• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    幾種實(shí)正規(guī)矩陣的性質(zhì)

    2017-08-07 12:03:24張建剛
    宿州學(xué)院學(xué)報(bào) 2017年5期
    關(guān)鍵詞:性質(zhì)

    張建剛,申 冉

    1.上海師范大學(xué)數(shù)學(xué)系,上海,200234;2.東華大學(xué)理學(xué)院,上海,201620

    ?

    幾種實(shí)正規(guī)矩陣的性質(zhì)

    張建剛1,申 冉2

    1.上海師范大學(xué)數(shù)學(xué)系,上海,200234;2.東華大學(xué)理學(xué)院,上海,201620

    有針對(duì)性地研究了幾種實(shí)正規(guī)矩陣的部分性質(zhì),特別是針對(duì)特征值和對(duì)角化等方面,得到它們的聯(lián)系和區(qū)別之處。給出了實(shí)正規(guī)矩陣(正交矩陣)是實(shí)對(duì)稱陣(正定矩陣)的充要條件,同時(shí)研究了可逆矩陣關(guān)于實(shí)正規(guī)矩陣的分解性質(zhì)。

    正規(guī)矩陣;正交矩陣;對(duì)稱矩陣;正定矩陣

    1 問題提出

    正規(guī)矩陣是矩陣?yán)碚摰闹饕芯繉?duì)象之一。 正交矩陣、實(shí)對(duì)稱(反對(duì)稱)矩陣以及正定矩陣都是實(shí)的正規(guī)矩陣。本文通過有針對(duì)性地研究這幾類實(shí)的正規(guī)矩陣的部分性質(zhì),特別是針對(duì)特征值和對(duì)角化等方面,得到它們的聯(lián)系和區(qū)別之處。

    如無特別說明,本文所討論的矩陣都是實(shí)數(shù)域上的矩陣。實(shí)數(shù)域上所有n階方陣的集合記作Mn(R),對(duì)任意的A∈Mn(R),AT表示轉(zhuǎn)置矩陣,A*表示伴隨矩陣,A-1表示逆矩陣(如果存在),En表示n階單位陣。

    文中所涉及到的其他術(shù)語,參見文獻(xiàn)[1]。

    2 幾種正規(guī)矩陣的性質(zhì)比較

    定義2.1如果A∈Mn(R),滿足AAT=ATA=En,即AT=A-1,則稱A為正交矩陣[1]298-343。

    正交矩陣具有以下性質(zhì):

    (1)正交矩陣的乘積和正交矩陣的逆矩陣都是正交矩陣。兩個(gè)正交矩陣的和未必正交,如令A(yù)=E2,B=-E2,則有A+B不是正交矩陣。

    (2)正交矩陣的特征值的模等于1,其實(shí)的特征值只能為1或-1。

    (3)上(下)三角正交矩陣必為對(duì)角矩陣,且對(duì)角線上的元素只能為1或-1。

    定義2.2設(shè)A∈Mn(R)且A可逆,則A可以分解為A=QR,其中,Q為正交矩陣,R是一個(gè)對(duì)角線上全為正數(shù)的上三角矩陣,并且這種分解形式是唯一的(上述分解稱為正交三角分解)。

    上述分解形式,在研究可逆矩陣的性質(zhì)時(shí)是非常有幫助的。

    定義2.3如果A∈Mn(R),且滿足A=AT,即對(duì)任意的i=1,2,…,n;j=1,2,…n,都有aij=aji,則稱A為對(duì)稱矩陣[1]298-343。

    對(duì)稱矩陣的性質(zhì):

    (1)兩個(gè)對(duì)稱矩陣的和還是對(duì)稱矩陣。兩個(gè)對(duì)稱矩陣A,B的乘積AB仍是對(duì)稱矩陣的充要條件是AB=BA。

    (2)實(shí)對(duì)稱矩陣的特征值都是實(shí)數(shù),且屬于不同特征值的特征向量正交。

    (3)若A∈Mn(R)為對(duì)稱陣,則存在正交陣Q,使得QTAQ為對(duì)角矩陣,且對(duì)角線上元素為A的全部特征值(稱為實(shí)對(duì)稱陣的正交對(duì)角化)。

