• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    可循環(huán)SERS基底ZnO/Ag納米材料合成和表征

    2017-08-07 15:00:28黃慶利魏文嫻
    關(guān)鍵詞:花狀氧化鋅拉曼

    黃慶利 李 靖 魏文嫻

    可循環(huán)SERS基底ZnO/Ag納米材料合成和表征

    黃慶利*,1,3李 靖2魏文嫻3

    (1徐州醫(yī)科大學(xué)形態(tài)學(xué)科研實(shí)驗(yàn)中心,徐州 221004)
    (2徐州工程學(xué)院化學(xué)化工學(xué)院,徐州 221111)
    (3揚(yáng)州大學(xué)測(cè)試中心,揚(yáng)州 225009)

    利用簡(jiǎn)易、綠色、一鍋煮的水熱法合成了花狀氧化鋅/銀復(fù)合納米材料。然后利用各種光譜和顯微技術(shù)對(duì)復(fù)合物進(jìn)行了表征,并討論了其表面增強(qiáng)拉曼(SERS)性能和光催化性能。結(jié)果表明氫氧化鈉的量對(duì)于這種復(fù)合納米材料的形貌和性能具有重要的調(diào)節(jié)作用。和其他形貌的氧化鋅/銀復(fù)合納米材料相比較,花狀氧化鋅/銀復(fù)合納米材料具有最佳的光催化性能。同時(shí)進(jìn)一步以花狀氧化鋅/銀復(fù)合納米材料作為SERS基底研究其表面增強(qiáng)拉曼性能,結(jié)果表明這種復(fù)合材料同時(shí)具有很好的表面增強(qiáng)拉曼性能。光催化和表面增強(qiáng)拉曼結(jié)果表明這種花狀氧化鋅/銀復(fù)合納米材料有望在有機(jī)物檢測(cè)中作為一種具有很好的可循環(huán)性的新表面增強(qiáng)拉曼基底材料。

    納米復(fù)合物;表面增強(qiáng)拉曼;電子顯微鏡;光催化;可循環(huán)

    0 Introduction

    With the rapid development of industry,an enormous amount of industrial dyes have brought serious threats to our health.Increasing attention has been paid to the detection and degradation of industrial dyes[1-6].Surface-enhanced Raman scattering (SERS)has attracted tremendous attention and has been widely used as a powerful analytical tool[6-11]. Various approaches and techniques have been developed to fabricate SERS substrates in order to obtain sensitive and reproducible detection[12-16]. However,most of the standard SERS substrates were for one-time use only.And considering the valuableness of the noble metals,these SERS substrates cannot be completely explored as a routine analytical technique.Developing new-type multifunctional SERS substrates that not only provide real-time representation of information of the dyes,but also degrade them under lightirradiation is ofinterest[17-34].

    Itis wellknown that semiconductors,due to their unique band structures, are quite appropriate photocatalyst materials.Considering the SERS performance of the noble metals,loading SERS-active noble metal nanoparticles onto semiconductor surface is a good way to design multifunctional platform[17-34].It is possible to achieve both SERS and photocatalytic performances from a single semiconductor/metal nanocomposite.More advantageously,the photocatalytic performance of the semiconductor can be improved by loading of SERS-active metal nanoparticles onto semiconductor surface due to the reduction of the charge(electron-hole)recombination post-photon excitation[35-36].And the SERS sensitivity was also enhanced due to the charge transfer(CT)between the semiconductor surfaces and the dyes[37].

    Among these SERS-active noble metals,silver has been demonstrated as a good choice due to its low costs,high SERS enhancement and the ability to enhance photocatalytic activity of semiconductors.For semiconductors,ZnO is considered to be one of the suitable materials owing to its high photocatalytic activity,nontoxicity,biological inertness and chemical stability[38-39].Moreover,ZnO can interact with metal particles and improve the SERS response.Therefore,Ag -ZnO nanocomposites boostgreatresearch interests[23-34]. Though various methods have been used to successfully synthesize the Ag/ZnO nanocrystal,it is necessary to develop time-saving and cost-effective methods to design Ag-ZnO nanocomposites with wide application.

    In this work,a highly sensitive,reproducible and reusable Ag nanoparticle decorated ZnO SERS substrate was fabricated by a one-pot,facile hydrothermal method.The synthesis process is straightforward,simple,reproducible,cost effective and robust.Trace detection of R6G was studied based on ZnO/Ag nanocomposite as efficient surface enhanced Raman scattering platforms.The self-cleaning ability of the Ag/ZnO substrates was studied.High SERS and self-cleaning performances from a single ZnO/Ag nanocomposite could be achieved by adjusting its morphologies and composition.This study suggested that ZnO/Ag substrates with high SERS performance and self-cleaning property can serve as excellent substrates for multifunctionalplatform.

    1 Experimetal

    1.1 Materials

    All the chemical reagents used in this work include silver nitrate (AgNO3),sodium hydroxide (NaOH),zinc nitrate hexahydrate(Zn(NO3)2·6H2O), PVP-30,rhodamine 6G(R6G),crystalviolet(CV),congo red (CR)and ethanol(C2H5OH).All chemicals were analytically pure and were used as received without further purification. Deionized water was used throughoutthe experiment.

    1.2 Synthesis of ZnO/Ag nanocomposites

    Zinc nitrate hexahydrate(Zn(NO3)2·6H2O,6.0 mmol)was dissolved in mixed solution of 50 mL distilled water and 5 mL ethanol.Then 5 mL 0.05 mol·L-1silver nitrate PVP-30 aqueous solution(the concentration of PVP-30 is 5.5 g·L-1)was added into the solution with stirring.After that,different amounts of NaOH (0.24 g,0.48 g and 1.44 g)were added into the above solution.Finally the mixed solution wastransferred into a Teflon-lined autoclave of 80 mL capacity and was filled up to 85%of the total volume with deionized water.After being sealed and heated at 160℃ for 6 h,the autoclave was cooled to room temperature naturally.The resulting products were collected by centrifugation,washed with distilled water and ethanol for several times,and finally dried in vacuum at 70℃ for 12 h.The products were denoted as ZnO/Ag024,ZnO/Ag048 and ZnO/Ag144, respectively.To obtain pure ZnO flowers,a similar synthetic procedure was employed without silver nitrate solution,while other reaction conditions were keptthe same as thatof ZnO/Ag048.

