趙佳玥, 張道勇, 潘響亮*
1.中國(guó)科學(xué)院新疆生態(tài)與地理研究所, 新疆干旱區(qū)環(huán)境污染與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室, 新疆 烏魯木齊 830011 2.浙江工業(yè)大學(xué)環(huán)境學(xué)院, 浙江 杭州 310014 3.中國(guó)科學(xué)院大學(xué), 北京 100049
微米級(jí)核殼量子點(diǎn)團(tuán)聚體在生物膜中的擴(kuò)散與溶解及其毒性
趙佳玥1,3, 張道勇1,2, 潘響亮1,2*
1.中國(guó)科學(xué)院新疆生態(tài)與地理研究所, 新疆干旱區(qū)環(huán)境污染與生態(tài)修復(fù)重點(diǎn)實(shí)驗(yàn)室, 新疆 烏魯木齊 830011 2.浙江工業(yè)大學(xué)環(huán)境學(xué)院, 浙江 杭州 310014 3.中國(guó)科學(xué)院大學(xué), 北京 100049
包括量子點(diǎn)在內(nèi)的人工納米顆粒是近年來突出的環(huán)境污染物,為確定其在生物膜中的擴(kuò)散過程和特征,應(yīng)用TIRF(全內(nèi)反射熒光)、FRAP(熒光漂白后恢復(fù))等技術(shù),研究了CdTeCdSZnS核殼式量子的微米級(jí)的團(tuán)聚體在細(xì)菌Comamonastestoteroni生物膜表面的吸附動(dòng)力學(xué)、生物膜內(nèi)部的擴(kuò)散及其在生物膜中的溶解和毒性. 結(jié)果表明:通過TIRF技術(shù)觀察到生物膜可快速吸附>1 μm的CdTeCdSZnS核殼式量子點(diǎn)團(tuán)聚體,而且通過CLSM(激光掃描共聚焦熒光顯微鏡)進(jìn)行深度掃描發(fā)現(xiàn),量子點(diǎn)團(tuán)聚體吸附到生物膜表面后可以進(jìn)一步擴(kuò)散到生物膜深層,在25 min內(nèi)可穿透45 μm的生物膜,并在生物膜中隨深度呈線性分布特征. FRAP分析表明,量子點(diǎn)團(tuán)聚體被生物膜固定后還具有較強(qiáng)的移動(dòng)性,漂白區(qū)的熒光強(qiáng)度在5 min可恢復(fù)30%. 量子點(diǎn)團(tuán)聚體在生物膜中會(huì)溶解產(chǎn)生Cd2+、Zn2+等重金屬離子,從而對(duì)生物膜產(chǎn)生毒性并殺死細(xì)菌. 研究顯示,雖然納米顆粒進(jìn)入環(huán)境中會(huì)形成微米級(jí)的團(tuán)聚體,但依然可以進(jìn)入生物膜,對(duì)水生微生物生態(tài)系統(tǒng)產(chǎn)生危害. TIRF、CLSM和FRAP技術(shù)是研究納米顆粒物在生物膜表面吸附和內(nèi)部擴(kuò)散動(dòng)力學(xué)的有效工具.
納米顆粒; 量子點(diǎn); 生物膜; 全內(nèi)反射熒光(TIRF); 熒光漂白后恢復(fù)(FRAP)
納米顆粒是指粒徑在三維空間內(nèi)至少有一維小于100 nm的顆粒. 納米顆粒具有顯著的量子尺寸效應(yīng)、界面效應(yīng)、小尺寸效應(yīng)等,在化工、醫(yī)藥、電子、環(huán)保等行業(yè)和日常生活用品中有著廣泛的應(yīng)用[1- 3]. 日益增多的應(yīng)用也導(dǎo)致了越來越多的納米材料進(jìn)入到水、土環(huán)境介質(zhì)中[4],并對(duì)生物個(gè)體、群落和生態(tài)系統(tǒng)產(chǎn)生潛在風(fēng)險(xiǎn)[5- 6].
