franck–Condon factors qν′ν,wavelength λνν′,Aν′ν,and estimated spontaneous radiative lifetimes τ.

    As listed in Table 2,the present FCFs of the a3Π0+(ν′=andtransitions reach 0.9100 and 0.9151,respectively.The A1Π1state is prohibitive to the cooling cycle because of the small diagonal FCF(q00=0.0235)for thetransition. By comparing with other molecules,our calculated value is slightly larger than that predicted for BeF(q00=0.897),[20]LiRb(q00=0.872),[26]and smaller than that for SrF(q00= 0.98).[1]Therefore,the FCFs of InH are sufficiently large for laser cooling.Aside from the large diagonal FCFs,short spontaneous radiative lifetime τ(10?8–10?5s)[23]is another criterion for the laser cooling of molecules,which can provide a significant rate of rapid cycling.The corresponding computed radiative lifetimes are collected in Table 2.The spontaneous radiative lifetime τ of thetransition is 1.9649×10?4s,which is too long.Yet,the spontaneous radiative lifetime τ of thetransition is 1.0119×10?6s,which is suitable for laser cooling InH molecule.

    We also evaluate the branching ratios Rν′ν,which can be expressed asBranching ratios of the diagonal terms R00=0.9357 and R11=0.8403 for thetransition are obtained;and branching ratios of the off-diagonal terms R01=5.78×10?2,R02= 6.37×10?3,R03=1.10×10?4,R10=9.26×10?2,R12= 6.56×10?2,and R13=1.09×10?3are also calculated.Due to the branching to ν≥3 states of InH are expressed as R03+<3×10?5,we propose a cyclic system with three lasers involving ν=0,1,2,3 of thestate and ν′=0,1 of the a3Π1state based on the calculated Rν′ν.The laser driven transitions(solid red)and spontaneous decays(dash line)in the proposed scheme are plotted in Fig 5.The calculated wavelength of the principal laser-driven cycling of thetransition is the main pump in Fig.5,whose wavelength λ00is 626.7 nm.To augment the cooling effect,we add two cycles that the a3Π1(ν′= 0)→(ν=1)transition is the first vibrational pump and the a3Π1(ν′=1)→(ν=2)transition is the second vibrational pump.Therefore,two additional lasers with λ10=686.9154 nm and λ21=686.4697 nm are required.

    Fig.5.(color online)The proposed laser-driven transition(solid red)and spontaneous decay(dash line)between the a3Π1 and states with calculated Rν′νfor the InH molecule.Here λνν′is the wavelength.

    4.Conclusion

    [1]Shuman E S,Barry J F and DeMille D 2010 Nature 467 820

    [2]Hellwege K H and Hellwege A M 1974 Molecular Constants from Microwave,Molecular Beam,and Electron Spin Resonance Spectroscopy (Berlin:Springer-Verlag)

    [3]Kobayashi J,Aikawa K,Oasa K and Inouye S 2014 Phys.Rev.A 89 021401

    [4]Molony P K,Gregory P D,Ji Z H,Lu B,Koppinger M P,Le Sueur C R,Blackley C L,Hutson J M and Cornish S L 2014 Phys.Rev.Lett. 113 255301

    [5]DeMille D 2002 Phys.Rev.Lett.88 067901

    [6]Ospelkaus S,Ni K K,Wang D,Miranda M H G de,Neyenhuis B, Quemener G,Julienne P S,Bohn J L,Jin D S and Ye J 2010 Science 327 853

    [7]Krems R V 2008 Phys.Chem.Chem.Phys.10 4079

    [8]Flambaum V V and Kozlov M G 2007 Phys.Rev.Lett.99 150801

    [9]Hudson J J,Kara D M,Smallman I J,Sauer B E,Tarbutt M R and Hinds E A 2011 Nature 473 493