    由正交陣的定義可知,n階實(shí)矩陣A是正交陣當(dāng)且僅當(dāng)AAT=En。對(duì)于對(duì)稱陣,有下面的結(jié)論。

    命題2.4設(shè)A∈Mn(R),則A是對(duì)稱陣當(dāng)且僅當(dāng)AAT=A2。

    證明必要性是顯然的。下證充分性,首先注意到下面的事實(shí),若B∈Mn(R),則:

    B=0?BBT=0?tr(BBT)=0

    另一方面,由條件AAT=A2,有:

    tr((A-AT)(A-AT)T)

    =tr((A-AT)(AT-A))

    =tr(ATA-(AT)2)

    =tr(AT(A-AT))

    =tr((A-AT)AT)

    =tr(AAT-(A2)T)

    =tr(AAT)-tr(A2)=0

    因此,A-AT=0,即A=AT,A是對(duì)稱陣。

    由上述命題,容易得到下面正交矩陣和對(duì)稱矩陣之間的關(guān)系。

    命題2.5設(shè)A∈Mn(R),則下列三個(gè)條件中任意兩個(gè)成立,則另一個(gè)也成立。

    (1)A是一個(gè)對(duì)稱矩陣。

    (2)A是一個(gè)正交矩陣。

    (3)A2=En(以下稱滿足此條件的矩陣為對(duì)合陣)。

    例子2.6設(shè)A∈Mn(R),且A是對(duì)稱矩陣, 若A也是對(duì)合陣。證明存在正交矩陣Q,使得:

    證明由對(duì)稱矩陣的性質(zhì)(3),存在正交陣Q,使得QTAQ為對(duì)角矩陣,且對(duì)角線上元素為A的全部特征值。另一方面,設(shè)A的特征值為λ,對(duì)應(yīng)的特征向量為α,則有Aα=λα。結(jié)合條件A2=En,容易看到λ2=1,從而A的特征值為1或者-1,所以結(jié)論成立。

    矩陣A∈Mn(R)可以對(duì)角化,當(dāng)且僅當(dāng)A的特征值都是實(shí)數(shù),且A的所有特征值對(duì)應(yīng)的特征子空間的維數(shù)之和等于n。而正交陣的特征值不一定是實(shí)數(shù),所以不是所有的正交矩陣都能對(duì)角化。但有下面的結(jié)論:

    命題2.7設(shè)A∈Mn(R),且A為正交矩陣,則A的特征值都是實(shí)數(shù),當(dāng)且僅當(dāng)A是對(duì)稱陣。

    由上述結(jié)論可知,一般的正交陣未必可以對(duì)角化,但如果特征值都是實(shí)數(shù),則可以實(shí)現(xiàn)對(duì)角化。

    推論2.8設(shè)A∈Mn(R),且A為正交矩陣,若A的特征值都是實(shí)數(shù),則:

    (2)rank(A+En)+rank(A-En)=n。

    (2)若A的特征值為1,則由(1)可知,A=En。同理,若A的特征值為-1,A=-En。若1,-1都是A的特征值,由于A可以對(duì)角化,故dimV1+dimV-1=n,其中V1,V-1分別是1,-1對(duì)應(yīng)的特征子空間。又因?yàn)?/p>

    dimV1=n-rank(En-A)

    =n-rank(A-En)

    dimV-1=n-rank(-En-A)

    =n-rank(A+En)

    故得證。

    由命題2.5和2.7容易得到下面的結(jié)論。

    推論2.9設(shè)A∈Mn(R),且A為正交矩陣,則下列命題等價(jià):

    (1)A的特征值都是實(shí)數(shù)。

    (2)A是對(duì)稱陣。

    (3)A為對(duì)合陣。

    定義2.10設(shè)A∈Mn(R),且A=AT,如果二次型XTAX是正定的,其中X為n維列向量,則稱A為正定矩陣。

    正定矩陣的基本性質(zhì):

    (1)設(shè)A,B∈Mn(R),m∈Z,k是正實(shí)數(shù),若A,B都正定,則A-1,A*,Am,A+B,kA都正定。

    (2)實(shí)對(duì)稱陣A是正定矩陣,當(dāng)且僅當(dāng)A的特征值都大于零。

    (3)實(shí)矩陣A是正定矩陣,當(dāng)且僅當(dāng)A合同于單位矩陣(即存在實(shí)可逆陣C,滿足A=CTC);當(dāng)且僅當(dāng)A正交相似于一個(gè)對(duì)角陣,且對(duì)角線上為其全部(正的)特征值。

