• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toxic effects of Cd2+on the intestinal structure of Cypridopsis vidua (Ostracoda)

    2017-08-07 13:09:07CHENShimeiLiDanniDingQingqingYUNa
    關(guān)鍵詞:腸壁胃腸道濃度

    CHEN Shi-mei,Li Dan-ni,Ding Qing-qing,YU Na,2

    (1.School of Life Science,East China Normal University,Shanghai 200240,China; 2.College of Teacher Education,East China Normal University,Shanghai 200062,China)

    Toxic effects of Cd2+on the intestinal structure of Cypridopsis vidua (Ostracoda)

    CHEN Shi-mei1,Li Dan-ni1,Ding Qing-qing1,YU Na1,2

    (1.School of Life Science,East China Normal University,Shanghai 200240,China; 2.College of Teacher Education,East China Normal University,Shanghai 200062,China)

    Cypridopsis vidua is one of the few ostracods which can surrive from heavy pollution water.The toxic eff ects of Cd2+on C.vidua and its intestinalultrastructure were examined using a static renewal system.The LC50values for cadmium in C.vidua were 5.00,2.01,0.46 and 0.14 mg/L at 24,48,72 and 96 h exposure respectively,and the safe concentration of Cd2+for long-term C.vidua survivalwas less than 0.014 mg/L.To observe the structure changes of its intestinal,four Cd2+concentrations were set up,and two of them were below the safe concentration of Cd2+(0.001 and 0.004 mg/L)and the other concentrations were above its safe concentration(0.016 and 0.064 mg/L).The experiment lasted for 7 days.When microstructure of C.vidua was observed,the gastrointestinal organization was not damaged below the safe concentration;while the degree of injury showed a certain amount of time and dose eff ects in 24-72 hours above the safe concentration,and some structures among those surviving animals were slightly recovered in 7 days under same concentration.Sub-microscopic analysis of intestinal cells of C.vidua in two concentrations (0.004 and 0.064 mg/L)groups showed,diff erent degrees of structure damage were found in the cell membrane,cytoplasm and organelles,which worsened with increasing Cd2+concentrations.Among these cellular structures,the damage to the membrane system of the cell was especially serious.

    Ostracoda;Cd2+;acute toxicity;intestinal ultrastructure

    摘要:Cypridopsis vidua是少數(shù)能在重污染水體中生存的介形類(lèi)之一.本文采用急性毒性實(shí)驗(yàn)方法,研究了Cd2+對(duì)介形類(lèi)C.vidua及其腸壁結(jié)構(gòu)的影響,結(jié)果表明,24、48、72和96 h時(shí)Cd2+對(duì)C.vidua的半致死濃度(LC50)分別為5.00、2.01、0.46和0.14 mg/L,安全濃度為0.014 mg/L.在急性毒性試驗(yàn)的基礎(chǔ)上,于安全濃度上下分別設(shè)置了兩個(gè)Cd2+實(shí)驗(yàn)濃度對(duì)介形類(lèi)進(jìn)行攻毒研究,目的是進(jìn)一步探討在安全濃度附近,Cd2+對(duì)C.vidua腸壁細(xì)胞的損傷情況,實(shí)驗(yàn)持續(xù)7 d.顯微結(jié)果顯示,在安全濃度以下時(shí),C.vidua的胃腸道結(jié)構(gòu)基本沒(méi)有受到損傷,但超過(guò)安全濃度后,C.vidua的胃腸道結(jié)構(gòu)損傷程度于96 h以內(nèi)表現(xiàn)出了一定的時(shí)間和劑量效應(yīng),但至第7天時(shí)部分幸存下來(lái)的C.vidua其受損胃腸道結(jié)構(gòu)出現(xiàn)一定程度的恢復(fù),但已無(wú)法恢復(fù)到最初的狀態(tài)了;亞顯微切片顯示,腸壁細(xì)胞的膜結(jié)構(gòu)、胞質(zhì)、胞器等均有不同程度的損傷,且隨鎘離子濃度的升高損傷明顯加劇,其中細(xì)胞的膜結(jié)構(gòu)損傷尤為嚴(yán)重.

    0 Introduction

    In recent years,a large number ofheavy metals have been drained into bodies ofwater with industrial waste water and domestic sewage,causing deterioration in the water quality which threatens the survival and reproduction of aquatic organisms.Heavy metals could accumulate in aquatic organisms,thereby threatening human health when ingested[1].In addition,heavy metals could impact growth and reproduction,damage cellular membrane structures,inhibit celldivision,or even killthe aquatic organisms[1].Cadmium is an environmentalpollutant that is stored long–term in the body[2-3]with a broad distribution in the nature environment,and causes acute and chronic poisoning in animals.While cadmium is deposited into rivers,lakes and other bodies of water by the industrial waste water discharge,the atmospheric deposition of cadmium dust as wellas soilerosion,have a serious impact on the living conditions of nearby humans[4],as well as the fisheries[5].Thus,cadmium pollution research was suggested as a focus for the future by the United Nations Environment Program(UNEP),and cadmium was the first of the 12 dangerous chemicals listed[6].Therefore,the toxic eff ects of cadmium on the structure and physiological and biochemical reactions of an organism have been a hot research topic in environmental biology[7].

    Today,the aquatic organisms that are important members of the aquatic ecosystem which are widely used as bioindicators for the polluted water bodies[7-11].Freshwater ostracod,a small crustacean,is the good modeltaxa to study toxicity in aquatic organisms because of their small size,wide distribution and high abundance,and easy collection in the natural environment,as well as suitable maintenance and culture in the laboratory[12-13].Ostracods are widely used in environmental research[13-17].Early studies have shown a close relationship between the ostracod community structure and the ecology of the surrounding aquatic environment[14,17-22]. Of these studies,some ostracods were suggested to serve as the right indicator for heavy metal pollution[23-24],pesticide pollution[15,25-27]and eutrophic waters[17,28].For example,Cypris subglobosa,Physocypria kraepelini and Heterocypris incongruens have an important role in the evaluation of water polluted with heavy metals[23-24,29-30].However,those studies were only concerned with the relationship between the environmental factors and the compositionand distribution of the ostracod,but did not examine damage to the cell tissue and organ of organism.