生物膜是一種或多種微生物附著于固體表面的微生物聚集體[7- 8],主要由EPS(胞外聚合物)及包埋其中的細(xì)胞組成[9- 10],在水環(huán)境中普遍存在,在元素的生物地球化學(xué)循環(huán)、污染物凈化等方面起重要作用[11- 15]. 現(xiàn)有的一些研究表明納米顆粒(如納米銀、ZnO、CuO等)對(duì)細(xì)菌生物膜有明顯的抑制和毒害作用[16- 20]. 雖然有相當(dāng)多的納米顆粒對(duì)生物膜毒性的報(bào)道,也有不少關(guān)于生物膜對(duì)多孔介質(zhì)中納米顆粒的遷移的影響研究[21- 23],但是關(guān)于納米顆粒在生物膜表面的吸附、在生物膜中的擴(kuò)散和穿透效率以及在生物膜中的溶解性的研究還很有限,而這些信息對(duì)于深入了解納米顆粒對(duì)生物膜的毒性機(jī)理是至關(guān)重要的. 少量研究表明,納米顆粒在生物膜中的擴(kuò)散與納米顆粒的粒度和表面電荷[24]、EPS密度和細(xì)菌細(xì)胞壁性質(zhì)等相關(guān)[25]. 在這些研究中,采用的都是分散良好的納米顆粒. 而事實(shí)上當(dāng)納米顆粒進(jìn)入水環(huán)境后很容易形成數(shù)百nm到μm級(jí)的團(tuán)聚體. 然而,這些微米級(jí)的納米顆粒團(tuán)聚體進(jìn)入生物膜、在生物膜中的行為及毒性并不清楚.
TIRF(全內(nèi)反射熒光)顯微鏡是利用全內(nèi)反射產(chǎn)生的消逝波激發(fā)熒光物質(zhì)的顯微鏡. TIRF只能激發(fā)樣品表面數(shù)百nm(通常小于200 nm)厚的薄層內(nèi)的熒光物質(zhì),而這個(gè)范圍外的發(fā)熒光物質(zhì)則完全不受影響,因此TIRF技術(shù)信噪比高,細(xì)胞的光損傷和漂白都很小. 經(jīng)常被用于界面的吸附及細(xì)胞膜過程的研究[26- 28].
FRAP(光漂白后熒光恢復(fù))技術(shù)是利用高強(qiáng)度的激光在短時(shí)間內(nèi)將一定區(qū)域內(nèi)的熒光漂白,然后檢測(cè)該區(qū)域內(nèi)熒光強(qiáng)度的恢復(fù)過程. 而漂白區(qū)域的熒光恢復(fù)來源于區(qū)域外的熒光物質(zhì)向漂白區(qū)域擴(kuò)散的結(jié)果,因而FRAP被廣泛應(yīng)用于活細(xì)胞、膜、凝膠等體系中物質(zhì)的擴(kuò)散速率[29].
由于量子點(diǎn)是三個(gè)維度的尺寸都小于100 nm準(zhǔn)零維的納米顆粒,在生物醫(yī)藥和半導(dǎo)體器件中大量應(yīng)用,而且在激發(fā)光下可以釋放熒光,便于可視化觀測(cè)納米顆粒在生物膜中的空間分布,也因此經(jīng)常被用作模式納米顆粒研究納米顆粒的環(huán)境行為. 因此該研究以量子點(diǎn)作為測(cè)試用的納米材料. 應(yīng)用TIRF、CLSM(激光掃描共聚焦熒光顯微鏡)以及FRAP技術(shù)研究了微米級(jí)的納米顆粒CdTeCdSZnS核殼式量子點(diǎn)團(tuán)聚體在單一種生物膜中的吸附、擴(kuò)散、溶解性及其對(duì)生物膜的毒性,以深入了解納米顆粒在水-生物膜系統(tǒng)中的行為和影響,并為納米顆粒的生態(tài)毒理學(xué)提供新的研究手段和方法.
1.2 生物膜
試驗(yàn)用的細(xì)菌Comamonastestoteroni由中國(guó)科學(xué)院新疆生態(tài)與地理研究所劉文博士提供. 將滅菌后的細(xì)胞爬片浸入C.testoteroni細(xì)胞密度為0.60~0.70的液體營(yíng)養(yǎng)肉湯(LB)培養(yǎng)基中,在25 ℃培養(yǎng)12 h后取出細(xì)胞爬片,用去離子水將生物膜表面的培養(yǎng)基沖洗干凈,即刻用于TIRF試驗(yàn);細(xì)菌用培養(yǎng)皿培養(yǎng)24 h后用去離子水沖洗干凈后進(jìn)行CLSM試驗(yàn).