    命題2.11實(shí)(對(duì)稱)矩陣A是正定矩陣當(dāng)且僅當(dāng)存在可逆上三角矩陣R,滿足A=RTR。

    證明充分性由正定矩陣的基本性質(zhì)(3)易得,下證必要性。由正定矩陣的基本性質(zhì)(3),存在可逆陣C, 使得A=CTC;另一方面,由引理2.2,C可以分解為C=QR,其中Q為正交矩陣,R是一個(gè)對(duì)角線上全為正數(shù)的上三角矩陣,則A=(QR)TQR=RTQTQR=RTR。

    命題2.12正交矩陣A是正定矩陣,當(dāng)且僅當(dāng)A是單位陣。

    證明充分性是顯然的,下證必要性。若正交矩陣A是正定矩陣,則A必為實(shí)對(duì)稱陣,由命題2.5和例子2.6的證明可知,A的特征值只能為1或者-1。又因?yàn)檎ň仃嚨奶卣髦刀即笥?,故A的特征值只能為1,由正定矩陣的基本性質(zhì)(3)易得,A正交相似于單位陣,所以A是單位陣。

    關(guān)于正定矩陣乘積的正定性,有著類似于實(shí)對(duì)稱矩陣乘積的對(duì)稱性的結(jié)論。

    命題2.13兩個(gè)正定矩陣A,B的乘積是正定矩陣的充要條件AB=BA。特別的,正定矩陣的方冪是正定的。

    證明必要性為顯然。這是因?yàn)檎囈欢ㄊ菍?duì)稱陣,所以如果A,B的乘積是正定矩陣,則AB必為對(duì)稱陣,由對(duì)稱陣的基本性質(zhì)(1),AB=BA。

    下證充分性。首先由對(duì)稱陣的基本性質(zhì),若AB=BA,則AB是對(duì)稱陣。因?yàn)锳,B都是正定矩陣,由正定矩陣的基本性質(zhì)(3),分別存在實(shí)的可逆陣P,Q,使得A=PTP,B=QTQ,則AB=PTPQTQ。進(jìn)一步,容易看到:

    QABQ-1=QPTPQTQQ-1

    =QPTPQT=(PQT)TPQT

    由正定陣的基本性質(zhì),(PQT)TPQT是一個(gè)正定陣,所以上式說明AB與一個(gè)正定矩陣相似,故AB的特征值都是正數(shù),所以AB也是正定陣。

    命題2.14設(shè)A是實(shí)對(duì)稱矩陣,則A正定,當(dāng)且僅當(dāng)存在唯一的正定矩陣B,滿足A=B2。

    證明充分性由命題2.13為顯然,下面證明必要性。由正定矩陣的正交相似性,存在正交陣U,使得:

    UTAU=diag(λ1,λ2,…,λn)

    即B=C。

    推論2.15設(shè)A∈Mn(R)且A可逆,則A可以分解為一個(gè)正交陣和一個(gè)正定陣之積,也可以分解為一個(gè)正定陣與一個(gè)正交陣之積。特別地,若A正交,則分解形式唯一。

    A=(AT)-1B2=(AT)-1BB

    分別記(AT)-1B=P,B1(AT)-1=Q,則A=PB,A=B1Q,下證P,Q分別為正交矩陣。事實(shí)上:

    PPT=(AT)-1B(AT)-1(B)T

    =(AT)-1BBTA-1=(AT)-1B2A-1

    =(AT)-1ATAA-1=En

    QTQ=(B1(AT)-1)TB1(AT)-1

    =A-1AAT(AT)-1=En

    故結(jié)論成立。特別地,若A正交,設(shè)A=PB,其中P是正交陣,B是正定陣,則有P-1A=B。由于P-1A正交而B正定,由命題2.12,B=En。類似的可以證明另一種分解形式也是唯一的。

    定義2.16如果A∈Mn(R),滿足AAT=ATA,則稱A為(實(shí))正規(guī)矩陣。

    不難看到,上述所討論的正交矩陣,對(duì)稱(反對(duì)稱)矩陣和正定矩陣都是正規(guī)矩陣。

    正規(guī)矩陣的基本性質(zhì):