    For aquatic animals,there are usually three ways(namely,gills,skin and digestive)that heavy metals are absorbed and accumulated in the body[1].Ofthese ostracods are diff erent from the others(such as shrimp,oysters,crab and fish)because of their small size,and except the marine genus Astrope,they had no special respiratory organs[31].Ostracods rely on the spread of the water and the penetration of the gas for gas exchange,and only a small amount of metal ions could be absorbed into the organism through the skin due to their chitin exoskeleton,so the intestinalwellis the most important way that Cd2+enters ostracods.In this study,Cypridopsis vidua(O.F.M¨uller,1776),selected as experimental materials,was one of the few ostracods surviving from heavy pollution water[18,32-37].This parthenogenetic species has been used for a long time and has substantial background information[38-41].C.vidua was used to study the acute toxic eff ects of Cd2+and alterations in organism microstructure and ultrastructure,to provide a theoretical basis for water quality assessment using aquatic organisms.

    1 Experimental

    1.1 Ostracod culture and reagents

    C.vidua was cultivated in our laboratory for fifteen years.For culturing,C.vidua were transferred under a dissecting microscope into a beaker of culture solution,consisting of tap water aerated for more than a week,with a few drops of liquid with grated fresh duckweed.For the following experiment,adult ostracods with strong viability and of similar size were selected after 24 hours of acclimation.During acclimation period,these animals were not fed with the grated duckweed to empty the digestive tract[13].

    The working Cd2+stock solution was 10 mg/L Cd2+(CdCl2·2.5H2O).This stock was diluted stepwise according to a set concentration gradient for the experiment.NaOH and HCl solutions were used to adjust the pH.

    1.2 Toxicity experiment

    To determine the concentration ranges for the test solutions in the experiment,repeated preliminary experiments were carried by exposing ostracods to solutions for 24 hours.Our result showed the maximum Cd2+concentration that allowed total survival was 0.04 mg/L,while 5 mg/L was 100%lethal for C.vidua.

    To obtain the safe concentration of C.vidua in the Cd2+solutions,six concentrations of cadmium(0.04,0.105,0.276,0.725,1.904 and 5 mg/L)were chosen with geometric spacing between the determined maximum concentration for total survival and the minimum one for total lethality.Three treatment groups and one blank control group were exposed to each cadmium treatment.Each solution(20 mL)was put into a 50 mL-beaker,and then 20 animals were put into the solution.For the cadmium trials,environmentalconditions were kept constant during the experiment(such as water temperature=(25±0.5)°C,pH value=7.0±0.5,salinity= 0.04 g/L,dissolved oxygen=(8.0±0.5)mg/L).The duration of each trial was 24,48,72 and 96 hours.In the process of exposure to cadmium solution,the dead animals were counted andremoved without delay.The parasite criterion for ostracod death was performed as described by Yu et al[13].

    Subacute toxicity experiment was divided into two parts.First,to observe the microstructure of the intestinal of C.vidua,four concentrations were chosen,among which 0.001 and 0.004 mg/L of the Cd2+concentrations were below the safe concentration,while 0.016 and 0.064mg/L were above the safe concentration.Second,to observe the submicroscopic structure,two concentrations(0.004 and 0.064 mg/L),close to the safe concentration from the acute toxicity experiment,were chosen.Organisms were incubated for a week.Then the specimens were obtained at 0,24,48,72,96 h and 7 d.The specimens from the first part experiment were fixed with Canoy’s fl uid,and the ones from the second part were fixed with 2.5%glutaraldehyde [pH 7.4,prepared with phosphate–buff ered saline(PBS)].

    1.3 Structural and ultrastructural analysis of intestinal

    Specimens from the fi rst subacute toxicity experiment were randomly selected and fi xed in Canoy’s fl uid and routinely processed for light microscopy to obtain 6μm-thick paraffi n sections.The damaged intestinal was observed under a phase-contrast OLYMPUS BX51,Japan. Specimens from the second experiment were fixed at 4°C in 2.5%glutaraldehyde[42],rinsed repeatedly in PBS for 2 hours and post–fixed for 1 hour in 2.0%OsO4,and then dehydrated through a graded series of ethanol(30%,50%,70%,90%and 100%;three times)before being embedded in Epon,thin sections(70 nm per section)were cut with Reichert Jung ultramicrotome using Diatome diamond knives.The thin sections were stained with uranyl acetate and lead citrate[43],before being observed under a Zeiss EM 912 transmission electron microscope.

    1.4 Statistical methods

    The percentage mortality was calculated according to the recorded mortality at 24,48, 72 and 96 h for each experimental group.The resulting data were converted into probits[44]. SPSS 14.0 statistical software was employed to perform the analysis.The log values of cadmium concentration served as the horizontal coordinate and the probit of mortality served as the verticalcoordinate to calculate a regression equation between the probit and concentration of the experimental solutions.The LC50of cadmium,as well as their respective 95%confidence intervals,were calculated using the probit analysis in SPSS 14.0[45].The safe cadmium concentration for C.vidua was calculated using empiricalformulas[13].Safe concentration was defined to be equalto 96 h–LC50multiplied by 0.1[46].

    2 Results and Discussion

    2.1 Animals mortality and the safe concentration of Cd2+

    There was no ostracod mortality observed in the control group.This,therefore,removes the possibility that natural death of C.vidua or other externalenvironment changes influenced the results.The mortality of C.vidua increased with increasing cadmium concentrations and a dose–dependent eff ect was observed.A considerable linear positive correlation was found between the death probit of C.vidua and the cadmium concentrations.The LC50for cadmiumfor acute C.vidua toxicity at 24,48,72 and 96 h was 5.00,2.01,0.46 and 0.14 mg/L,respectively, suggesting that the LC50decreased with increasing exposure time(Table 1).The toxicity of cadmium of C.vidua increased in a time–dependent manner.The observed safe concentration of cadmium was 0.014 mg/L(Table 1).