1.3 生物膜對(duì)量子點(diǎn)的吸附和擴(kuò)散的TIRF試驗(yàn)
TIRF成像系統(tǒng)由X81倒置顯微鏡(日本,東京奧林巴斯),TIRF專用數(shù)值孔徑為1.49的60×油浸物鏡(日本,東京奧林巴斯),EMCCD(英國(guó)Belfast,安道爾iXon DU860-D)和405 nm固體激光器組成. 測(cè)試過程中激光強(qiáng)度為3.5%. 將培養(yǎng)12 h的長(zhǎng)有生物膜的細(xì)胞爬片倒扣在有150 μL 10 mmolL KCl溶液的培養(yǎng)皿底部,加入25 μL 50 mgL CdTeCdSZnS核殼式量子點(diǎn)溶液,并立刻進(jìn)行10 fps的速率TIRF成像,記錄生物膜表面的量子點(diǎn)熒光強(qiáng)度隨時(shí)間的變化[30].
1.4 量子點(diǎn)在生物膜不同深度擴(kuò)散的CLSM試驗(yàn)
1.5 FRAP試驗(yàn)
將吸附了量子點(diǎn)2.5 h后的生物膜樣品進(jìn)行FRAP測(cè)試. 選擇量子點(diǎn)熒光分布均勻的區(qū)域,用100%強(qiáng)度的405 nm激光將半徑為3.5 μm的ROI(圓形測(cè)試區(qū)域)熒光漂白5 s,記錄ROI隨時(shí)間的熒光強(qiáng)度[31- 32].
1.6 生物膜細(xì)菌死活測(cè)試
1.7 生物膜細(xì)胞內(nèi)中重金屬離子濃度動(dòng)態(tài)觀測(cè)
生物膜中Cd2+的濃度用Phen Green SK diacetate (PG SK) (Life Technologies, P14313, Grand Island, NY, USA)探針標(biāo)記. 先將PG SK探針溶于少量DMSO(二甲基亞砜)中,然后用Hank平衡鹽溶液(HBSS)稀釋. PG SK綠色熒光重金屬探針可以用來檢測(cè)生物膜中Cu2+、Cu+、Fe2+、Hg2+、Pb2+、Cd2+、Zn2+和Ni2+的濃度. 由于試驗(yàn)中沒有人為加入Cu2+、Hg2+、Pb2+等重金屬離子,加入的是CdTeCdSZnS核殼式量子點(diǎn),因此基本上可用來表征生物膜中
Cd2+和Zn2+濃度. 將吸附量子點(diǎn)2、24、48、72 h后的生物膜用10 μmolL PG_SK探針在黑暗中25 ℃染色10 min,用HBSS洗去多余的探針后進(jìn)行CLSM觀測(cè)[34]. PG SK探針的λExλEm為488 nm500~530 nm.
1.8 統(tǒng)計(jì)分析
所有的試驗(yàn)至少重復(fù)3次,數(shù)值類結(jié)果均用平均值和標(biāo)準(zhǔn)差表示.
圖1 TIRF記錄的生物膜吸附CdTeCdSZnS核殼式量子點(diǎn)Fig.1 Adsorption process in biofilms of CdTeCdSZnS Core-Shell-Shell Quantum Dots by TIRF
圖2則可直觀地觀察到量子點(diǎn)團(tuán)聚體隨時(shí)間在生物膜中的擴(kuò)散分布過程,結(jié)果與TIRF的數(shù)據(jù)一致,并且表明μm級(jí)的量子點(diǎn)團(tuán)聚體可以在較短的時(shí)間內(nèi)穿透45 μm厚的生物膜. 由圖3可見,在10 mmolL KCl溶液中生物膜不同深度CdTeCdSZnS核殼式量子點(diǎn)熒光強(qiáng)度總體上在40 min達(dá)到吸附平衡,然后隨時(shí)間稍有增加;總體上熒光強(qiáng)度隨深度逐漸變?nèi)?,說明量子點(diǎn)團(tuán)聚體在生物膜不同深度存在濃度梯度,也說明量子點(diǎn)與生物膜EPS中的組分有較為緊密的結(jié)合,或者是量子點(diǎn)進(jìn)入了細(xì)菌細(xì)胞中. 量子點(diǎn)可以通過內(nèi)吞作用的小囊泡、氣孔間擴(kuò)散作用或者電子傳遞系統(tǒng)進(jìn)入細(xì)菌的磷脂雙分子層[35].