    1.3 Characterization

    The phase purity of the products was characterized by X-ray diffraction (XRD,German Bruker AXSD8 ADVANCE X-ray diffractometer)using an X-ray diffractometer with Cu Kαradiation (λ=0.154 18 nm).The scanning angle range(2θ)is from 20°to 80°. Corresponding working voltage and current were 40 kV and 40 mA respectively.Morphology information of the as-prepared nanoparticles was obtained on a Japan Hitachi S-4800 field emission scanning electron microscope (SEM)operated at accelerating voltage of 15 kV.Transmission electron microscope(TEM)images, high resolution transmission electron microscopy (HRTEM)images and elemental mapping images were obtained on an American FEI Tecnai G2 F30 S-TWIN field-emission transmission electron microscopy (operated at 300 kV).The ultraviolet-visible(UV-Vis) diffuse reflectance spectra were obtained on an America Varian Cary 5000 spectrophotometer.X-ray photoelectron spectra (XPS)were recorded on an ESCALAB 250Xi system (Thermo Scientific).Raman and surface-enhanced Raman scattering (SERS) spectra were measured using a Britain Renishaw Invia Raman spectrometer with a solid-state laser(excitation at 532 nm)at room temperature.The SERS and selfcleaning process were preformed on the glass where the dyes and the as-prepared samples were mixed. The self-cleaning process was preformed on the above glass under the irradiation by a 1 000 W Xe lamp for 40 min.

    1.4 Photocatalytic measurement

    A mixture of 10 mg ZnO/Ag composites and 100 mL 10-5mol·L-1R6G aqueous solution were put in bottle with a capacity of 200 mL.Prior to illumination,the suspensions were magnetically stirred in the dark for 30 min to ensure the establishment of absorption equilibrium of R6G on the sample surfaces. Subsequently,the suspension was irradiated under a 1 000 WXe lamp(λmax=532 nm),which was positioned about 10 cm away from the breaker.After a given irradiation time,about 3 mL the mixture was withdrawn and immediately centrifuged.The photocatalytic degradation process of R6G was monitored by measuring its absorption with a UV-Vis spectrophotometer.

    2 Results and discussion

    The XRD patterns ofthe as-prepared samples are shown in Fig.1.From the XRD patterns,it can be seen that all the diffraction peaks at 31.6°,34.3°, 36.3°,47.5°,56.7°,62.3°,67.8°and 69.1°were observed in all patterns,which can be indexed to wurtzite ZnO(PDF No.36-1451).Besides,for ZnO-Ag nanocomposites,the diffraction peaks at 38.1°,44.4° and 64.3°corresponding to Ag(PDF No.04-0783)were found.No peaks corresponding to other Ag-containing or Zn-containing phases were detected, which indicated that the ZnO/Ag nanocomposites were prepared by using one-pot hydrothermalreaction.

    Fig.1 XRD patterns of ZnO and ZnO/Ag nanocomposites

    In this synthetic process,the amount of NaOH played a key role to determine the morphologies ofZnO/Ag nanocomposites.The morphologies of the typical flower-like ZnO and ZnO/Ag were found by scanning electron microscopy(SEM),as shown in Fig. 2.The SEM image of pure flower-like ZnO was shown in Fig.2a.It can be found that pure ZnO is made up of three-dimension (3D)flower-like hierarchical structures with good monodispersity,and the diameter ofwhich is about2μm.Those flower-like architectures were assembled from a lot of nanoplates(Thickness:~80 nm).ZnO/Ag nanocomposites with differentmorphologies were obtained when the amounts of NaOH were changed.The typical SEM images of these nanocomposites were shown in Fig.2b~d.Only irregular particles were observed when the amount of NaOH was 0.24 g.Accompanying with the increasing of NaOH(0.48 g),uniform three-dimension(3D)flowerlike hierarchical structures assembled from nanoplates were obtained.Many nanoparticles with the sizes of about 20 nm decorating uniformly on the surfaces of the ZnO nanoplates were found.Compared with those of pure flower-like ZnO,the surfaces became coarse. Further increasing the amount of NaOH to 1.44 g,sea urchin-like structures assembled from nanorods were found.However,the Ag nanopartcles attached on the surface of nanorods tend to agglomerate,which is unfavorable to improve the performance.

    In order to investigate the structural details of the flower-like ZnO/Ag nanocomposites,the TEM, HRTEM and EDS mapping images were obtained.Fig. 3a and 3b further confirmed that the flower-like structures were constructed from Ag nanoparticles and ZnO nanoplates.HRTEM image (Fig.3c)displayed clear lattice fringes of the ZnO nanoplates and Ag nanopartilces.The interplanar distance of 0.26 nm corresponds to(002)crystal plane of ZnO,and that of 0.23 nm in the attached nanoparticle corresponds to Ag(111)crystalplane.Fig.3d shows the EDS elemental mappings of the nanocomposites.The different color images indicate Zn-,O-,Ag-enriched areas of the sample respectively,which confirms the composition of the nanocompistes.