    The results showed that the safe concentration range of Cd2+for the long-term survival of C.vidua was less than 0.014 mg/L.This value is far lower than that of other ostracods, such as Diacypris compacta(0.43 mg/L)[47]and Cypris subglobosa(0.069 mg/L)[48],but much higher than other species such as Stenocypris major(0.013 mg/L)[49]and Physocypria kraepelini (0.004 mg/L)[30],and P.kraepelini is an ostracod species with high tolerance to environmental pollutants[14,17,50].These suggest that C.vidua has a very high tolerance to Cd2+pollution, and the toxic eff ects of Cd2+are slow in this species.

    Tab.1 Cypridopsis vidua tolerance to water–borne Cd2+

    2.2 The relationship between LC50values and exposure time

    No lethal threshold concentration of cadmium was found during 96 hours exposure time (Figure 1),which suggested that the mortality of C.vidua increased continuously with exposure time,and that cadmium accumulated in the body of C.vidua.However,a significant turning pointwasfound at72 h for the half-lethalconcentration ofCd2+on C.vidua(Figure 1).Namely, the change in the LC50curve for Cd2+gradually paralleled the time axis,which indicated that the remaining surviving ostracods might produce a high tolerance to Cd2+.

    Fig.1 The relationship between LC50values and exposure time

    Cadmium can accumulate in the organism ofanimals and human beings through the food chain[51]with a very long biologic half–life of 10–30 years[2-3].When a large amount of Cd2+enters the water,it can cause acute or chronic eff ects,which include organ system toxicity,and even death[52].The toxic eff ects of Cd2+persist for a long time in the organism,which woulddamage important cell,tissue and even organ structures[53].In fact,after the heavy metal toxicity is introduced into the aquatic environment,a three–step process willdevelop in aquatic organisms[54],such as the chemical and physico–chemical processes,physiological process and detoxification process.In this study,no lethal threshold concentration of cadmium found reflected in the first two stages ofthis process,in which the rate ofmortality of C.vidua gradually increased with increasing Cd2+concentration or prolonged experimental time,until all died; and the significant turning point found reflected showed in the third stage,which indicated that the remaining surviving ostracods might have a high tolerance to Cd2+and some detoxification mechanism might be functioning in the organism.It has been confirmed that there were some detoxification processes,which occur through binding between the toxic chemicals and a receptor[55].For example,metallothionein detoxification in animal organism[56-57].

    2.3 Structural and ultrastructural changes in C.vidua intestinal

    Although digestive tract is the main way that contaminants are absorbed in microcrustaceans(e.g.ostracod)[15],the effects of contaminants to their intestinal have never been concerned.In this study,comparing the microstructure of the intestinal of C.vidua with the blank control group,below the safe concentration(0.001 and 0.004 mg/L),when the experiment has continued for 7 days,there was no ostracod mortality observed and no observable changes in the intestinal structure of C.vidua.Above the safe concentration(0.016 and 0.064 mg/L),although no ostracod mortality was observed in 24-72 hours,multilayer cellular formations(mcfs)located in the foregut and hindgut edges or ventrolateralstructure were minorly injured in 24-48 hours;some organization structure(such as foregut and hindgut,mcfs, liver and pancreas)have been injured in 72 hours.However,there were animals mortality observed for both high Cd2+concentration groups(0.016 and 0.064 mg/L)in 96 hours(5% and 25%,respectively)and 7 days(32%and 49%,respectively).Surprisingly,some structures among those surviving animals were slightly recovered in 7 days under the same concentration, but the initial state has been unable to achieve.

    The submicroscopic structure was observed and compared with the controlgroup(Fig.2A), in the low concentration treatment groups(0.004 mg/L)(Fig.2B–H),the cell volume increased as the cells swelled,the gaps between the cells widened.In addition,the bilayer structure of the nuclear envelope was indistinct,the chromatin distribution was not uniform,was more condensed.The number of mitochondria was reduced(Fig.2E).Some of the endoplasmic membrane was damaged,appearing broken,and the ribosomes were disrupted.The cytoplasm contained a large number of lipid droplets(Fig.2F).In the high concentration groups (0.016 mg/L)(Fig.3B–H),the degree of cell swelling increased,and there was further disintegration of the nuclear envelope.At 96 h,the heterochromatin was fractured.Mitochondria were fewer in number.The endoplasmic reticulum was expanded with many vesicles and debris, and no ribosome attached.A large amount of smooth endoplasmic reticulum appeared.The structure ofthe intestinalmicrovilliwas affected by the changes in intestinalcellultrastructure in C.vidua.All intestinal microvilli of C.vidua were neatly arranged in the control group (Fig.3A).Some were deformed in organisms exposed to low concentrations(Fig.2D);and some began to collapse,disintegrate and appear vacuolated when the concentration of Cd2+was high (Fig.3B,E–G).