    (1)設(shè)A∈Mn(R)是正規(guī)矩陣,m∈N,k是任意實(shí)數(shù),則AT,Am,kA均是正規(guī)矩陣,且A可逆時(shí),A-1,A*也都是正規(guī)矩陣。

    (2)設(shè)A∈Mn(R)是正規(guī)矩陣,若A是上三角陣,則A必為對(duì)角矩陣。

    命題2.17設(shè)A∈Mn(R),且A是正規(guī)矩陣,則A的特征值都是實(shí)數(shù),當(dāng)且僅當(dāng)A是對(duì)稱陣。特別地,若特征值都是正實(shí)數(shù),當(dāng)且僅當(dāng)A是正定矩陣。

    證明充分性是顯然的,只需證明必要性。下面利用數(shù)學(xué)歸納法加以證明。首先,當(dāng)n=1時(shí),結(jié)論顯然成立。假設(shè)結(jié)論對(duì)n-1階矩陣成立,即對(duì)任意n-1階的實(shí)正規(guī)陣,如果特征值都是實(shí)數(shù),則它是對(duì)稱陣。下面考慮階數(shù)為n的情形。

    其中,α是n-1維實(shí)的行向量,B是一個(gè)n-1階實(shí)矩陣。記UTAU=C,則CCT=CTC。事實(shí)上,因?yàn)锳AT=ATA,CCT=(UTAU)(UTATU)=UTAATU=UTATAU=(UTATU)(UTAU)=CTC,即有:

    特別地,由正定矩陣的基本性質(zhì),若A的特征值都是正實(shí)數(shù),當(dāng)且僅當(dāng)它是正定矩陣。

    推論2.18設(shè)A∈Mn(R),且A為正規(guī)矩陣,若A的特征值都是實(shí)數(shù),則A可以相似對(duì)角化。

    [1]張禾瑞,郝炳新.高等代數(shù)[M].北京:高等教育出版社,2007

    [2]楊子胥.高等代數(shù)習(xí)題集:上[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2000:542-562

    [3]楊子胥.高等代數(shù)習(xí)題集:下[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2001:390-451

    [4]陳祥恩,程輝,喬虎生,等.高等代數(shù)專題選講[M].北京:中國(guó)科學(xué)技術(shù)出版社,2013:182-201

    [5]張建剛,申冉.線性流形的性質(zhì)[J].大學(xué)數(shù)學(xué),2015,31(4):90-94

    (責(zé)任編輯:汪材印)