    XPS spectra were also investigated with the

    Fig.2 SEM images of pure flower-like ZnO(a),irregular ZnO/Ag nanocomposites(b),flower-like ZnO/Ag nanocomposites(c)and sea urchin-like ZnO/Ag nanocomposites(d)

    Fig.3 TEM(a,b),HRTEM(c)and EDS(d)mapping images offlower-like ZnO/Ag nanocomposites

    binding energies calibrated using C1s(284.8 eV),as shown in Fig.4.For pure ZnO,the peaks Zn,O and C were found in Fig.4a.The presence of C is mainly from pump oil due to vacuum treatment before the XPS test.In comparison,for ZnO/Ag nanocomposites, the peaks of Zn,O and Ag can be clearly observed in Fig.4b,which are in good agreement with XRD as described above. Fig.4c shows high-resolution spectrum taken from the Ag region of the flower-like Ag/ZnO nanocomposites.Two characteristic peaks centered at 367.5 and 373.5 eV can be attributed to Ag3d5/2and Ag3d3/2,respectively.There is a shift to the lower binding energy relative to the corresponding values of bulk Ag (Ag3d5/2,368.2 eV;Ag3d3/2,374.2 eV),which may be explained by electron transfer from metallic Ag to ZnO crystals at the interfaces of Ag/ZnO nanocomposites based on different Fermi levels of two components.In Fig.4d,two strong peaks center on 1 021.3 and 1 044.3 eV,which are in agreement with the binding energies of Zn2p3/2 and Zn2p1/2, respectively. Therefore, the XPS result further confirmed the sample is composed of ZnO and Ag.

    Fig.4 XPS spectra of pure ZnO flowers(a)and flower-like ZnO/Ag nanocomposites(b~d)

    Fig.5 (a)Photocatalytic degradation of R6G with various samples under visible light irradiation in 20 min;(b)UV-visible spectrum of R6G under visible light irradiation using flower-like ZnO/Ag nanocomposites in 20 min

    Metal-decorated semiconductor nanoparticles are well known for their photocatalytic activity.Fig.5a showed the plots for the R6G concentration ratio(C/ C0)as a function of irradiation time over ZnO/Ag nanocomposites and pure ZnO flowers under the same condition.The R6G was quickly degraded completely in 20 minutes with flower-like ZnO/Ag nanocomposites as catalyst.While with the same catalytic time,the degradation rate with pure ZnO flowers as catalyst was only 65.5%.And R6G conversion over irregular ZnO/Ag nanocomposites and sea urchin-lie ZnO/Ag nanocomposites was 43.4% and 93.6%, respectively.It is clear that flower-like ZnO/Ag nanocomposites show the best performance.The changes of UV-Vis absorption spectra of R6G over flower-like ZnO/Ag nanocomposites were also shown in Fig.5b. The reaction under visible light irradiation resulted in a transparent solution after 20 min due to the destruction ofthe chromophoric structures of R6G.

    The optical absorption property of the asprepared samples,which is relevant to the electronic structure feature,is tested to explain the change in photocatalytic activity.The diffuse reflectance spectra of the as-prepared samples were demonstrated in Fig. 6.It can be clearly seen that absorption at about 375 nm was found in all curve,which is assigned to the absorption of ZnO semiconductor.For ZnO/Ag nanocomposites,new absorbance peaks at about 419, 436,442 nm were observed in visible region in irregular ZnO/Ag,flower-like ZnO/Ag and sea urchinlike ZnO/Ag nanocomposites,respectively,which is attributed to the characteristic band of the plasma of Ag nanoparticles on the surface of these samples.It is clear that ZnO flowers before Ag nanoparticles deposition can only absorb UV light with wavelengths shorter than 400 nm because the band-band electron transition of the ZnO.After Ag nanoparticles deposition,ZnO/Ag nanocomposites exhibited enhanced capability to absorb visible light between 400 and 800 nm.Therefore,the ZnO/Ag nanocomposites can be readily excited by visible light,which could produce electron-hole pairs and subsequently enhance thephotocatalytic performance.

    Fig.6 DRS spectra of the ZnO flowers and ZnO/Ag nanocomposites

    Fig.7a shows the SERS spectra using flower-like ZnO/Ag nanocomposites as substrate for different concentrations of R6G.It can be seen that the featured bands of R6G molecules are clearly identified[40].The bands at 1 362,1 510,and 1 650 cm-1originate from the aromatic stretching vibrations. Peaks at 770 and 1 130 cm-1are assigned to the outof-plane and in-plane bending vibrations of C-H, respectively.The peak at 612 cm-1is associated with the in-plane bending vibration of C-C-C ring.As the concentration of R6G decreased, the spectral intensities became quite weak. Under our experimental conditions,the detection limit of R6G was estimated to be around 1 nmol·L-1.To further assess flower-like ZnO/Ag nanocomposites SERS substrates,the SERS spectra of R6G were obtained on bare glass substrate and pure ZnO flowers substrates. Fig.7b and 7c depict the Raman spectra of R6G molecules taken from glass substrates and pure ZnO flower substrates,respectively.No peak of R6G was detected when commercial glass was used SERS substrate in Fig.7b.Very weak peaks were found when ZnO flowers were used SERS substrate in Fig. 7c.The average enhancement factors (EF)were estimated according to our early report[41].The value of EF was approximately estimated to be in the order of 106,indicating that the flower-like ZnO/Ag nanocomposite SERS substrate was highly sensitive and it was sufficient enough to directly observe a trace amount of organic dyes.