    Fig.2 Electron micrographs of intestinal cells from C.vidua exposed to no Cd2+(control)or low Cd2+(0.004 mg/L)

    Fig.3 Electron micrographs of intestinal cells from C.vidua exposed to no Cd2+(control)or high Cd2+(0.064 mg/L)

    The biological damages caused by Cd2+pollution include:1)excessive reactive oxygen species(ROS)production in the organism;and 2)the metal–dependent enzymes,specifically the metalcofactor ofantioxidant enzyme,might be replaced by combination of Cd2+and intracellular thiolgroups,or through competition or non–competitive effect,which reduces the elimination of free radicals by reducing the activity of antioxidant enzymes.For example,because of the affi nity of Cd2+with thiol,carboxyl and nitrogen is higher than Zn2+and other trace elements,Cd2+can damage enzyme systems which require activation by these trace elements, and make intracellular zinc–containing enzymes useless,reducing the activity of intracellular antioxidant enzymes[58-63]and enhancing the rate of lipid peroxidation.Both of these eff ects lead to the accumulation of lipid peroxides,which then damage the structure of cellular membranes,altering their permeability,and ultimately leading to the decomposition of organelle membrane system[58-59].The results showed that the rough endoplasmic reticulum changed suffi ciently to inhibit the protein synthesis in two Cd2+concentration treatment groups,and the mitochondria were damaged suffi ciently to aff ect oxidative phosphorylation,and the nuclei were damaged enough to aff ect cell integrity and even kill the organism[64].In addition,some researchers reported that the mitochondria was an intracellular organelles which was the most vulnerable to be damaged[65-66],and the view was agreed by the changes ofintestinalultrastructure in this study.In this study,the mitochondrial membrane was severely damaged and even became vacuolated with increasing Cd2+concentrations and prolonged exposure time.Cd2+inhibits the activity ofenzymes that synthesize membrane phospholipids,which lead to damage of the structure of the membrane system,resulting in swelling and eventual disintegration of the organelles[67-68].As the mitochondria supply energy for necessary functions,mitochondrial injury directly impairs the oxidation-antioxidation balance of tissue cells[63,69].

    3 Conclusions

    The results in this study indicated that C.vidua has a high tolerance to cadmium.And different degrees of structure damage were found in the cell membrane,cytoplasm,and organelles of C.vidua,which worsened with increasing Cd2+concentrations.Among these cellular structures,the damage to the membrane system of the cell was especially serious.These intimated that cadmium could damage or lead to death to the aquatic organisms.The study may provide a theoretical basis for water quality assessment using aquatic organisms.

    [1]STANKOVIC S,JOVIC M,STANKOVIC A R,et al.Heavy metals in seafood mussels.Risks for human health. [M]//LICHTFOUSE E,SCHWARZBAUER J,ROBERT D,Environmental chemistry for a sustainable world: Volume 1-Nanotechnology and Health Risk.Netherlands:Springer,2012:311-373.

    [2]YANG J,LEWANDROWSKI K B.Trace elements,vitamins,and nutrition[M]//MCCLATCHEY K D.Clinical Laboratory Medicine.2nd ed.Philadelphia:Lippincott Williams and Wilkins,2002:439-462.

    [3]GO Y M,ROEDE J R,ORR M,et al.Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of Cd Toxicity[J].Toxicological Sciences,2014,139(1):59-73.

    [4]ZHOU Q,KONG F,ZHU L.Ecotoxicology[M].Beijing:Science Press,2004:56-58.

    [5]OMER S A,ELOBEID M A,FOUAD D,et al.Cadmium bioaccumulation and toxicity in tilapia fi sh(Oreochromis niloticus)[J].Journal of Animal and Veterinary Advances,2012,11(10):1601-1606.

    [6]IARC(International Agency for Research on Cancer).Beryllium,Cadmium,Mercury,and Exposures in the Glass Manufacturing Industry[J].IARC monographs on the evaluation of carcinogenic risks to humans,1993, 58:41-117.

    [7]LIU G,SHENG Z,WANG Y,et al.Glutathione peroxidase 1 expression,malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride[J].Gene,2016,578(2):210-218.

    [8]DEFUR P L.Use and role of invertebrate models in endocrine disruptor research and testing[J].National Research Council,Institute of Laboratory Animal Resources,2004,45(4):484-493.

    [9]MIRTO S,DANOVARO R.Meiofaunal colonisation on artifi cial substrates:A tool for biomonitoring the environmental quality on coastal marine systems[J].Marine Pollution Bulletin,2004,48(9-10):919-926.

    [10]SUTHERLAND T F,LEVINGS C D,PETERSEN S A,et al.The use of meiofauna as an indicator of benthic organic enrichment associated with salmonid aquaculture[J].Marine Pollution Bulletin,2007,54(8):1249-1261.

    [11]ZHANG Q,HU G.Applications of meiobenthos in marine ecological monitoring[J].Marine Information,2008, 4:28-29.

    [12]RUIZ F,GONZ′ALEZ-REGALADO ML,BORREGO J,et al.Ostracoda and Foraminifera as short–term tracers of environmental changes in very polluted areas:The Odiel Estuary(SWSpain)[J].Environment Pollution,2004, 129(1):49-61.

    [13]YU N,CHEN S,LI E,et al.Tolerance of Physocypria kraepelini(Crustacean,Ostracoda)to water–borne ammonia,phosphate and pH value[J].Journal of Environmet Science,2009,21:1575-1580.

    [14]YU N,CHEN L,ZHAO Q.CCA of ostracod distribution and environmental factors in the Taihu Lake[J].Acta Micropalaeontologica Sinica,2007,24:53-56.

    [15]RUIZ F,ABAD M,BODERGAT A M,et al.Freshwater ostracods as environmental tracers[J].International Journal of Environmental Science and Technology,2013(10):1115-1128.

    [16]K¨ULK¨OYL¨UO?GLU O,SARI N,D¨UGEL M,et al.Eff ects of limnoecological changes on the Ostracoda(Crustacea)community in a shallow lake(Lake C?ubuk,Turkey)[J].Limnologica-Ecology and Management of Inland Waters,2014,46:99-108.

    [17]WEI C,YU N,ZHAO Q,et al.Canonical correspondence analysis of modern Ostracoda and environmental factors in the Dishui Lake,Shanghai[J].Acta Micropalaeontological Sinica,2015,32(2):115-124.

    [18]K¨ULK¨OYL¨UO?GLU O.Ecology of freshwater Ostracoda(Crustacea)from lakes and reservoirs in Bolu,Turkey [J].Journal of Freshwater Eecology,2003,18(3):343-347.

    [19]PIERI V,VANDEKERKHOVE J,GOI D.Ostracoda(Crustacea)as indicators for surface water quality:A case study from the Ledra River Basin(NE Italy)[J].Hydrobiologia,2012,688:25-35.