    [10]Isaev T A,Hoekstra S and Berger R 2010 Phys.Rev.A 82 052521

    [11]Santos L,Shlyapnikov G V,Zoller P and Lewenstein M 2000 Phys. Rev.Lett.85 1791

    [12]Baranov M A,Dalmonte M,Pupillo G and Zoller P 2012 Chem.Rev. 112 5012

    [13]Hummon M T,Yeo M,Stuhl B K,Collopy A L,Xia Y and Ye J 2013 Phys.Rev.Lett.110 143001

    [14]Zhelyazkova V,Cournol A,Wall TE,Matsushima A,Hudson JJ,Hinds E A,Tarbutt M R and Sauer B E 2014 Phys.Rev.A 89 053416

    [15]Hendricks R J,Holland D A,Truppe S,Sauer B E and Tarbutt M R 2014 Frontiers in Physics 2 51

    [16]Tarallo M G,Iwata G Z and Zelevinsky T 2016 Phys.Rev.A 93 032509

    [17]Wan M J,Shao J X,Gao Y F,Huang D H,Yang J S,Cao Q L,Jin C G and Wang F H 2015 J.Chem.Phys.143 024302

    [18]Wan M J,Huang D H,Shao J X,Yu Y,Li S and Li Y Y 2015 J.Chem. Phys.143 164312

    [19]Wan M J,Shao J X,Huang D H,Jin C G,Yu Y and Wang F H 2015 Phys.Chem.Chem.Phys.17 26731

    [20]Lane I C 2012 Phys.Chem.Chem.Phys.14 15078

    [21]Kang S Y,Gao Y F,Kuang F G,Gao T,Du J G and Jiang G 2015 Phys. Rev.A 91 042511

    [22]You Y,Yang C L,Wang M S,Ma X G and Liu W W 2015 Phys.Rev. A 92 032502

    [23]Gao Y F and Gao T 2014 Phys.Rev.A 90 052506

    [24]Wells N and Lane I C 2011 Phys.Chem.Chem.Phys.13 19018

    [25]Yang R,Gao Y F,Tang B and Gao T 2015 Phys.Chem.Chem.Phys. 17 1900

    [26]You Y,Yang C L,Zhang Q Q,Wang M S,Ma X G and Liu W W 2016 Phys.Chem.Chem.Phys.18 19838

    [27]Grundstrom B 1938 Nature 141 555

    [28]Grundstrom B 1939 Z.Phys.113 721

    [29]Garton W R S 1951 Proc.Phys.Soc.,London,Sect.A 64 509

    [30]Neuhaus H 1958 Z.Phys.150 4

    [31]Neuhaus H 1958 Z.Phys.152 402

    [32]Ginter M L 1963 J.Mol.Spectrosc.11 301

    [33]Ginter M L 1966 J.Mol.Spectrosc.20 240

    [34]Ginter M L 1965 J.Chem.Phys.42 3222

    [35]Ogilvie J F 1992 Chem.Phys.Lett.191 592

    [36]Rajamanickam N,Murali T,Sakthivel T,Gomez M F and Gonzalez J J L 1993 Collect.Czech.Chem.Commun.58 1491

    [37]Zou W l,Lin M R,Yang X Z and Zhang B Z 2003 Phys.Chem.Chem. Phys.5 1106

    [38]Shayesteh A and Ghazizadeh E 2016 J.Mole.Spec.330 72

    [39]Werner H J,Knowles P J,Lindh R,Knizia G,Manby F R and Schütz M 2010 MOLPRO,version 2010.1,a package of ab initio programs, see http://www.molpro.net

    [40]Laughoff S R and Davidson E R 1974 Int.J.Quantum Chem.8 61

    [41]Knowles P J and Werner H J 1988 Chem.Phys.Lett.145 514

    [42]Werner H J and Knowles P J 1988 J.Chem.Phys.89 5803

    [43]Werner H J and Knowles P J 1985 J.Chem.Phys.82 5053

    [44]Knowles P J and Werner H J 1985 Chem.Phys.Lett.115 259

    [45]Douglas N and Kroll N M 1974 Ann.Phys.82 89

    [46]Hess B A 1986 Phys.Rev.A 33 3742

    [47]Le Roy R J 2015“LEVEL 8.2:A computer program for solving the radial Schrodinger equation for bound and quasibound levels,”Chemical Physics Research Report CP-668(University of Waterloo)

    [48]Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV.Constants of Diatomic Molecules(New York:Van Nostrand Reinhold Company Inc.)