    The reproducibility of the substrate is an important factor for SERS detection. The reproducibility of flower-like ZnO/Ag nanocomposite substrate was examined with the SERS spectra taken from randomly selected 10 positions on the substrates. As shown in Fig.8a,the Raman spectra taken at different positions were nearly same.Fig.8b depicts the SERS signal of R6G in an intensity-laser spot at 1 650 cm-1.The relative standard deviation (RSD)of

    Fig.7 (a)SERS spectra of different concentrations of R6G absorbed on the flower-like ZnO/Ag nanocomposites; (b)Raman spectra of R6G(10-5mol·L-1)absorbed on bare glass;(c)SERS spectra of R6G(10-5mol·L-1) absorbed on the pure ZnO flowers

    Fig.8 (a)SERS spectra of R6G taken from randomly selected 10 positions on the flower-like ZnO/Ag nanocomposites; (b)Corresponding SERS signal intensities of R6G for the bands of 1 650 cm-1recorded at randomly selected 10 positions on the flower-like ZnO/Ag nanocompositesSERS intensity for 10 different sites on flower-like ZnO/Ag nanocomposite was calculated.The RSD (12.6%)is less than 15.0%,which indicated that the flower-like SERS substrate had good reproducibility. A reasonable mechanism for the superior SERS performance may be attributed to the uniform distribution of Ag nanoparticles on the surface of ZnO nanoplates.

    As is well known,the photocatalytic activity of ZnO/Ag could also be applied to remove adsorbed molecules under visible light due to its high absorption of visible light.The SERS recyclable applications of flower-like ZnO/Ag nanocomposite were examined.Fig.9 shows that the SERS signals are well reproduced after each visible light cleaning and R6G adsorption (10-5 mol·L-1).No Raman signal of R6G molecules was detected anymore after 40 min irradiation of visible light,suggesting that the R6G molecules were degraded into small molecules such as CO2and H2O.The residual R6G molecules on flowerlike ZnO/Ag nanocomposite should be less than the detection limit.When R6G solution was doped on the SERS substrate and dried,the Raman signals emerged again.It can be found that flower-like ZnO/Ag nanocomposite had a good repeatability in the five cycles.Other dyes (CV and CR,10-5 mol·L-1)were also used to confirm the SERS performance of flowerlike ZnO/Ag nanocomposite.It can be found that characteristic SERS spectra of these dyes (CV and CR)could be obtained from the same substrate in Fig. 10[41].And no Raman signal of these dyes(CV and CR)was detected anymore after 40 min irradiation of visible light.This indicated that the flower-like ZnO/ Ag nanocomposite acted as excellent SERS substrates exhibiting recyclability for reuse.The mechanism of the self-cleaning of the ZnO/Ag nanocomposite was also discussed.The excited electrons by visible light on the surface of Ag nanoparticles will move into the conduction band of ZnO through their interface.Then, superoxide radicals are produced when those electrons are captured by oxygen adsorbed on the surface of the nanocomposites.And the hydroxyl is formed due to interactions between the corresponding holes and the surface H2O.Consequently,the organic dyes are degraded by these superoxide radicals and hydroxyl.

    Fig.9 SERS spectra of R6G absorbed on flower-like ZnO/Ag nanocomposites and the repeating cleaning and recovery processes for five cycles

    Fig.10 SERS spectra of other dyes(CV and CR,10-5 mol ·L-1)absorbed on flower-like ZnO/Ag nanocomposites and their self-cleaning processes

    3 Conclusions

    In conclusion,as a multifunctional SERS active substrate,recyclable ZnO/Ag nanocomposite was prepared by a simple hydrothermal method. Experiments testified such flower-like ZnO/Ag nanocomposite to be a kind of excellent substrate for SERS-based sensitive molecular sensing.Meanwhile, target organic dyes can be degraded into clean inorganic molecules by visible-irradiation using this nanocomposite.This recyclable strategy opens a new opportunity in avoiding the single-use problem of traditional SERS substrates.This work exhibits a promising application for the detection of organic pollutants as online sensors capable of monitoring continuous reactions in realtime.

    References:

    [1]Kaur J,Gupta K,Kumar V,et al.Ceram.Int.,2016,42:2378 -2385

    [2]WANG Yuan-You(王元有),GONG Ai-Qin(龔愛(ài)琴),YU Wen -Hua(余文華).Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2017,33(3):509-518

    [3]Wang H H,Peng D L,Chen T,et al.Ceram.Int.,2016,42: 4406-4412

    [4]Minioti K S,Sakellariou C F,Thomaidis N S.Anal.Chim. Acta,2007,583:103-110

    [5]López-Montes A M,Dupont A-L,Desmazières B,et al. Talanta,2013,114:217-226

    [6]MENG Wei(孟衛(wèi)),ZHANG Ling-Yan(張玲艷),JIANG Xiao-Hong(江曉紅),et al.Chem.J.Chinese Universities(高等學(xué)校化學(xué)學(xué)報(bào)),2013,29(3):571-576

    [7]ZHAO Hong(趙紅),FU Hong-Gang(付宏剛),TIAN Chun-Gui(田春貴),et al.Chem.J.Chinese Universities(高等學(xué)?;瘜W(xué)學(xué)報(bào)),2011,32(10):2387-2390

    [8]ZHANG Hao-Ran(張浩然),MAN Shi-Qing(滿石清).Chin.J. Anal.Chem.(分析化學(xué)),2011,39(6):821-826

    [9]López-López M,García-Ruiz C.Trends Anal.Chem.,2014, 54:36-44

    [10]Wang C,Gu H M,LüM,et al.Spectrochim.Acta Part A, 2014,122:65-74

    [11]Hughes J,Izake E L,Lott W B,et al.Talanta,2014,130:20-25

    [12]Jiang T,Wang B B,Zhang L,et al.J.Alloys Compd.,2015, 632:140-146

    [13]Gong X,Bao Y,Qiu C,etal.Chem.Commun.,2012,48:7003 -7018

    [14]Shiohara A,Wang Y S,Liz-Marzán L M.J.Photochem. Photobiol.C,2014,21:2-25

    [15]Bian J C,Li Z,Chen Z D,et al.Appl.Surf.Sci.,2011,258: 1831-1835

    [16]ZHOU Xin(周鑫),YAO Ai-Hua(姚愛(ài)華),ZHOU Tian(周田), et al.Chem.J.Chinese Universities(高等學(xué)?;瘜W(xué)學(xué)報(bào)), 2014,30(3):543-549