    [20]K¨ULK¨OYL¨UO?GLU O,SARI N.Ecological characteristics of the freshwater Ostracoda in Bolu Region(Turkey) [J].Hydrobiologia,2012,688:37-46.

    [21]LORENSCHATJ,P′EREZ L,CORREA-METRIO A,et al.Diversity and spatial distribution of extant freshwater ostracodes(Crustacea)in ancient Lake Ohrid(Macedonia/Albania)[J].Diversity,2014,6(3):524-550.

    [22]SCHNEIDER A,WETTERICH S,SCHIRRMEISTER L,et al.Freshwater ostracods(Crustacea)and environmental variability of polygon ponds in the tundra of the Indigirka Lowland,north-east Siberia[J].Polar Research,2016,35.DOI:10.3402/polar.v35.25225.

    [23]KHANGAROT BS,RAY PK.Sensitivity of midge larvae of Chironomus tentans Fabricius(Diptera:Chironomidae)to heavy metals[J].Bulletin of Environment Contamination and Toxicololgy,1989,42(3):325-330.

    [24]BERGIN F,KUCUKSEZGIN F,ULUTURHAN E,et al.The response of benthic Foraminifera and Ostracoda to heavy metal pollution in Gulf of Izmir(Eastern Aegean Sea)[J].Estuarine,Coastal and Shelf Science,2006, 66(3-4):368-386.

    [25]RATHORE RS.Studies on the use of some freshwater invertebrates as sensitive test models for the assessment of toxicity of environmental pollutants[D].Lucknow:University of Lucknow,2001:1-196.

    [26]BELGIS Z C,PERSOONE G,BLAISE C.Cyst–based toxicity testsⅩⅤⅠ-sensitivity comparision of the solid phase Heterocypris incongruens microbiotest with the Hyalella azteca and Chironomus riparius contact assays on freshwater sediments from Peninsula Harbour(Ontario,Canada)[J].Chemosphere,2003,52(1):95-101.

    [27]S′ANCHEZ-BAYO F.From simple toxicological models to prediction of toxic eff ects in time[J].Ecotoxicology, 2009,18:343-354.

    [28]BAK M,SZLAUER-LUKASZEWSKA A.Bioindicative potential of diatoms and ostracods in the Odra mouth environment quality assessment[J].Nova Hedwigia,Beiheft,2012,141(3):463-484.

    [29]KHANGAROT BS,RAY PK.Response of a freshwater ostracod(Cypris subglobosa Sowerby)exposed to Copper at diff erent pH levels[J].Acta Hydrochimica et Hydrobiologica,1987,15(6):553-558.

    [30]CHEN S,YU N,ZHOU Y,et al.Acute toxicity experiment of Cd2+,Zn2+and Cu2+in Physocypria kraepelini (Ostracoda)[J].Acta Micropalaeontologica Sinica,2010,27(2):118-124.

    [31]DU N.Crustacean[M].Beijing:Science and Technology Press,1993:137-158.

    [32]LIM R P,WONG M C.The eff ects of pesticides on the population dynamics and production of Stenocypris major Baird(Ostracoda)in ricefi elds[J].Archiv f¨ur Hydrobiologie,1986,106:421-427.

    [33]KISS A.Limnological investigations of small water bodies in the Pilis Biosphere Reserve,Hungary.Part II. K¨oegyi-t′o and Unk′as-t′ocsa[J].Opuscula Zoologica(Budapest),2001,33:67-74.

    [34]SHORNIKOV E I,TREBUKHOVA Y A.Ostracods of brackish and fresh waters of southwestern coast of Peter the Great Bay[M]//KASYANOV V L,VASCHENKO M A,PITRUK D L,The state of environment and biota of the southwestern part of Peter the Great Bay and the Tumen River mouth.Vladivostok:Dalnauka,2001: 56-84.

    [35]K¨ULK¨OYL¨UO?GLU O.On the usage of ostracods(Crustacea)as bioindicator species in diff erent aquatic habitats in the Bolu region,Turkey[J].Ecological Indicators,2004,4(2):139-147.

    [36]K¨ULK¨OYL¨UO?GLUO.Ecology and phenology of freshwater ostracods in Lake G¨olk¨oy(Bolu,Turkey)[J].Aquatic Ecology,2005,39(3):295-304.

    [37]K¨ULK¨OYL¨UO?GLU O,D¨UGEL M,KILIC?M.Ecological requirements of Ostracoda(Crustacea)in a heavily polluted shallow lake,Lake Yeni?ca?ga(Bolu,Turkey)[J].Hydrobiologia,2007,585(1):119-133.

    [38]ROCA J R,BALTANAS A,UIBLEIN F.Adaptive responses in Cypridopsis vidua(Crustacea:Ostracoda)to food and shelter off ered by a macrophyte(Chara fragilis)[J].Hydrobiologia,1993,262(2):127-131.

    [39]CYWINSKA A,CRUMP D,LEAN D.Infl uence of UV radiation on four freshwater invertebrates[J].Photochemistry and Photobiology,2000,72(5):652-659.

    [40]CYWINSKA A,HEBERT P D N.Origins of clonal diversity in the hypervariable asexual ostracode Cypridopsis vidua[J].Journal of Evolutionary Biology,2002,15(1):134-145.

    [41]HUNT G,PARK L E,LABARBERA M.A novel crustacean swimming stroke:coordinated four–paddled locomotion in the cypridoidean ostracode Cypridopsis vidua(M¨uller)[J].Biological Bulletin,2007,212(1):267-273.

    [42]ARNAUD J,BRUNET M,MAZZA J.Studies on the midgut of Centropages typicus(Copepod,Calanoida).Ⅰ. Structural and Ultrastructural Data[J].Cell and Tissue Research,1978,187(2):333-353.

    [43]REYNOLDS E S.The use of lead citrate at high pH as an electron opaque stain in electron microscopy[J]. Journal of Cell Biology,1963,17:208-212.