圖2 生物膜吸附CdTeCdSZnS核殼式量子點(diǎn)不同時(shí)間的3D熒光圖像Fig.2 3D fluorescence images of CdTeCdSZnS Core-Shell-Shell Quantum Dots adsorbed to biofilms at different time
生物膜深度μm:1—0;2—2.5;3—5.0;4—7.5;5—10.0;6—12.5;7—15.0;8—17.5;9—20.0;10—22.5;11—25.圖3 生物膜不同深度CdTeCdSZnS核殼式量子點(diǎn)熒光強(qiáng)度隨時(shí)間的變化Fig.3 The change with time of fluorescence intensity of CdTeCdSZnS Core-Shell-Shell Quantum Dots at different depth
注:熒光漂白和恢復(fù)區(qū)域?yàn)?.5 μm的圓形. 圖4 CdTeCdSZnS核殼式量子點(diǎn)在生物膜中典型的FRAP曲線及其一階指數(shù)增長(zhǎng)方程擬合Fig.4 Typical FRAP curves of CdTeCdSZnS Core-Shell-Shell Quantum Dots in biofilms and fitting of the FRAP data using the exponential growth model
圖5 CdTeCdSZnS核殼式量子點(diǎn)團(tuán)聚體加入到生物膜中不同時(shí)間后細(xì)胞內(nèi)重金屬離子的熒光強(qiáng)度 Fig.5 Fluorescence intensity of intracellular heavy metal ions in biofilms
圖6 生物膜活細(xì)胞熒光成像Fig.6 Fluorescence images of living cells in biofilms
生物膜在河流、湖泊、地下水、土壤及供水管道等環(huán)境中無處不在. 當(dāng)納米顆粒進(jìn)入環(huán)境介質(zhì)后會(huì)難以避免地與生物膜接觸. 生物膜由各種各樣的微生物細(xì)胞、蛋白質(zhì)、多糖及DNA等物質(zhì)組成,表面物理化學(xué)性質(zhì)各異,因此生物膜會(huì)影響納米顆粒在環(huán)境中的遷移甚至轉(zhuǎn)化. 而要了解生物膜對(duì)納米顆粒遷移的影響,測(cè)定納米顆粒在生物膜表面的吸附過程是非常重要的. 該研究應(yīng)用TIRF技術(shù)實(shí)時(shí)在線監(jiān)測(cè)了CdTeCdSZnS核殼式量子點(diǎn)團(tuán)聚體在C.testoteroni生物膜表面的吸附動(dòng)力學(xué),發(fā)現(xiàn)在KCl溶液中C.testoteroni生物膜可以非常迅速地吸附CdTeCdSZnS核殼式量子點(diǎn)團(tuán)聚體(見圖1). 該結(jié)果可以用來解釋最近發(fā)表的許多關(guān)于環(huán)境中的生物膜可以改變石墨烯氧化物、聚苯乙烯納米顆粒、ZnO、量子點(diǎn)等納米顆粒在沙土和多孔介質(zhì)中的遷移性(主要為滯留效應(yīng))[21- 23].
雖然越來越多的研究發(fā)現(xiàn),生物膜可以阻礙納米顆粒的遷移,但是關(guān)于納米顆粒是否容易在生物膜內(nèi)部擴(kuò)散則還不清楚. 通過CLSM深度掃描的重建圖像清楚地觀察到即使是微米級(jí)的量子點(diǎn)也可以迅速地往生物膜深層擴(kuò)散(見圖2). 量子點(diǎn)擴(kuò)散到生物膜各個(gè)微層的擴(kuò)散動(dòng)力學(xué)遵守指數(shù)增長(zhǎng)規(guī)律,而量子點(diǎn)擴(kuò)散后從表層到深層,在空間上則基本上呈線性分布(見圖3). FRAP試驗(yàn)也表明量子點(diǎn)進(jìn)入生物膜后還具有一定的擴(kuò)散能力(見圖4). 有限的研究也表明納米顆??梢栽谏锬?nèi)擴(kuò)散. 葡聚糖、微球、銀等納米顆粒可以在Pseudomonasfluorescens生物膜中擴(kuò)散,但受生物膜結(jié)構(gòu)、EPS、細(xì)胞、納米顆粒大小和表面電荷控制,其相對(duì)自擴(kuò)散速率隨納米顆粒半徑的平方值增大而呈指數(shù)下降[36]. 不過已報(bào)道的生物膜中納米顆粒的擴(kuò)散大多是非團(tuán)聚的顆粒,我們的研究則發(fā)現(xiàn)微米級(jí)的納米顆粒團(tuán)聚體也可擴(kuò)散進(jìn)入生物膜內(nèi)部,但是團(tuán)聚體在進(jìn)入生物膜內(nèi)部時(shí)是否分散開則需要進(jìn)一步研究.