    7 May 2017;revised manuscript

    5 June 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/093101

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11104217 and 11402199)and the Program for New Scientific and Technological Star of Shaanxi Province,China(Grant No.2012KJXX-39).

    ?Corresponding author.E-mail:zygsr2010@163.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    張華
    冬天的風(fēng)在說(shuō)什么
    鳥兒從空中飛過(guò)
    太陽(yáng)出來(lái)暖洋洋
    山間
    爸爸的手
    年輪
    白衣天使
    張華全 金蓮 曹嚴(yán)勻
    風(fēng)
    張華教授
    丰满饥渴人妻一区二区三| 2022亚洲国产成人精品| 成人国产av品久久久| 免费高清在线观看视频在线观看| 成人国产麻豆网| √禁漫天堂资源中文www| 日日爽夜夜爽网站| 亚洲精品日本国产第一区| 国产精品久久久久久久久免| 男人添女人高潮全过程视频| 美女脱内裤让男人舔精品视频| 男女边摸边吃奶| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 麻豆乱淫一区二区| 中文字幕制服av| av视频免费观看在线观看| 免费高清在线观看日韩| 久久久久精品久久久久真实原创| 午夜免费鲁丝| 日韩中文字幕欧美一区二区 | 成人二区视频| 亚洲精品一二三| 在线天堂最新版资源| 成人手机av| 欧美精品国产亚洲| 国产精品久久久久成人av| 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 亚洲成人av在线免费| 麻豆av在线久日| 日日撸夜夜添| 久久午夜福利片| 建设人人有责人人尽责人人享有的| 久久久久久久亚洲中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 菩萨蛮人人尽说江南好唐韦庄| 人人澡人人妻人| 中文乱码字字幕精品一区二区三区| 狠狠精品人妻久久久久久综合| 蜜桃在线观看..| 老司机影院毛片| 免费人妻精品一区二区三区视频| 男女高潮啪啪啪动态图| 大片电影免费在线观看免费| av不卡在线播放| 精品99又大又爽又粗少妇毛片| 少妇的逼水好多| 免费高清在线观看日韩| 日本色播在线视频| 在线观看美女被高潮喷水网站| 日韩免费高清中文字幕av| 999精品在线视频| 久久精品国产亚洲av天美| av视频免费观看在线观看| 亚洲成色77777| 一区二区三区精品91| 亚洲欧洲国产日韩| 啦啦啦在线免费观看视频4| 在线免费观看不下载黄p国产| 天天影视国产精品| 午夜福利在线观看免费完整高清在| 免费人妻精品一区二区三区视频| 国产片内射在线| 免费日韩欧美在线观看| 一个人免费看片子| 精品人妻熟女毛片av久久网站| 欧美精品人与动牲交sv欧美| 高清av免费在线| 嫩草影院入口| 久久精品国产亚洲av天美| 亚洲久久久国产精品| 亚洲激情五月婷婷啪啪| 欧美中文综合在线视频| 日本欧美国产在线视频| 丁香六月天网| 看免费成人av毛片| 日本午夜av视频| 亚洲欧洲精品一区二区精品久久久 | 国产女主播在线喷水免费视频网站| 看非洲黑人一级黄片| 欧美另类一区| 国产片特级美女逼逼视频| 九九爱精品视频在线观看| 国产精品国产av在线观看| 天堂中文最新版在线下载| 精品国产一区二区久久| 亚洲成人手机| 亚洲av在线观看美女高潮| 欧美激情极品国产一区二区三区| av免费观看日本| 中文字幕最新亚洲高清| 最近的中文字幕免费完整| 老司机影院毛片| 国产成人精品久久二区二区91 | 日韩伦理黄色片| 