    [44]HUI X.Environmental Toxicology[M].Beijing:Chemical Industry Publishing House,2003,266-276.

    [45]REISH D L,OSHIDA P S.Manual of methods in aquatic environment research,part 10:short–term static bioassays[J].FAO Fisheries Technical Paper,1987,247:1-62.

    [46]SPRAGUE J B.Measurement of pollutant toxicity to fi sh-III:Sublethal eff ects and“safe”concentrations[J]. Water Research,1971,5(6):245-266.

    [47]BROOKS A,WHITE R M,PATON D C.Eff ects of heavy metals on the survival of Diacypris compacta(Herbst) (Ostracoda)from the Coorong,South Australia[J].International Journal of Salt Lake Research,1995,4(2):133-163.

    [48]VARDIA H K,RAO P S,DURVE V S.Eff ect of copper,cadmium and zinc on fi sh-food organisms,Daphnia lumholtzi and Cypris subglobosa[J].Proceedings:Animal Sciences,1988,97(2):175-180.

    [49]SHUHAIMI-OTHMAN M,NADZIFAH Y,NUR-AMALINA R et al.Toxicity of metals to a freshwater ostracod: Stenocypris major[J].Journal of Toxicology,2011,(3):1-8.

    [50]YILMAZ F,K¨ULK¨OYL¨UO?GLU O.Tolerance,optimum ranges,and ecological requirements of freshwater Ostracoda(Crustacea)in Lake Alada?g(Bolu,Turkey)[J].Ecological Research,2006,21(2):165-173.

    [51]SAIPAN P,TENGJAROENKUL B,PRAHKARNKAEO K.Accumulation of Arsenic and Cadmium in foods of animal origin collected from the local markets in northeastern region Thailand[J].International Journal of Animal&Veterinary Advances,2014,6(4):130-134.

    [52]MENKE A,MUNTNER P,SILBERGELD E K,et al.Cadmium levels in urine and mortality among U.S.adults [J].Environmental Health Perspectives,2009,117(2):190-196.

    [53]BERNHOFT R A.Cadmium Toxicity and Treatment[J].The Scientifi c World Journal,2013(7):66-67.

    [54]TAO S,LIANG T,CAO J,et al.Synergistic eff ect of copper and lead uptake by fi sh[J].Ecotoxicology and Environmental Safety,1999,44(2):190-195.

    [55]ZHOU X,ZHU G,SUN J,et al.Toxicity of copper,zinc,lead,cadmium to tissue’s cellular DNA of the fi sh (Carassius auratus)[J].Acta Agriculture Nucleatae Sinica,2001,15(3):167-173.

    [56]ZALUPS R K,AHMAD S.Molecular handling of cadmium in transporting epithelia[J].Toxicology and Applied Pharmacology,2003,186(3):163-188.

    [57]LOEBUS J,LEITENMAIER B,MEISSNER D,et al.The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis in cadmium detoxifi cation[J].Journal of Inorganic Biochemistry,2013,127:253-260.

    [58]SHUKLA G S,HUSAIN T,SRIVASTAVA R S,et al.Glutathione peroxidase and catalase in livers,kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal[J].Industrial Health, 1989,27(2):59-69.

    [59]LIU R,LIU Y.Study on relationship between lipid perxidation and inviability of isolated rat hepatocytes caused by Cadmium[J].China Environmental Science,1990,10(3):187-191.

    [60]VENUGOPAL N,ROMESH T R S L.Eff ects of cadmium on antioxidant enzyme activities and lipid pemxidation in freshwater fi eld crab barytelphusa guerlni[J].Bulletin of Environment Contamination Toxicology,1997,59: 132-138.

    [61]SOEGIANTO A,CHAMANTIER-DAURES M,TRILLES J P,et al.Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicas(Crustacea:Decapoda)[J].Aquatic Living Resources,1999, 12(1):57-70.

    [62]LIU X,ZHOU Z,CHEN L.Eff ect of Cadmium on antioxidant enzyme activities of the juvenile Eniocheir sinensis [J].Marine Sciences,2003,27(8):59-63.

    [63]LEE S M,KIM H L,LEE S,et al.Toxicogenomic and signaling pathway analysis of low-dose exposure to cadmium chloride in rat liver[J].Molecular&Cellular Toxicology,2013,9(4):407-413.

    [64]YANG Y,JIA X.Joint toxicity of Cu2+,Zn2+,and Cd2+to tadpole of Bufo bufo gargarizans[J].Chinese Journal of Applied and Environmental Biology,2006,12(3):356-359.

    [65]GOBE G,CRANE D.Mitochondria,reactive oxygen species and cadmium toxicity in the kidney[J].Toxicology Letters,2010,198(1):49-55.

    [66]LIU D,YAN B,YANG J,et al.Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium[J].Aquatic Toxicology,2011,105(3-4):394-402.

    [67]CASALINO E,CALZARETTI G,SBLANO C,et al.Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium[J].Toxicology,2002,179(1-2):37-50.

    [68]LIU D H,WANG M,ZOU J H,et al.Uptake and accumulation of cadmium and some nutrientions by roots and shoots of maize(Zea mays L.)[J].Pakistan Journal of Botany,2006,38(3):701-709.

    [69]WANG L,SUN H.Eff ect of cadmium on ultrastructure of myocardial cell of freshwater crab,Sinopotamon yangtsekiense[J].Acta Hydrobiogica Sinica,2002,26(1):8-13.

    (責(zé)任編輯:張晶)

    Cd2+對(duì)Cypridopsis vidua(介形綱)腸壁結(jié)構(gòu)的毒性效應(yīng)

    陳仕梅1,李丹妮1,丁晴晴1,禹娜1,2

    (1.華東師范大學(xué)生命科學(xué)學(xué)院,上海200240;2.華東師范大學(xué)教師教育學(xué)院,上海200062)

    介形類(lèi);Cd2+;急性毒性;腸壁結(jié)構(gòu)

    2016-09-12

    公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)項(xiàng)目(201203065-04);國(guó)家自然科學(xué)基金(31672263,41372365)

    陳仕梅,女,碩士研究生,研究方向動(dòng)物毒理學(xué).