另外,該研究也表明,TIRF是一種直接便利地研究生物膜表面吸附納米顆粒動(dòng)力學(xué)過程的可視化技術(shù)手段,而且從TIRF曲線下降部分的曲線可以解讀納米顆粒在生物膜內(nèi)的擴(kuò)散過程,這些信息與CLSM的Z軸掃描數(shù)據(jù)相互補(bǔ)充.
b) 量子點(diǎn)團(tuán)聚體對(duì)生物膜具有一定的毒害作用,量子點(diǎn)加入后生物膜中活細(xì)胞熒光強(qiáng)度降低50%. 量子點(diǎn)溶解后產(chǎn)生的重金屬離子會(huì)加大對(duì)生物膜的毒性. 雖然納米顆粒進(jìn)入環(huán)境中會(huì)形成微米級(jí)的團(tuán)聚體,但依然可以進(jìn)入生物膜,對(duì)水生微生物生態(tài)系統(tǒng)產(chǎn)生危害.
c) TIRF、CLSM和FRAP技術(shù)是研究納米顆粒物在生物膜表面吸附和內(nèi)部擴(kuò)散動(dòng)力學(xué)的有效工具.
[1] NEL A,XIA Tian,MDLER L,etal.Toxic potential of materials at the nanolevel[J].Science,2006,311(5761):622- 627.
[2] KLAINE S J,ALVAREZ P J J,BATLEY G E,etal.Nanomaterials in the environment:behavior,fate,bioavailability,and effects[J].Environmental Toxicology and Chemistry,2008,27(9):1825- 1851.
[3] BERNHARDT E S,COLMAN B P,HOCHELLA M F,etal.An ecological perspective on nanomaterial impacts in the environment[J].Journal of Environmental Quality,2010,39(6):1954- 1965.
[4] NAVARRO E,BAUN A,BEHRA R,etal.Environmental behavior and ecotoxicity of engineered nanoparticles to algae,plants,and fungi[J].Ecotoxicology,2008,17(5):372- 386.
[5] 姚瑩,楊柳燕,陳軍,等.納米ZnO對(duì)嗜熱四膜蟲的生態(tài)毒性研究[J].環(huán)境科學(xué)研究,2009,22(7):833- 837. YAO Ying,YANG Liuyan,CHEN Jun,etal.Ecological toxicity of Nano-ZnO onTetrahymenathermophila[J].Research of Environmental Sciences,2009,22(7):833- 836.
[6] 劉信勇,朱琳,黃碧捷,等.多壁碳納米管對(duì)斑馬魚體組織內(nèi)酶活性的影響[J].環(huán)境科學(xué)研究,2009,22(7):838- 842. LIU Xinyong,ZHU Lin,HUANG Bijie,etal.Effects of multi-walled carbon nanotubes on enzyme activity in tissues of zebrafish[J].Research of Environmental Sciences,2009,22(7):838- 842.
[7] DAVEY M E,O′TOOLE G A.Microbial biofilms:from ecology to molecular genetics[J].Microbiology and molecular biology reviews,2000,64(4):847- 867.
[8] MONROE D.Looking for chinks in the armor of bacterial biofilms[J].Plos Biologg,2007,5(11):e307.
[9] JAHN A,NIELSEN P H.Cell biomass and exopolymer composition in sewer biofilms[J].Water Science and Technology,1998,37(1):17- 24.
[10] WHITCHURCH C B,TOLKER-NIELSEN T,RAGAS P C,etal.Extracellular DNA required for bacterial biofilm formation[J].Science,2002,295(5559):1487- 1487.