    10.3969/j.issn.1673-2006.2017.05.027

    2016-12-20

    國(guó)家自然科學(xué)基金“某些完全正則半群的性質(zhì)和結(jié)構(gòu)”(11201305)。

    張建剛(1977-),山東禹城人,博士,副教授,研究方向:代數(shù)半群理論。

    O151.2

    :A

    :1673-2006(2017)05-0094-04

    猜你喜歡
    性質(zhì)
    含有絕對(duì)值的不等式的性質(zhì)及其應(yīng)用
    MP弱Core逆的性質(zhì)和應(yīng)用
    弱CM環(huán)的性質(zhì)
    一類非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
    隨機(jī)變量的分布列性質(zhì)的應(yīng)用
    一類多重循環(huán)群的剩余有限性質(zhì)
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
    性質(zhì)(H)及其攝動(dòng)
    九點(diǎn)圓的性質(zhì)和應(yīng)用
    只有这里有精品99| 十八禁人妻一区二区| 久久精品久久久久久噜噜老黄| 国产精品一区二区在线不卡| 欧美精品亚洲一区二区| 久久天堂一区二区三区四区| 色网站视频免费| 美女主播在线视频| 国产99久久九九免费精品| 久热爱精品视频在线9| 久久国产精品男人的天堂亚洲| 美女脱内裤让男人舔精品视频| 波多野结衣一区麻豆| 国产视频首页在线观看| 亚洲熟女毛片儿| 成人午夜精彩视频在线观看| 国产精品久久久久久人妻精品电影 | 最新的欧美精品一区二区| 大码成人一级视频| www日本在线高清视频| 亚洲伊人色综图| 大香蕉久久网| 免费观看a级毛片全部| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| 男的添女的下面高潮视频| 国产成人欧美在线观看 | 嫩草影视91久久| 日韩,欧美,国产一区二区三区| 亚洲美女黄色视频免费看| 成人影院久久| 免费看av在线观看网站| 欧美激情极品国产一区二区三区| 在线观看免费午夜福利视频| 久久国产亚洲av麻豆专区| 老司机靠b影院| 免费看不卡的av| 电影成人av| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 国产毛片在线视频| av福利片在线| 丁香六月欧美| 男女午夜视频在线观看| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 97人妻天天添夜夜摸| 国产色婷婷99| 亚洲av日韩在线播放| 久久久久视频综合| 国产 精品1| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 制服人妻中文乱码| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 极品人妻少妇av视频| 99九九在线精品视频| av线在线观看网站| 精品国产乱码久久久久久男人| av片东京热男人的天堂| 国产片特级美女逼逼视频| 国产免费又黄又爽又色| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 国产精品久久久久久精品电影小说| 男人添女人高潮全过程视频| 18在线观看网站| 激情五月婷婷亚洲| 国产成人欧美| 国产精品.久久久| 日本一区二区免费在线视频| 亚洲国产最新在线播放| 欧美97在线视频| 国产成人精品无人区| 久久久国产一区二区| a级毛片黄视频| 考比视频在线观看| 久久99精品国语久久久| 国产日韩一区二区三区精品不卡| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 久久韩国三级中文字幕| 亚洲国产看品久久| 亚洲精品,欧美精品| 人人澡人人妻人| 国产精品久久久久久精品古装| 十八禁网站网址无遮挡| 午夜福利网站1000一区二区三区| av一本久久久久| 免费黄色在线免费观看| 19禁男女啪啪无遮挡网站| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 日韩一区二区三区影片| 美女视频免费永久观看网站| 男人操女人黄网站| 国产精品成人在线| 人人妻人人爽人人添夜夜欢视频| 亚洲一码二码三码区别大吗| 男人操女人黄网站| 亚洲色图 男人天堂 中文字幕| 爱豆传媒免费全集在线观看| 日韩成人av中文字幕在线观看| 免费日韩欧美在线观看| 如何舔出高潮| 久久精品熟女亚洲av麻豆精品| 久久女婷五月综合色啪小说| 美女主播在线视频| 国产国语露脸激情在线看| 免费av中文字幕在线| 看非洲黑人一级黄片| 最近最新中文字幕免费大全7| 欧美国产精品一级二级三级| 亚洲精品乱久久久久久| svipshipincom国产片| 校园人妻丝袜中文字幕| 久久韩国三级中文字幕| 一二三四在线观看免费中文在| 涩涩av久久男人的天堂| 欧美人与善性xxx| 国产精品 国内视频| 