    [17]Du J,Jing C.J.Phys.Chem.C,2011,115:17829-17835

    [18]Dong L H,Zhu J Y,Xia G Q.Solid State Sci.,2014,38:7-12

    [19]Sun Y.Adv.Funct.Mater.,2010,20:3646-3657

    [20]Yang L B,Li P,Liu J H.RSC Adv.,2014,4:49635-49646

    [21]Fang H,Zhang C X,Liu L,et al.Biosens.Bioelectron., 2015,64:434-441

    [22]Yang L B,Jiang X,Ruan W D,et al.J.Phys.Chem.C, 2009,113:16226-16231

    [23]Li Z J,Zhu K X,Zhao Q,et al.Appl.Surf.Sci.,2016,377: 23-29

    [24]Chen C,Zhou X,Ding T T,et al.Mater.Lett.,2016,165:55-58

    [25]Koleva M E,Nedyalkov N N,Atanasov P A,et al.J.Alloys Compd.,2016,665:282-287

    [26]Milekhin A,Sveshnikova L,Duda T,et al.Physica E,2016, 75:210-222

    [27]Jayram N D,Sonia S,Poongodi S,et al.Appl.Surf.Sci., 2015,355:969-977

    [28]He X,Wang H,Li Z B,et al.Nanoscale,2015,7:8619-8626 [29]Li R,Han C,Chen Q W.RSC Adv.,2013,3:11715-11722

    [30]Cui S Y,Dai Z G,Tian Q Y,et al.J.Mater.Chem.C, 2016,4:6371-6379

    [31]He X,Wang H,Li Z B,et al.Phys.Chem.Chem.Phys., 2014,16:14706-14712

    [32]Zhao K Y,Lin J,Guo L.RSC Adv.,2015,5:53524-53528

    [33]Hao R,Lin J,Wang H,et al.Phys.Chem.Chem.Phys., 2015,17:20840-20845

    [34]Zang Y S,Yin J,He X,et al.J.Mater.Chem.A,2014,2: 7747-7753

    [35]Chai B,Wang X,Cheng S Q,et al.Ceram.Int.,2014,40: 429-435

    [36]Zhang D,Li J,Chen Y,et al.CrystEngComm,2012,14:6738 -6743

    [37]Kandjani A E,Mohammadtaheri M,Thakkar A,et al.J. Colloid Interface Sci.,2014,436:251-257

    [38]LILi(李麗),LIU Xiao-Ming(劉曉明),ZHOU Shu-Ting(周舒婷),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32 (2):241-249

    [39]WANG Xin-Juan(王新娟),XIAO Yang(肖洋),XU Fei(徐斐),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,30 (8):1821-1826

    [40]Huang Q L,Zhu X S.Talanta,2013,105:117-123

    [41]Huang Q L,Wang J M,Wei W X,et al.J.Hazard.Mater., 2015,283:123-130

    Synthesis and Characterization of ZnO/Ag Nanocomposites for Recyclable Surface-Enhanced Raman Scattering Substrate

    HUANG Qing-Li*,1,3LI Jing2WEI Wen-Xian3
    (1Research Facility Center for Morphology of Xuzhou Medical University,Xuzhou,Jiangsu 221004,China)
    (2School of Chemistry and Chemical Engineering,Xuzhou Institute of Technology,Xuzhou,Jiangsu 221111,China)
    (3Testing center,Yangzhou University,Yangzhou,Jiangsu 225009,China)

    Multifunctional flower-like ZnO/Ag nanocomposites were prepared by a facile,green and one-pot hydrothermal method.The as-prepared samples were investigated by using various spectroscopic and microscopic techniques in detail.The surface-enhanced Raman scattering (SERS)performance and photocatalytic activity of the nanocomposites were also investigated.The results show that the amounts of NaOH play a key role in controlling the morphologies and properties of these nanocomposites.The flower-like ZnO/Ag nanocomposites exhibit the best photocatalytic performance for rhodamine 6G (R6G).Meanwhile,the optimized nanocomposites (the flower-like ZnO/Ag nanocomposites)are then employed to study the SERS performance,which also show excellent SERS activity.The photodegradation and SERS results reveal that ZnO/Ag nanocomposites act as promising candidates for a new substrate and exhibithigh recyclability in the detection oforganic molecules.

    Nanocomposites;surface-enhanced Raman scattering(SERS);electron microscopy;photocatalytic;recyclable

    O614.12

    A

    1001-4861(2017)08-1365-09

    10.11862/CJIC.2017.168

    2017-03-12。收修改稿日期:2017-05-16。

    國(guó)家自然科學(xué)基金(No.21505118)、江蘇省自然科學(xué)基金(No.BK2150438)和徐州醫(yī)科大學(xué)科研啟動(dòng)基金資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:qlhuang@yzu.edu.cn,Tel:86-516-83262091,F(xiàn)ax:86-516-83262091