9色porny在线观看| 在线观看www视频免费| 人妻 亚洲 视频| 大话2 男鬼变身卡| 国产激情久久老熟女| 国产精品熟女久久久久浪| 高清在线视频一区二区三区| 中文字幕人妻丝袜制服| 中文精品一卡2卡3卡4更新| 一本久久精品| 国产成人精品一,二区| www.av在线官网国产| 黄片无遮挡物在线观看| 中国国产av一级| 最近2019中文字幕mv第一页| 国产精品不卡视频一区二区| 香蕉国产在线看| 国产亚洲午夜精品一区二区久久| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 日韩一区二区三区影片| 成人午夜精彩视频在线观看| 久久免费观看电影| 亚洲情色 制服丝袜| 亚洲五月色婷婷综合| 成人午夜精彩视频在线观看| 男人操女人黄网站| 久久午夜福利片| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看| 一本—道久久a久久精品蜜桃钙片| 国产在视频线精品| 午夜影院在线不卡| 男女下面插进去视频免费观看| 久久久久国产一级毛片高清牌| 2021少妇久久久久久久久久久| 亚洲第一av免费看| 国产极品天堂在线| 免费观看无遮挡的男女| 99久久人妻综合| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲国产日韩| 在线 av 中文字幕| 亚洲男人天堂网一区| 中文欧美无线码| 在线观看美女被高潮喷水网站| 美女视频免费永久观看网站| 丝袜美腿诱惑在线| 国产精品人妻久久久影院| 我要看黄色一级片免费的| 久久国产精品男人的天堂亚洲| 国产女主播在线喷水免费视频网站| 有码 亚洲区| 少妇熟女欧美另类| av有码第一页| 国产成人精品婷婷| 超碰97精品在线观看| 亚洲国产精品999| 一区在线观看完整版| 在线观看免费高清a一片| 国产一级毛片在线| 国产白丝娇喘喷水9色精品| 国产成人91sexporn| 国产精品久久久久成人av| 青春草视频在线免费观看| 男女边摸边吃奶| 亚洲情色 制服丝袜| 18禁动态无遮挡网站| 女性生殖器流出的白浆| 一本色道久久久久久精品综合| 99久国产av精品国产电影| 久久精品aⅴ一区二区三区四区 | 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 亚洲国产成人一精品久久久| 丝袜美腿诱惑在线| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 欧美xxⅹ黑人| 色视频在线一区二区三区| 999久久久国产精品视频| 人人妻人人澡人人爽人人夜夜| 18禁裸乳无遮挡动漫免费视频| av女优亚洲男人天堂| 久久亚洲国产成人精品v| 亚洲天堂av无毛| 亚洲成人手机| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| av不卡在线播放| 天天影视国产精品| 麻豆av在线久日| 天美传媒精品一区二区| 老女人水多毛片| 最近最新中文字幕大全免费视频 | 青草久久国产| 春色校园在线视频观看| 国产又色又爽无遮挡免| 国产成人91sexporn| 99久国产av精品国产电影| 另类亚洲欧美激情| 少妇人妻久久综合中文| 九色亚洲精品在线播放| 久久久国产精品麻豆| 国产精品人妻久久久影院| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 一级片'在线观看视频| 天堂俺去俺来也www色官网| 亚洲在久久综合| 国产成人91sexporn| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 欧美人与性动交α欧美精品济南到 | 亚洲欧美一区二区三区国产| 欧美人与善性xxx| 一区二区av电影网| 久久人人爽人人片av| 美女高潮到喷水免费观看| 亚洲成国产人片在线观看| 少妇 在线观看| 国产在线免费精品| 国产精品欧美亚洲77777| 亚洲精品中文字幕在线视频| 久久人妻熟女aⅴ| 久久午夜综合久久蜜桃| 18禁动态无遮挡网站| 日本免费在线观看一区| 欧美日韩视频高清一区二区三区二| 