    禹娜,女,教授,博士生導(dǎo)師,研究方向?yàn)樗鷦?dòng)物生態(tài)學(xué).E-mail:nyu@bio.ecnu.edu.cn.

    1000-5641(2017)04-0168-12

    X592

    A

    10.3969/j.issn.1000-5641.2017.04.015

    猜你喜歡
    腸壁胃腸道濃度
    拍照濃度有待降低
    體外仿生胃腸道模型的開(kāi)發(fā)與應(yīng)用
    科學(xué)(2022年4期)2022-10-25 02:43:06
    神醫(yī)的煩惱——濃度與配比
    腸壁增厚分層并定量分析對(duì)小腸壞死的診斷價(jià)值
    胃腸道間質(zhì)瘤的CT診斷價(jià)值
    高頻超聲診斷小兒原發(fā)性小腸淋巴管擴(kuò)張癥
    腹性紫癜所致腸壁改變與腸系膜上動(dòng)脈血流參數(shù)變化超聲觀察
    腹部計(jì)算機(jī)斷層掃描提示大腸腸壁增厚的臨床意義
    對(duì)改良的三種最小抑菌濃度測(cè)試方法的探討
    動(dòng)靜脈血K、Na、Cl、Lac濃度的比較
    一区二区三区精品91| 久久 成人 亚洲| 亚洲一区中文字幕在线| 嫩草影视91久久| 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影 | 久久久国产一区二区| 交换朋友夫妻互换小说| 欧美另类亚洲清纯唯美| 下体分泌物呈黄色| 国产一区有黄有色的免费视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲久久久国产精品| 天堂中文最新版在线下载| 午夜老司机福利片| 99久久综合免费| 99热全是精品| 人妻 亚洲 视频| 叶爱在线成人免费视频播放| 免费不卡黄色视频| 欧美日韩国产mv在线观看视频| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 亚洲欧美一区二区三区久久| 夜夜骑夜夜射夜夜干| 一本综合久久免费| 热99国产精品久久久久久7| 亚洲欧美一区二区三区久久| 久久国产精品影院| 秋霞在线观看毛片| 欧美 日韩 精品 国产| 狠狠精品人妻久久久久久综合| 天堂俺去俺来也www色官网| 午夜两性在线视频| 一区福利在线观看| 久久久久久久久久久久大奶| 法律面前人人平等表现在哪些方面 | 精品人妻一区二区三区麻豆| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| xxxhd国产人妻xxx| 纯流量卡能插随身wifi吗| 久久久久精品人妻al黑| 久9热在线精品视频| 国产精品一区二区免费欧美 | 国产欧美日韩综合在线一区二区| 亚洲色图综合在线观看| 黄网站色视频无遮挡免费观看| 午夜福利乱码中文字幕| 一级片免费观看大全| 欧美一级毛片孕妇| 久久99热这里只频精品6学生| 久久国产亚洲av麻豆专区| 黄网站色视频无遮挡免费观看| 亚洲精品国产区一区二| 国产欧美亚洲国产| 国产成人av教育| 脱女人内裤的视频| 纯流量卡能插随身wifi吗| 老汉色av国产亚洲站长工具| 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| 97在线人人人人妻| 51午夜福利影视在线观看| 精品国产一区二区久久| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 欧美午夜高清在线| 黄片大片在线免费观看| 精品少妇久久久久久888优播| 午夜两性在线视频| 欧美激情极品国产一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 老司机影院毛片| 黄色片一级片一级黄色片| 亚洲精品av麻豆狂野| 国产无遮挡羞羞视频在线观看| 久久亚洲国产成人精品v| 男女边摸边吃奶| av一本久久久久| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 中文欧美无线码| 久久热在线av| 纯流量卡能插随身wifi吗| 亚洲国产日韩一区二区| 18禁黄网站禁片午夜丰满| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 亚洲久久久国产精品| 麻豆国产av国片精品| 久久久久久久精品精品| 十八禁高潮呻吟视频| 午夜福利免费观看在线| 成人手机av| 国产成人av激情在线播放| 国产无遮挡羞羞视频在线观看| 一二三四社区在线视频社区8| 国产av又大| 天堂8中文在线网| 动漫黄色视频在线观看| videosex国产| 日韩大片免费观看网站| 黑人巨大精品欧美一区二区mp4| 国产淫语在线视频| 欧美日韩成人在线一区二区| 啦啦啦在线免费观看视频4| 91字幕亚洲| 色94色欧美一区二区| 久久这里只有精品19| 黑人操中国人逼视频| 精品亚洲成a人片在线观看| 国内毛片毛片毛片毛片毛片| 法律面前人人平等表现在哪些方面 | 18禁国产床啪视频网站| 免费在线观看黄色视频的| 99国产精品99久久久久| 国产在线观看jvid| 欧美在线一区亚洲| 国产精品一区二区在线不卡| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 熟女少妇亚洲综合色aaa.