    猜你喜歡
    花狀氧化鋅拉曼
    賊都找不到的地方
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    基于單光子探測(cè)技術(shù)的拉曼光譜測(cè)量
    基于相干反斯托克斯拉曼散射的二維溫度場(chǎng)掃描測(cè)量
    氧化鋅中氯的脫除工藝
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    銦摻雜調(diào)控氧化鋅納米棒長(zhǎng)徑比
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    氯霉素氧化鋅乳膏的制備及質(zhì)量標(biāo)準(zhǔn)
    三維花狀Fe2(MoO4)3微米球的水熱制備及電化學(xué)性能
    在线 av 中文字幕| 中文欧美无线码| 美女主播在线视频| 亚洲国产欧美人成| 亚洲四区av| 在线 av 中文字幕| 一级毛片久久久久久久久女| 黄色日韩在线| 免费少妇av软件| 婷婷色av中文字幕| 精品久久久精品久久久| 亚洲欧美日韩卡通动漫| 亚洲内射少妇av| 日本wwww免费看| 亚洲av二区三区四区| av在线天堂中文字幕| 久久这里只有精品中国| 黄片无遮挡物在线观看| 欧美日韩一区二区视频在线观看视频在线 | 色网站视频免费| 大又大粗又爽又黄少妇毛片口| a级一级毛片免费在线观看| 国产色婷婷99| 夜夜爽夜夜爽视频| av专区在线播放| 97超碰精品成人国产| 亚洲精品一二三| 伦精品一区二区三区| 亚洲欧美日韩东京热| 日韩视频在线欧美| 久久久久免费精品人妻一区二区| 人人妻人人澡欧美一区二区| 我要看日韩黄色一级片| 久久精品夜色国产| 国产精品麻豆人妻色哟哟久久 | 有码 亚洲区| 美女内射精品一级片tv| 亚洲精品一区蜜桃| 色网站视频免费| 国产一区二区在线观看日韩| 国产精品精品国产色婷婷| 老司机影院成人| av黄色大香蕉| 欧美区成人在线视频| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 精品酒店卫生间| 97人妻精品一区二区三区麻豆| 一级二级三级毛片免费看| 免费在线观看成人毛片| 特级一级黄色大片| 免费播放大片免费观看视频在线观看| 国模一区二区三区四区视频| 午夜久久久久精精品| av天堂中文字幕网| 久久99热这里只有精品18| 久久6这里有精品| 麻豆av噜噜一区二区三区| 秋霞伦理黄片| 人人妻人人澡欧美一区二区| 天美传媒精品一区二区| 久久精品国产亚洲网站| 欧美高清成人免费视频www| 一区二区三区高清视频在线| 久久久久久久久久黄片| 精品久久久久久久末码| 国产在视频线在精品| 国产老妇女一区| 在线观看一区二区三区| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 国产成人freesex在线| 亚洲成人中文字幕在线播放| 两个人视频免费观看高清| 国语对白做爰xxxⅹ性视频网站| 久久精品综合一区二区三区| 亚洲无线观看免费| 成年女人看的毛片在线观看| 午夜日本视频在线| av网站免费在线观看视频 | 精品一区二区免费观看| 少妇的逼好多水| 日本一二三区视频观看| 久久草成人影院| 又爽又黄a免费视频| 久久亚洲国产成人精品v| 国产精品一区二区三区四区免费观看| 天堂中文最新版在线下载 | 美女内射精品一级片tv| 久久久色成人| 熟女人妻精品中文字幕| 中文字幕免费在线视频6| 成人一区二区视频在线观看| 伊人久久精品亚洲午夜| 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 午夜激情久久久久久久| 91久久精品国产一区二区成人| 狂野欧美白嫩少妇大欣赏| 欧美高清性xxxxhd video| 日韩欧美一区视频在线观看 | 亚洲在线观看片| 大话2 男鬼变身卡| 日韩强制内射视频| 欧美成人精品欧美一级黄| 国产黄片美女视频| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 久久亚洲国产成人精品v| 日本三级黄在线观看| av免费在线看不卡| 日韩制服骚丝袜av| 精品午夜福利在线看| 久久97久久精品| 最近的中文字幕免费完整| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| av在线蜜桃| 日韩不卡一区二区三区视频在线| 亚洲av电影在线观看一区二区三区 | 国产黄频视频在线观看| 久久人人爽人人爽人人片va| 少妇猛男粗大的猛烈进出视频 | 极品教师在线视频| 韩国高清视频一区二区三区| av在线老鸭窝| 国产精品国产三级专区第一集| 久久综合国产亚洲精品| 中文在线观看免费www的网站| 国产精品一区二区性色av| 国产亚洲最大av| 国产v大片淫在线免费观看| 老司机影院毛片| 亚洲av免费在线观看| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 久久久久性生活片| www.av在线官网国产| 99久久中文字幕三级久久日本| 成人av在线播放网站| 97超碰精品成人国产| 婷婷色综合大香蕉| 久久久久网色| 国产午夜精品论理片| 26uuu在线亚洲综合色| 国产在视频线精品| 91狼人影院| 婷婷色综合大香蕉| 毛片女人毛片| 免费黄网站久久成人精品| 高清视频免费观看一区二区 | 久久99热6这里只有精品| 日韩成人伦理影院| 日韩大片免费观看网站| 美女高潮的动态| 老司机影院毛片| 麻豆国产97在线/欧美| 超碰97精品在线观看| av天堂中文字幕网| 国产精品爽爽va在线观看网站| 久久草成人影院| 你懂的网址亚洲精品在线观看| 久久久久久国产a免费观看| 久热久热在线精品观看| 两个人的视频大全免费| 天天躁日日操中文字幕| 久久久久免费精品人妻一区二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产成人一精品久久久| 国产乱人视频| 亚洲婷婷狠狠爱综合网| 97超碰精品成人国产| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 在线播放无遮挡| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 色5月婷婷丁香| 日日撸夜夜添| 91精品国产九色| 精品熟女少妇av免费看| 一夜夜www| videos熟女内射| 亚洲激情五月婷婷啪啪| 一本久久精品| 