国产在线一区二区三区精| 中文天堂在线官网| 99久久综合免费| 在线观看免费视频网站a站| 午夜av观看不卡| 好男人视频免费观看在线| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 又黄又粗又硬又大视频| 欧美黄色片欧美黄色片| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美精品综合一区二区三区 | 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 国产免费现黄频在线看| 国产激情久久老熟女| 欧美 日韩 精品 国产| 99国产综合亚洲精品| 国产亚洲最大av| 九九爱精品视频在线观看| 天天操日日干夜夜撸| 免费观看性生交大片5| 亚洲欧美色中文字幕在线| 久久精品亚洲av国产电影网| 国产精品嫩草影院av在线观看| 人人妻人人爽人人添夜夜欢视频| xxx大片免费视频| 国产乱来视频区| 国产免费现黄频在线看| 国产精品一区二区在线不卡| 亚洲第一av免费看| 亚洲天堂av无毛| 热99国产精品久久久久久7| 深夜精品福利| 亚洲欧洲日产国产| 韩国精品一区二区三区| 久久精品亚洲av国产电影网| 国产在视频线精品| 国产一区二区三区综合在线观看| 国产男女内射视频| 日韩制服丝袜自拍偷拍| 街头女战士在线观看网站| 亚洲精品国产av成人精品| 欧美黄色片欧美黄色片| 国产男女内射视频| www.自偷自拍.com| 两性夫妻黄色片| 亚洲国产最新在线播放| 免费看不卡的av| 七月丁香在线播放| 久久久久久免费高清国产稀缺| av.在线天堂| 欧美日韩视频高清一区二区三区二| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 日韩 亚洲 欧美在线| 久久久国产精品麻豆| 欧美另类一区| 日韩制服丝袜自拍偷拍| 国产一区二区三区av在线| 2021少妇久久久久久久久久久| 不卡视频在线观看欧美| 国产一区亚洲一区在线观看| 久久精品国产亚洲av天美| 国产成人精品无人区| 美女福利国产在线| 亚洲,欧美精品.| 国产麻豆69| 一二三四在线观看免费中文在| 久久久国产精品麻豆| 欧美精品av麻豆av| 成年女人在线观看亚洲视频| 亚洲成国产人片在线观看| 婷婷色av中文字幕| 日韩av不卡免费在线播放| 在线观看免费高清a一片| 亚洲视频免费观看视频| 可以免费在线观看a视频的电影网站 | 999精品在线视频| 亚洲一码二码三码区别大吗| 精品国产国语对白av| 亚洲视频免费观看视频| 爱豆传媒免费全集在线观看| 如何舔出高潮| 午夜福利网站1000一区二区三区| 人妻人人澡人人爽人人| 成人免费观看视频高清| 日本av手机在线免费观看| 午夜福利乱码中文字幕| 日日撸夜夜添| 丝瓜视频免费看黄片| 欧美亚洲 丝袜 人妻 在线| 欧美 亚洲 国产 日韩一| 伦理电影大哥的女人| 在线观看国产h片| 国产又爽黄色视频| 久久精品久久久久久噜噜老黄| 精品少妇一区二区三区视频日本电影 | 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| 在线 av 中文字幕| 夫妻性生交免费视频一级片| 啦啦啦在线免费观看视频4| 日韩欧美一区视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产一级毛片在线| 国产黄频视频在线观看| 午夜老司机福利剧场| 午夜福利,免费看| 亚洲av福利一区| 晚上一个人看的免费电影| 丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 久久精品国产亚洲av高清一级| 国精品久久久久久国模美| 国产不卡av网站在线观看| 成人国语在线视频| 国产日韩欧美亚洲二区| 亚洲国产av影院在线观看| 婷婷色av中文字幕| 亚洲av国产av综合av卡| 欧美日韩精品网址| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 十八禁高潮呻吟视频| 国产一区二区三区av在线| 