[11] 張道勇,趙勇勝,潘響亮.胞外聚合物(EPS)在藻菌生物膜去除污水中Cd的作用[J].環(huán)境科學(xué)研究,2004,17(5):52- 55. ZHANG Daoyong,ZHAO Yongsheng,PAN Xiangliang.The role of EPS in removing cadmium in sewage by algae-bacteria biofilm[J].Research of Environmental Sciences,2003,17(5):52- 55.
[12] 潘響亮,王建龍,張道勇,等.硫酸鹽還原菌混合菌群胞外聚合物對(duì)Zn2+的吸附和機(jī)理[J].環(huán)境科學(xué)研究,2005,18(6):55- 57. PAN Xiangliang,WANG Jianlong,ZHANG Dayong,etal.Zn2+Sorption and mechanism by EPS of mixed SRB population[J].Research of Environmental Sciences,2005,18(6):53- 55.
[13] AGUILERA A,SOUZA-EGIPSY V,SAN MARTN-U′RIZ P,etal.Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption[J].Aquatic Toxicology,2008,88(4):257- 266.
[14] ZHANG Daoyong,PAN Xiangliang,MOSTOFA K M G,etal.Complexation between Hg(II) and biofilm extracellular polymeric substances:an application of fluorescence spectroscopy[J].Journal of Hazardous Materials,2010,175(1):359- 365.
[15] 付慶龍,張道勇,牟書勇,等.集胞藻胞外聚合物(EPS)與氯霉素的相互作用[J].環(huán)境科學(xué)研究,2012,25(1):58- 62. FU Qinglong,ZHANG Daoyong,MU Shuyong,etal.Interaction between chloramphenicol and the extracellular polymeric substances fromCyanobacteriumsynechocystissp.[J].Research of Environmental Sciences,2012,25(1):58- 62.
[16] MORONES J R,ELECHIGUERRA J L,CAMACHO A,etal.The bactericidal effect of silver nanoparticles[J].Nanotechnology,2005,16(10):2346.
[17] LOK C N,HO C M,CHEN R,etal.Proteomic analysis of the mode of antibacterial action of silver nanoparticles[J].Journal of Proteome Research,2006,5(4):916- 924.
[18] PAL S,TAK Y K,SONG J M.Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium Escherichia coli[J].Applied and Environmental Microbiology,2007,73(6):1712- 1720.
[19] JOSHI N,NGWENYA B T,FRENCH C E.Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances[J].Journal of Hazardous Materials,2012,241:363- 370.
[20] MIAO Lingzhan,WANG Chao,HOU Jun,etal.Response of wastewater biofilm to CuO nanoparticle exposure in terms of extracellular polymeric substances and microbial community structure[J].Science of The Total Environment,2017,579:588- 597.
[21] HAN Y,HWANG G,KIM D,etal.Transport,retention,and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand:role of solution pH and biofilm coating[J].Water Research,2016,90:247- 257.
[22] MITZEL M R,SAND S,WHALEN J K,etal.Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand[J].Water Research,2016,92:113- 120.
[23] HE Jianzhou,WANG Dengjun,FANG Huan,etal.Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated withBacillussubtilisandPseudomonasputidabiofilms[J].Chemosphere,2017,169:1- 8.
[24] GOLMOHAMDI M,CLARK R J,VEINOT J G C,etal.The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals,nTiO2,nAu) in a biofilm[J].Environmental Chemistry,2013,10(1):34- 41.
[25] HABIMANA O,STEENKESTE K,FONTAINE-AUPART M P,etal.Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity[J].Applied and Environmental Microbiology,2011,77(1):367- 368
[26] GAJRAJ A,OFOLI R Y.Quantitative technique for investigating macromolecular adsorption and interactions at the liquid-liquid interface[J].Langmuir,2000,16(9):4279- 4285
[27] XIA Sheng,XU Liang,BAI Li,etal.Labeling and dynamic imaging of synaptic vesicle-like microvesicles in PC12 cells using TIRFM[J].Brain Research,2004,997(2):159- 164.
[28] VAIDYA S S,OFOLI R Y.Adsorption and interaction of fibronectin and human serum albumin at the liquid-liquid interface[J].Langmuir,2005,21(13):5852- 5858.
[29] CHAPEAU A L,SILVA J V C,SCHUCK P,etal.The influence of cheese composition and microstructure on the diffusion of macromolecules:a study using fluorescence recovery after photobleaching (FRAP)[J].Food Chemistry,2016,192:660- 667.