免费看光身美女| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 身体一侧抽搐| 国产精品蜜桃在线观看| 午夜久久久久精精品| 午夜免费观看性视频| av专区在线播放| 亚洲激情五月婷婷啪啪| 美女黄网站色视频| or卡值多少钱| 一级毛片久久久久久久久女| 51国产日韩欧美| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 在线 av 中文字幕| 久久久精品免费免费高清| 人妻夜夜爽99麻豆av| 久久久久久久久久黄片| 一本一本综合久久| 精品国内亚洲2022精品成人| 男的添女的下面高潮视频| 亚洲内射少妇av| 三级毛片av免费| 18+在线观看网站| 久久99蜜桃精品久久| 七月丁香在线播放| 嘟嘟电影网在线观看| 日本黄大片高清| 91在线精品国自产拍蜜月| 成人综合一区亚洲| 婷婷六月久久综合丁香| 久久精品久久久久久久性| 肉色欧美久久久久久久蜜桃 | 一区二区三区乱码不卡18| 日韩在线高清观看一区二区三区| 国产精品人妻久久久影院| 嘟嘟电影网在线观看| 亚洲精品aⅴ在线观看| 一个人免费在线观看电影| av在线老鸭窝| 99久久精品热视频| 极品教师在线视频| 只有这里有精品99| 成人av在线播放网站| h日本视频在线播放| 精品一区在线观看国产| 国产成人精品一,二区| 国产精品无大码| 五月天丁香电影| 精品少妇黑人巨大在线播放| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 欧美日韩精品成人综合77777| 麻豆成人午夜福利视频| 日韩国内少妇激情av| 国产一区二区三区av在线| 蜜臀久久99精品久久宅男| 特级一级黄色大片| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 高清欧美精品videossex| 夜夜爽夜夜爽视频| 日韩av在线免费看完整版不卡| 国产亚洲最大av| 麻豆av噜噜一区二区三区| 亚洲欧美日韩东京热| 国产精品av视频在线免费观看| 丰满少妇做爰视频| 亚洲av成人精品一区久久| 国产永久视频网站| 搡老乐熟女国产| 极品教师在线视频| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 一本一本综合久久| 精品不卡国产一区二区三区| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 国产成年人精品一区二区| 久久久久久久国产电影| 美女主播在线视频| 久久草成人影院| 日韩精品青青久久久久久| 午夜免费激情av| 岛国毛片在线播放| 69人妻影院| 午夜免费男女啪啪视频观看| 日韩av免费高清视频| av线在线观看网站| 97人妻精品一区二区三区麻豆| 免费黄色在线免费观看| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区 | 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说| 国产一级毛片七仙女欲春2| 国产成人a∨麻豆精品| 中文资源天堂在线| a级毛片免费高清观看在线播放| av在线老鸭窝| 国产精品国产三级国产av玫瑰| 久久精品久久久久久久性| 国产爱豆传媒在线观看| 国产片特级美女逼逼视频| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 日韩欧美一区视频在线观看 | av在线亚洲专区| 亚洲国产欧美人成| av专区在线播放| 亚洲自偷自拍三级| 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 午夜福利成人在线免费观看| 看非洲黑人一级黄片| 韩国高清视频一区二区三区| 只有这里有精品99| a级毛色黄片| 国产永久视频网站| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片电影观看| 国产伦精品一区二区三区四那| 色吧在线观看| 男女那种视频在线观看| 99久久中文字幕三级久久日本| 精品久久久久久成人av| 日韩不卡一区二区三区视频在线| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 女的被弄到高潮叫床怎么办| 97人妻精品一区二区三区麻豆| 99热这里只有是精品在线观看| 久久精品人妻少妇| 最近的中文字幕免费完整| 午夜福利网站1000一区二区三区| 精品一区二区三区视频在线| 国产高潮美女av| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久| 久久韩国三级中文字幕| 免费av不卡在线播放| 色播亚洲综合网| 搞女人的毛片| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看| 亚洲欧美日韩东京热| av在线天堂中文字幕| 国产又色又爽无遮挡免| 激情 狠狠 欧美| 国产在线男女| 亚洲最大成人av| a级一级毛片免费在线观看| 高清av免费在线| 国产成人a区在线观看| 色吧在线观看| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产色婷婷99| 有码 亚洲区| 成年女人在线观看亚洲视频 | av女优亚洲男人天堂| 身体一侧抽搐| 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站| 国产淫片久久久久久久久| 天堂中文最新版在线下载 | 亚洲精品成人av观看孕妇| 日韩一本色道免费dvd| 熟女人妻精品中文字幕| 2022亚洲国产成人精品| 99热全是精品| 午夜福利高清视频| 51国产日韩欧美| 日韩av在线免费看完整版不卡| 国产麻豆成人av免费视频| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 亚洲av国产av综合av卡| 国产精品国产三级国产专区5o| 亚洲av中文av极速乱| 非洲黑人性xxxx精品又粗又长| 亚洲av国产av综合av卡| 亚洲成人一二三区av| 日产精品乱码卡一卡2卡三| 免费在线观看成人毛片| 街头女战士在线观看网站| 女人被狂操c到高潮| 国产 一区精品| 国产单亲对白刺激| 免费播放大片免费观看视频在线观看| 高清在线视频一区二区三区| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 有码 亚洲区| 波多野结衣巨乳人妻| 日韩强制内射视频| 亚洲在久久综合| 久久97久久精品| 