久久久久视频综合| 99九九在线精品视频| 国产亚洲av高清不卡| 伊人久久国产一区二区| 国产男女超爽视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 校园人妻丝袜中文字幕| 九色亚洲精品在线播放| 极品少妇高潮喷水抽搐| 天天添夜夜摸| 亚洲美女黄色视频免费看| 久久人人爽av亚洲精品天堂| 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看| 亚洲成av片中文字幕在线观看| 日韩大码丰满熟妇| 成人三级做爰电影| 婷婷色综合www| 青春草国产在线视频| 在线观看一区二区三区激情| 一区二区日韩欧美中文字幕| 色精品久久人妻99蜜桃| 各种免费的搞黄视频| 不卡av一区二区三区| 国产黄色视频一区二区在线观看| 涩涩av久久男人的天堂| 欧美黑人欧美精品刺激| 视频在线观看一区二区三区| 成年女人毛片免费观看观看9 | 人妻 亚洲 视频| 精品福利永久在线观看| 国产男女内射视频| 我要看黄色一级片免费的| 亚洲美女搞黄在线观看| 国产欧美亚洲国产| 免费女性裸体啪啪无遮挡网站| 日韩伦理黄色片| 欧美国产精品一级二级三级| 亚洲自偷自拍图片 自拍| 国产精品一二三区在线看| 在线观看人妻少妇| 国产成人精品久久久久久| 午夜激情久久久久久久| 日本欧美国产在线视频| 欧美黑人精品巨大| 亚洲成人av在线免费| 久久免费观看电影| 各种免费的搞黄视频| 黄色毛片三级朝国网站| 免费黄网站久久成人精品| 19禁男女啪啪无遮挡网站| 最黄视频免费看| 国产极品天堂在线| 一本色道久久久久久精品综合| 久久 成人 亚洲| 日韩一区二区三区影片| 精品国产一区二区三区四区第35| 欧美日韩综合久久久久久| 最黄视频免费看| 观看美女的网站| 少妇人妻精品综合一区二区| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 精品久久久久久电影网| 日韩成人av中文字幕在线观看| 99热全是精品| 黄片小视频在线播放| 汤姆久久久久久久影院中文字幕| 国产成人啪精品午夜网站| 一级毛片我不卡| 亚洲视频免费观看视频| 亚洲成国产人片在线观看| 精品少妇一区二区三区视频日本电影 | 精品福利永久在线观看| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 一边亲一边摸免费视频| 18禁动态无遮挡网站| 大话2 男鬼变身卡| 中文字幕高清在线视频| 中文字幕人妻丝袜一区二区 | 亚洲人成网站在线观看播放| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 精品国产一区二区三区久久久樱花| 欧美少妇被猛烈插入视频| 三上悠亚av全集在线观看| 一区福利在线观看| 香蕉国产在线看| 夜夜骑夜夜射夜夜干| 国产毛片在线视频| 国产精品 欧美亚洲| 男人舔女人的私密视频| 91aial.com中文字幕在线观看| 一级毛片我不卡| 国产毛片在线视频| 成年女人毛片免费观看观看9 | 天堂俺去俺来也www色官网| 午夜免费男女啪啪视频观看| 满18在线观看网站| 一本—道久久a久久精品蜜桃钙片| 丰满少妇做爰视频| 99久久人妻综合| 亚洲成色77777| 日韩伦理黄色片| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 在线天堂中文资源库| 69精品国产乱码久久久| 精品少妇久久久久久888优播| 国产精品久久久久久久久免| 中文字幕人妻丝袜一区二区 | 天堂俺去俺来也www色官网| 久久久欧美国产精品| 日韩精品有码人妻一区| 咕卡用的链子| 国产日韩欧美在线精品| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 国产午夜精品一二区理论片| 777米奇影视久久| 国产精品蜜桃在线观看| 超色免费av| 无限看片的www在线观看| 十八禁网站网址无遮挡| 黑人猛操日本美女一级片| 伊人久久国产一区二区| 日韩精品有码人妻一区| 黄色 视频免费看| 欧美在线一区亚洲| 大片免费播放器 马上看| 亚洲,欧美精品.| 狂野欧美激情性xxxx| 老司机靠b影院| 精品福利永久在线观看| 99久国产av精品国产电影| 国产在线视频一区二区| 久久久久久久久免费视频了| 久久天堂一区二区三区四区| 欧美国产精品一级二级三级| 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 国产精品国产三级国产专区5o| 免费观看人在逋| 精品少妇久久久久久888优播| 成人午夜精彩视频在线观看| 国产男女内射视频| 国产免费又黄又爽又色| 中文字幕色久视频| 高清在线视频一区二区三区| 久久精品久久久久久噜噜老黄| 欧美成人午夜精品| 日韩一本色道免费dvd| 日韩欧美精品免费久久| 国产免费现黄频在线看| 高清不卡的av网站| 精品少妇黑人巨大在线播放| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 少妇人妻 视频| 超碰97精品在线观看| 天天操日日干夜夜撸| 一级毛片我不卡| 国产在线免费精品| 一区二区三区四区激情视频| 