[30] WALDER R,SCHWARTZ D K.Dynamics of protein aggregation at the oil-water interface characterized by single molecule TIRF microscopy[J].Soft Matter,2011,7(17):7616- 7622.
[31] BRYERS J D,DRUMMOND F.Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP)[J].Biotechnology and Bioengineering,1998,60(4):462- 473.
[32] WAHAETE F,STEENKESTE K,BRIANDET R,etal.Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope[J].Applied and Environmental Microbiology,2010,76(17):5860- 5869.
[33] LEE W H,WAHMAN D G,BISHOP P L,etal.Free chlorine and monochloramine application to nitrifying biofilm:comparison of biofilm penetration,activity,and viability[J].Environmental Science & Technology,2011,45(4):1412- 1419.
[34] DU Juan,WAGNER B A,BUETTNER G R,etal.Role of labile iron in the toxicity of pharmacological ascorbate[J].Free Radical Biology and Medicine,2015,84:289- 295.
[35] JAISWAL J K,MATTOUSSI H,MAUTO J M,etal.Long-term multiple color imaging of live cells using quantum dot bioconjugates[J].Nature Biotechnology,2003,21(1):47- 51.
[36] PEULEN T O,WILKINSON K J.Diffusion of nanoparticles in a biofilm[J].Environmental Science & Technology,2011,45(8):3367- 3373.
Diffusion and Toxicity of Micrometer CdTe/CdS/ZnS Core-Shell-Shell Quantum Dot Aggregates in Biofilm
ZHAO Jiayue1,3, ZHANG Daoyong1,2, PAN Xiangliang1,2*
1.Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 2.College of Environment, Zhejiang University of Technology, Hangzhou 310014, China 3.University of Chinese Academy of Sciences, Beijing 100049, China
Nanoparticles including quantum dots are emerging pollutants. Adsorption and subsequent diffusion of nanoparticles in biofilm are still not well known. Adsorption kinetics, diffusion, dissolution and toxicity of the micrometer-size aggregates of the model nanoparticles, CdTeCdSZnS core-shell-shell quantum dot (QD), inComamonastestoteronibiofilm were investigated using Total Internal Reflection Fluorescence (TIRF) and Fluorescence Recovery After Photobleaching (FRAP). It was demonstrated thatC.testoteronicould adsorb aggregates of CdTeCdSZnS QDs (>1 μm), and could further diffuse into deeper layers of the biofilm and penetrate the 45 μm thick biofilm within 25 mins. The amount of accumulated QDs in microlayers of the biofilm decreased linearly with depth. The FRAP results showed that about 30% fluorescence intensity recovered within 5 min, indicating the mobility of QDs in the biofilm. The QDs dissolved in the biofilm and thus released heavy metals and exerted toxic effects on the biofilm. The results revealed that nanoparticles can penetrate into the biofilm and posed a great risk to aquatic ecosystems, although they may aggregate in the aquatic environment. TIRF, CLSM and FRAP are convenient and powerful tools for characterizing adsorption and diffusion of nanoparticles in biofilm.
nanoparticles; quantum dots; biofilm; total internal reflection fluorescence (TIRF); fluorescence recovery after photobleaching (FRAP)
2016-12-29
2017-05-01
中國(guó)科學(xué)院“百人計(jì)劃”項(xiàng)目
趙佳玥(1991-),女,北京人,jiayue_zhao@hotmail.com.
*責(zé)任作者,潘響亮(1972-),男,浙江東陽(yáng)人,教授,博士,博導(dǎo),從事生態(tài)毒理與環(huán)境修復(fù)研究,panxl@zjut.edu.cn
X52
1001- 6929(2017)08- 1303- 07
A
10.13198j.issn.1001- 6929.2017.02.50
趙佳玥,張道勇,潘響亮.微米級(jí)核殼量子點(diǎn)團(tuán)聚體在生物膜中的擴(kuò)散與溶解及其毒性[J].環(huán)境科學(xué)研究,2017,30(8):1303- 1309.
ZHAO Jiayue,ZHANG Daoyong,PAN Xiangliang.Diffusion and toxicity of micrometer CdTe/CdS/ZnS core-shell-shell quantum dot aggregates in biofilm[J].Research of Environmental Sciences,2017,30(8):1303- 1309.