看十八女毛片水多多多| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在| 婷婷色综合www| 国产免费福利视频在线观看| 熟女人妻精品中文字幕| 亚洲精品,欧美精品| 国产单亲对白刺激| 亚洲怡红院男人天堂| 日韩欧美国产在线观看| 又粗又硬又长又爽又黄的视频| 日韩一区二区视频免费看| 淫秽高清视频在线观看| 欧美+日韩+精品| 亚洲欧美日韩卡通动漫| 九九在线视频观看精品| 老司机影院成人| 精品人妻偷拍中文字幕| 三级国产精品片| 欧美日韩在线观看h| 久热久热在线精品观看| 欧美 日韩 精品 国产| 久久精品国产自在天天线| 99久久人妻综合| 免费av毛片视频| 国产高清三级在线| 丰满乱子伦码专区| 国产成人freesex在线| 久久韩国三级中文字幕| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 如何舔出高潮| 精品久久久久久电影网| 91精品国产九色| 亚洲真实伦在线观看| 在线 av 中文字幕| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 国产探花在线观看一区二区| 菩萨蛮人人尽说江南好唐韦庄| 欧美3d第一页| 欧美精品一区二区大全| 日韩欧美精品免费久久| 国产伦理片在线播放av一区| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 国产午夜精品久久久久久一区二区三区| 在线 av 中文字幕| 国产熟女欧美一区二区| 大片免费播放器 马上看| 伦精品一区二区三区| 丰满乱子伦码专区| 联通29元200g的流量卡| 最近最新中文字幕免费大全7| 精品久久久久久成人av| 深夜a级毛片| 人妻系列 视频| 欧美精品一区二区大全| 大香蕉97超碰在线| 免费无遮挡裸体视频| 免费看美女性在线毛片视频| 国产伦在线观看视频一区| 成人午夜高清在线视频| 国产av码专区亚洲av| 简卡轻食公司| 中文欧美无线码| 蜜桃久久精品国产亚洲av| 亚州av有码| 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 欧美区成人在线视频| 人妻少妇偷人精品九色| 91av网一区二区| 高清在线视频一区二区三区| 亚洲欧洲日产国产| 亚洲欧美日韩东京热| 免费无遮挡裸体视频| 成人无遮挡网站| 午夜福利网站1000一区二区三区| 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 国产免费又黄又爽又色| 久久综合国产亚洲精品| 国产老妇女一区| 久99久视频精品免费| 街头女战士在线观看网站| av线在线观看网站| 麻豆国产97在线/欧美| 99re6热这里在线精品视频| videossex国产| ponron亚洲| 国产一级毛片在线| 亚洲精品乱久久久久久| 91精品一卡2卡3卡4卡| 午夜福利视频精品| 欧美精品一区二区大全| 如何舔出高潮| 欧美精品国产亚洲| 精品少妇黑人巨大在线播放| 日本一二三区视频观看| 免费看a级黄色片| 亚洲av在线观看美女高潮| 日韩av免费高清视频| 十八禁网站网址无遮挡 | 国产免费福利视频在线观看| 久久精品久久久久久久性| 亚洲伊人久久精品综合| 日韩欧美一区视频在线观看 | 身体一侧抽搐| 成人二区视频| 亚洲精品色激情综合| 国产精品人妻久久久久久| 国产av国产精品国产| 国产成人精品久久久久久| 麻豆av噜噜一区二区三区| 久久久久久伊人网av| 亚洲人成网站在线观看播放| 性插视频无遮挡在线免费观看| 国产精品综合久久久久久久免费| 午夜福利成人在线免费观看| 日韩av免费高清视频| 国产成人freesex在线| 大香蕉97超碰在线| 国产 一区精品| 国产一区有黄有色的免费视频 | 欧美潮喷喷水| 国产黄片视频在线免费观看| 亚洲av日韩在线播放| 色视频www国产| 国产精品久久久久久精品电影| 国产午夜精品一二区理论片| 一个人观看的视频www高清免费观看| 永久免费av网站大全| 晚上一个人看的免费电影| 亚洲av成人av| 国内精品一区二区在线观看| 久久久久网色| 少妇丰满av| 美女被艹到高潮喷水动态| 女人十人毛片免费观看3o分钟| 国产免费一级a男人的天堂| 嘟嘟电影网在线观看| xxx大片免费视频| 不卡视频在线观看欧美| 日韩亚洲欧美综合| 黄片wwwwww| 久久久久久久亚洲中文字幕| 天美传媒精品一区二区| 国产免费一级a男人的天堂| 亚洲国产成人一精品久久久| 一级a做视频免费观看| 看十八女毛片水多多多| 在线免费观看不下载黄p国产| 又大又黄又爽视频免费| 欧美变态另类bdsm刘玥| 欧美成人一区二区免费高清观看| 亚洲av中文av极速乱| 精品久久久久久久久久久久久| 嫩草影院精品99| 色网站视频免费| 成年免费大片在线观看| 亚洲一级一片aⅴ在线观看| 日韩成人伦理影院| 99久久精品国产国产毛片| 美女大奶头视频| 国产免费又黄又爽又色| 亚洲aⅴ乱码一区二区在线播放| 22中文网久久字幕| 精品亚洲乱码少妇综合久久| 欧美性感艳星| 国内精品美女久久久久久| 免费看日本二区| 九色成人免费人妻av| 女人久久www免费人成看片| 简卡轻食公司| www.色视频.com| 亚洲性久久影院| 久久久色成人| 日韩不卡一区二区三区视频在线| 国产精品人妻久久久久久| 最近手机中文字幕大全| 日本午夜av视频| 免费观看精品视频网站| 毛片一级片免费看久久久久| 国产精品国产三级专区第一集| av在线老鸭窝| 亚洲欧美日韩卡通动漫| 亚洲精品视频女| 观看免费一级毛片| 日日干狠狠操夜夜爽| 男女边摸边吃奶| av黄色大香蕉| 午夜亚洲福利在线播放| av网站免费在线观看视频 | 亚洲精品成人久久久久久| 午夜免费观看性视频| 美女内射精品一级片tv| 街头女战士在线观看网站| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久av不卡| 免费看a级黄色片| 国产色婷婷99| 美女内射精品一级片tv| 黄片无遮挡物在线观看| 成人欧美大片| 亚洲va在线va天堂va国产| 五月伊人婷婷丁香| 人人妻人人看人人澡| 2021少妇久久久久久久久久久| 在线观看一区二区三区| 亚洲欧美成人精品一区二区| 在现免费观看毛片| 国产精品av视频在线免费观看| av在线亚洲专区| 成人av在线播放网站| 七月丁香在线播放| 少妇熟女aⅴ在线视频| 一级黄片播放器| 亚洲av福利一区| av福利片在线观看| 国产一级毛片在线| 91久久精品国产一区二区三区| 午夜福利在线观看免费完整高清在| 99热这里只有精品一区|