一本一本久久a久久精品综合妖精| 中文精品一卡2卡3卡4更新| av线在线观看网站| 一区二区av电影网| 韩国精品一区二区三区| 制服诱惑二区| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 一二三四在线观看免费中文在| 亚洲欧美精品自产自拍| av卡一久久| 亚洲精品美女久久久久99蜜臀 | 黄网站色视频无遮挡免费观看| 国产免费福利视频在线观看| 热99国产精品久久久久久7| 久久久久久久久久久免费av| 午夜福利视频精品| 大香蕉久久网| 91精品国产国语对白视频| 在线精品无人区一区二区三| 欧美久久黑人一区二区| 久久亚洲国产成人精品v| xxx大片免费视频| 亚洲精品一区蜜桃| 日韩不卡一区二区三区视频在线| 三上悠亚av全集在线观看| 日本av免费视频播放| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 少妇 在线观看| 国产免费福利视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 999久久久国产精品视频| 国产精品成人在线| 热re99久久精品国产66热6| 日韩av不卡免费在线播放| 亚洲一区中文字幕在线| 国产福利在线免费观看视频| 亚洲自偷自拍图片 自拍| 亚洲成人av在线免费| 午夜福利视频精品| 成人亚洲精品一区在线观看| 美女福利国产在线| 看十八女毛片水多多多| 午夜福利视频精品| 国产男女超爽视频在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲人成77777在线视频| 亚洲,一卡二卡三卡| 精品少妇黑人巨大在线播放| 亚洲色图综合在线观看| 啦啦啦 在线观看视频| 日韩成人av中文字幕在线观看| a级片在线免费高清观看视频| 男女边吃奶边做爰视频| 午夜福利一区二区在线看| 又粗又硬又长又爽又黄的视频| 国产亚洲av片在线观看秒播厂| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 欧美日韩视频精品一区| 如何舔出高潮| 成人国产麻豆网| 如何舔出高潮| 视频区图区小说| 女人被躁到高潮嗷嗷叫费观| 一区在线观看完整版| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 国产精品久久久久久精品古装| 中文欧美无线码| 激情视频va一区二区三区| 免费高清在线观看视频在线观看| 久久久久久免费高清国产稀缺| 最新的欧美精品一区二区| 99热全是精品| 国产 一区精品| 免费看av在线观看网站| 看非洲黑人一级黄片| 亚洲国产成人一精品久久久| 日本wwww免费看| 韩国精品一区二区三区| 久久精品久久久久久噜噜老黄| 国产乱来视频区| av.在线天堂| 男男h啪啪无遮挡| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲综合一区二区三区_| 两个人看的免费小视频| 日本91视频免费播放| 国产精品偷伦视频观看了| 王馨瑶露胸无遮挡在线观看| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区精品视频观看| 黄色一级大片看看| 日本猛色少妇xxxxx猛交久久| 男人舔女人的私密视频| 天天添夜夜摸| 色视频在线一区二区三区| 在线观看一区二区三区激情| 又大又黄又爽视频免费| 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| av在线播放精品| 久久毛片免费看一区二区三区| 免费在线观看黄色视频的| 在线免费观看不下载黄p国产| 大陆偷拍与自拍| 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 老司机亚洲免费影院| 国产精品 欧美亚洲| 少妇人妻精品综合一区二区| 制服丝袜香蕉在线| 嫩草影院入口| 18禁国产床啪视频网站| 又粗又硬又长又爽又黄的视频| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 成人18禁高潮啪啪吃奶动态图| 久久精品国产a三级三级三级| 亚洲美女黄色视频免费看| 99九九在线精品视频| 久久久欧美国产精品| 国产一区二区在线观看av| 97精品久久久久久久久久精品| 国产成人精品在线电影| 欧美久久黑人一区二区| 午夜福利视频在线观看免费| 欧美日韩福利视频一区二区| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线| 观看美女的网站| 欧美在线黄色| bbb黄色大片| 在线观看www视频免费| 久久99一区二区三区| 色播在线永久视频| 在线精品无人区一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 成人黄色视频免费在线看| 五月天丁香电影| 肉色欧美久久久久久久蜜桃| 亚洲国产最新在线播放| 五月开心婷婷网| www日本在线高清视频| 考比视频在线观看| 2018国产大陆天天弄谢| 亚洲欧美色中文字幕在线| 国产成人91sexporn| 久久久久久久国产电影| 日本色播在线视频| 亚洲五月色婷婷综合| 久久久亚洲精品成人影院| 超碰成人久久| 肉色欧美久久久久久久蜜桃| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 观看美女的网站| 蜜桃在线观看..