久久精品夜色国产| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| videosex国产| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频| 搡老乐熟女国产| 日韩精品免费视频一区二区三区| 各种免费的搞黄视频| 久久久久久久国产电影| 中文欧美无线码| 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 一本大道久久a久久精品| av有码第一页| 免费观看性生交大片5| 亚洲第一青青草原| 青春草亚洲视频在线观看| 久久精品熟女亚洲av麻豆精品| 日韩大片免费观看网站| 成年av动漫网址| 国产黄频视频在线观看| 一级黄片播放器| 中文天堂在线官网| 日本欧美国产在线视频| 亚洲欧美一区二区三区黑人 | 久久免费观看电影| 我要看黄色一级片免费的| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 黄色配什么色好看| 国产1区2区3区精品| 国产毛片在线视频| 黑人欧美特级aaaaaa片| 在线观看免费视频网站a站| 国产国语露脸激情在线看| 国产精品蜜桃在线观看| av福利片在线| 国产欧美日韩一区二区三区在线| 日韩伦理黄色片| 如何舔出高潮| 又大又黄又爽视频免费| 999久久久国产精品视频| 91国产中文字幕| 欧美精品亚洲一区二区| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 男女免费视频国产| 亚洲一区中文字幕在线| 电影成人av| 国产 精品1| 亚洲av欧美aⅴ国产| 超碰成人久久| 天天操日日干夜夜撸| 免费日韩欧美在线观看| 免费大片黄手机在线观看| 大码成人一级视频| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 一级a爱视频在线免费观看| 成年美女黄网站色视频大全免费| 高清欧美精品videossex| 你懂的网址亚洲精品在线观看| 性色avwww在线观看| 夫妻性生交免费视频一级片| 丰满少妇做爰视频| 亚洲经典国产精华液单| 午夜91福利影院| 亚洲成人av在线免费| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 久久国内精品自在自线图片| 国产福利在线免费观看视频| 久久国内精品自在自线图片| 国产女主播在线喷水免费视频网站| 久久久久网色| 交换朋友夫妻互换小说| 97精品久久久久久久久久精品| 午夜日本视频在线| 日韩中文字幕欧美一区二区 | 免费女性裸体啪啪无遮挡网站| 精品少妇内射三级| 你懂的网址亚洲精品在线观看| 春色校园在线视频观看| 亚洲精品aⅴ在线观看| av女优亚洲男人天堂| 一级片免费观看大全| 欧美成人午夜精品| 亚洲av国产av综合av卡| 热re99久久精品国产66热6| 国产一区二区三区av在线| 国产精品久久久久久精品古装| 日本午夜av视频| 亚洲国产成人一精品久久久| 久久久精品国产亚洲av高清涩受| 丝瓜视频免费看黄片| 性少妇av在线| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 蜜桃在线观看..| 黄片播放在线免费| 黄色一级大片看看| 亚洲国产最新在线播放| 男女免费视频国产| 亚洲精品第二区| 国产黄频视频在线观看| 在线观看www视频免费| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 一区二区av电影网| 国产一区有黄有色的免费视频| 啦啦啦在线观看免费高清www| 精品一品国产午夜福利视频| 成人漫画全彩无遮挡| 国产探花极品一区二区| 美女福利国产在线| 你懂的网址亚洲精品在线观看| 亚洲精品日本国产第一区| 电影成人av| 麻豆精品久久久久久蜜桃| 亚洲色图 男人天堂 中文字幕| 999精品在线视频| 26uuu在线亚洲综合色| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| 