| 午夜久久久在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产麻豆69| 午夜精品国产一区二区电影| 久久精品亚洲av国产电影网| 99热全是精品| 亚洲av国产av综合av卡| a级毛片黄视频| 亚洲av日韩在线播放| 午夜福利影视在线免费观看| 波野结衣二区三区在线| 久久 成人 亚洲| 国产一区二区三区综合在线观看| 搡老乐熟女国产| 另类亚洲欧美激情| 一级片'在线观看视频| 一级爰片在线观看| 色吧在线观看| 日本91视频免费播放| 一级毛片 在线播放| 国产在线一区二区三区精| 日韩不卡一区二区三区视频在线| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 飞空精品影院首页| 国产熟女午夜一区二区三区| 悠悠久久av| 日本一区二区免费在线视频| 熟妇人妻不卡中文字幕| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 亚洲国产av影院在线观看| 九九爱精品视频在线观看| 亚洲av成人精品一二三区| 久久精品国产a三级三级三级| 久久这里只有精品19| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 女人被躁到高潮嗷嗷叫费观| 别揉我奶头~嗯~啊~动态视频 | 免费人妻精品一区二区三区视频| 亚洲欧美日韩另类电影网站| 男女边摸边吃奶| 777久久人妻少妇嫩草av网站| 欧美精品一区二区大全| 曰老女人黄片| 欧美在线一区亚洲| 亚洲国产精品成人久久小说| 免费观看人在逋| 欧美人与性动交α欧美软件| 亚洲成人av在线免费| 亚洲欧美一区二区三区久久| 国产男女超爽视频在线观看| 精品国产国语对白av| 国产成人精品在线电影| 久久精品国产综合久久久| 成人亚洲欧美一区二区av| 女人爽到高潮嗷嗷叫在线视频| 国产熟女欧美一区二区| 不卡av一区二区三区| 国产福利在线免费观看视频| 一边摸一边抽搐一进一出视频| 丝袜人妻中文字幕| 日韩制服丝袜自拍偷拍| svipshipincom国产片| 五月开心婷婷网| 下体分泌物呈黄色| 久久久久精品久久久久真实原创| 男人添女人高潮全过程视频| 天美传媒精品一区二区| 制服丝袜香蕉在线| 飞空精品影院首页| 亚洲综合色网址| 欧美黄色片欧美黄色片| 最近中文字幕高清免费大全6| 国产欧美亚洲国产| 国产成人a∨麻豆精品| videosex国产| 在线观看免费高清a一片| 黑丝袜美女国产一区| 美国免费a级毛片| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 一级,二级,三级黄色视频| 在线免费观看不下载黄p国产| 免费人妻精品一区二区三区视频| 蜜桃国产av成人99| 日韩精品有码人妻一区| 亚洲国产精品国产精品| 亚洲成国产人片在线观看| 免费少妇av软件| 狂野欧美激情性xxxx| 在线观看免费视频网站a站| 国产片内射在线| 久久av网站| 日韩成人av中文字幕在线观看| 九草在线视频观看| 午夜91福利影院| 男女免费视频国产| 国产黄色视频一区二区在线观看| 又大又爽又粗| 成年av动漫网址| 中文精品一卡2卡3卡4更新| 国产精品久久久人人做人人爽| 久久久久人妻精品一区果冻| 人人妻人人澡人人爽人人夜夜| 亚洲精品成人av观看孕妇| 桃花免费在线播放| 99re6热这里在线精品视频| 老司机影院成人| 婷婷色综合大香蕉| 久热这里只有精品99| 国产免费一区二区三区四区乱码| 亚洲精品,欧美精品| 一级爰片在线观看| 国精品久久久久久国模美| 日韩人妻精品一区2区三区| 十八禁高潮呻吟视频| 久久综合国产亚洲精品| 满18在线观看网站| 嫩草影视91久久| 青春草亚洲视频在线观看| 狠狠婷婷综合久久久久久88av| 亚洲四区av| 亚洲国产欧美一区二区综合| 日韩中文字幕欧美一区二区 | 日本色播在线视频| 日韩制服丝袜自拍偷拍| xxx大片免费视频| 亚洲精华国产精华液的使用体验| xxxhd国产人妻xxx| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 国产成人精品无人区| 亚洲三区欧美一区| 欧美日韩视频精品一区| 老熟女久久久| 中文精品一卡2卡3卡4更新| 午夜免费男女啪啪视频观看| 啦啦啦中文免费视频观看日本| 国产av精品麻豆| 国产黄色视频一区二区在线观看| 如日韩欧美国产精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 岛国毛片在线播放| 中文字幕精品免费在线观看视频| 亚洲av欧美aⅴ国产| 婷婷色av中文字幕| 精品一区二区免费观看| 久久婷婷青草| 人人妻人人添人人爽欧美一区卜| 久久女婷五月综合色啪小说| 成年人午夜在线观看视频| 国产精品无大码| 丁香六月天网| 多毛熟女@视频| 黄色一级大片看看| 国产精品嫩草影院av在线观看| 十八禁人妻一区二区|