国产精品国产三级国产专区5o| 麻豆av在线久日| 在线 av 中文字幕| 国产精品av久久久久免费| 丝袜美足系列| 你懂的网址亚洲精品在线观看| 免费日韩欧美在线观看| 1024视频免费在线观看| 亚洲av综合色区一区| 成人国产麻豆网| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 天天影视国产精品| 97在线视频观看| 熟女av电影| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 不卡av一区二区三区| 国产精品 国内视频| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 中文字幕制服av| 久久久久久伊人网av| 久热久热在线精品观看| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| av免费在线看不卡| 国产av一区二区精品久久| 天堂8中文在线网| 欧美日本中文国产一区发布| 性色avwww在线观看| 纵有疾风起免费观看全集完整版| 国产亚洲一区二区精品| 国产精品秋霞免费鲁丝片| 一级爰片在线观看| 国产高清国产精品国产三级| 亚洲中文av在线| 又黄又粗又硬又大视频| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 久久久精品国产亚洲av高清涩受| 国产免费又黄又爽又色| 激情五月婷婷亚洲| 午夜福利乱码中文字幕| 久久久久久久精品精品| 国产精品av久久久久免费| a 毛片基地| 如日韩欧美国产精品一区二区三区| 晚上一个人看的免费电影| 中国三级夫妇交换| 久久久精品免费免费高清| 人人妻人人添人人爽欧美一区卜| 久久久久久久久久人人人人人人| 欧美日韩av久久| 日韩一本色道免费dvd| 国产一级毛片在线| 中国三级夫妇交换| 国产又色又爽无遮挡免| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区黑人 | 亚洲欧洲国产日韩| 在线观看一区二区三区激情| 国产一区二区 视频在线| 国产一区二区激情短视频 | 国产成人精品在线电影| 9热在线视频观看99| 欧美日韩视频精品一区| 日本91视频免费播放| 成人影院久久| 久久久国产精品麻豆| 色婷婷久久久亚洲欧美| 中文欧美无线码| 久久精品国产a三级三级三级| 日本猛色少妇xxxxx猛交久久| 深夜精品福利| 天天躁日日躁夜夜躁夜夜| 高清黄色对白视频在线免费看| 亚洲五月色婷婷综合| 久久久久精品久久久久真实原创| 亚洲三级黄色毛片| 青春草亚洲视频在线观看| av有码第一页| 在现免费观看毛片| 国产精品一国产av| 91成人精品电影| 在线观看国产h片| 人人妻人人澡人人爽人人夜夜| 欧美日韩精品网址| 日韩中字成人| 欧美在线黄色| 精品少妇久久久久久888优播| 欧美激情高清一区二区三区 | 考比视频在线观看| 国产成人免费无遮挡视频| 高清黄色对白视频在线免费看| 在线观看www视频免费| 少妇人妻久久综合中文| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| av网站免费在线观看视频| 三上悠亚av全集在线观看| 大片电影免费在线观看免费| 亚洲精品美女久久av网站| av电影中文网址| 国产精品偷伦视频观看了| 国产野战对白在线观看| 久久影院123| 亚洲成人av在线免费| 99热全是精品| 亚洲美女视频黄频| av视频免费观看在线观看| 99久久综合免费| 亚洲精品视频女| 亚洲精品一区蜜桃| 欧美精品av麻豆av| 黑丝袜美女国产一区| 麻豆乱淫一区二区| 国产97色在线日韩免费| 免费在线观看完整版高清| 国产在视频线精品| 91国产中文字幕| videos熟女内射| 国产一区二区 视频在线| 国产av精品麻豆| 国产精品国产三级国产专区5o| 亚洲av.av天堂| 国产成人午夜福利电影在线观看| 亚洲欧美一区二区三区久久| 亚洲一区二区三区欧美精品| 18禁动态无遮挡网站| 桃花免费在线播放| h视频一区二区三区| 精品少妇内射三级| 人成视频在线观看免费观看|