| 一边摸一边抽搐一进一出视频| 男女无遮挡免费网站观看| 久久久久久久久久久久大奶| 我的亚洲天堂| 日韩制服丝袜自拍偷拍| 亚洲九九香蕉| 国产精品免费大片| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 亚洲国产日韩一区二区| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看 | 成年女人毛片免费观看观看9 | 日本猛色少妇xxxxx猛交久久| 一级a爱视频在线免费观看| 他把我摸到了高潮在线观看 | 高潮久久久久久久久久久不卡| 美女视频免费永久观看网站| 欧美日韩亚洲综合一区二区三区_| 国产精品亚洲av一区麻豆| av不卡在线播放| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 中文字幕高清在线视频| 中国美女看黄片| 91老司机精品| av线在线观看网站| 少妇裸体淫交视频免费看高清 | 少妇精品久久久久久久| 色精品久久人妻99蜜桃| 亚洲色图综合在线观看| 久久狼人影院| 免费人妻精品一区二区三区视频| 国产精品一区二区免费欧美 | 2018国产大陆天天弄谢| 岛国在线观看网站| 日韩,欧美,国产一区二区三区| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 黑丝袜美女国产一区| av网站免费在线观看视频| tocl精华| 成人国语在线视频| 亚洲国产欧美网| 日韩制服丝袜自拍偷拍| 午夜福利在线免费观看网站| 亚洲精品自拍成人| 菩萨蛮人人尽说江南好唐韦庄| 少妇的丰满在线观看| 欧美国产精品一级二级三级| 国产精品一区二区免费欧美 | 久久av网站| 女人久久www免费人成看片| 国产精品 国内视频| 成人手机av| 亚洲成国产人片在线观看| 黄片播放在线免费| 亚洲成人免费电影在线观看| 中文字幕人妻丝袜一区二区| 中文字幕人妻熟女乱码| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 国产成人系列免费观看| 成年人免费黄色播放视频| 久久香蕉激情| 精品国产乱子伦一区二区三区 | 美女主播在线视频| 亚洲中文日韩欧美视频| 亚洲精品一区蜜桃| 国产精品九九99| 欧美日韩视频精品一区| 法律面前人人平等表现在哪些方面 | 日本五十路高清| 国产亚洲欧美在线一区二区| 欧美日韩视频精品一区| 我的亚洲天堂| 婷婷成人精品国产| 另类亚洲欧美激情| 天天操日日干夜夜撸| 免费久久久久久久精品成人欧美视频| 亚洲精品国产av蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 窝窝影院91人妻| 精品国产一区二区三区四区第35| 久久精品久久久久久噜噜老黄| av不卡在线播放| 亚洲久久久国产精品| 各种免费的搞黄视频| 一边摸一边做爽爽视频免费| 国产福利在线免费观看视频| 精品国产乱子伦一区二区三区 | 丰满迷人的少妇在线观看| 99久久人妻综合| 欧美精品人与动牲交sv欧美| 亚洲av成人一区二区三| 欧美黑人欧美精品刺激| svipshipincom国产片| 久久久久久久国产电影| 青草久久国产| www日本在线高清视频| 男女床上黄色一级片免费看| 欧美另类一区| 十八禁高潮呻吟视频| 桃红色精品国产亚洲av| 色老头精品视频在线观看| 大香蕉久久网| 欧美精品av麻豆av| 免费黄频网站在线观看国产| 别揉我奶头~嗯~啊~动态视频 | 国产av又大| 五月天丁香电影| 国产一区二区三区综合在线观看| 丰满人妻熟妇乱又伦精品不卡| 自线自在国产av| 亚洲精品久久久久久婷婷小说| 亚洲专区字幕在线| 亚洲av日韩精品久久久久久密| 夫妻午夜视频| 精品人妻1区二区| 又大又爽又粗| 亚洲欧美清纯卡通| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| 91麻豆av在线| 高清在线国产一区| 国产精品熟女久久久久浪| 无遮挡黄片免费观看| videosex国产| 操出白浆在线播放| 91老司机精品| 性色av一级| 亚洲男人天堂网一区| 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频| 免费黄频网站在线观看国产| 久久人妻熟女aⅴ| 亚洲av男天堂| 夜夜骑夜夜射夜夜干| av天堂在线播放| 国产有黄有色有爽视频| 18禁裸乳无遮挡动漫免费视频| 蜜桃国产av成人99| 欧美亚洲 丝袜 人妻 在线| 国产免费一区二区三区四区乱码| 亚洲国产精品999| 各种免费的搞黄视频| 国产高清视频在线播放一区 | 亚洲专区国产一区二区| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 亚洲,欧美精品.| 国产男人的电影天堂91| 91字幕亚洲| 桃红色精品国产亚洲av| 97精品久久久久久久久久精品| 天天添夜夜摸| 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 久久精品亚洲av国产电影网| 精品福利观看| 中文字幕人妻丝袜制服| 亚洲中文日韩欧美视频| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产精品国产av在线观看| 爱豆传媒免费全集在线观看| 日本五十路高清| 欧美日韩视频精品一区| 亚洲精品第二区| 满18在线观看网站| 一区二区三区乱码不卡18| 国产91精品成人一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 国产在线视频一区二区| 9色porny在线观看| 亚洲,欧美精品.| 中文精品一卡2卡3卡4更新| 欧美 日韩 精品 国产| 又大又爽又粗| 亚洲精品一卡2卡三卡4卡5卡 | 免费在线观看日本一区| 国产精品二区激情视频| 国产高清国产精品国产三级| 一区二区日韩欧美中文字幕| www.精华液| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 国产高清视频在线播放一区 | 国产亚洲av片在线观看秒播厂| 69精品国产乱码久久久| 婷婷色av中文字幕| 欧美日韩视频精品一区| 美女视频免费永久观看网站| tocl精华| 国产精品一二三区在线看| 亚洲欧美一区二区三区黑人| 中文字幕精品免费在线观看视频| 亚洲九九香蕉| 又黄又粗又硬又大视频| 午夜福利在线免费观看网站| 午夜福利视频精品| 国产精品二区激情视频| 久久99热这里只频精品6学生| 美女中出高潮动态图| 国产精品成人在线| 少妇 在线观看| 精品国产乱码久久久久久男人| 人妻久久中文字幕网| 男人舔女人的私密视频| 视频区图区小说| 悠悠久久av| 国产精品成人在线| 999久久久精品免费观看国产| 1024视频免费在线观看| 久久国产精品影院| 黄片大片在线免费观看| 另类精品久久| 亚洲色图 男人天堂 中文字幕| 韩国高清视频一区二区三区| tocl精华| 午夜精品国产一区二区电影| 操出白浆在线播放| 亚洲精品一区蜜桃| 少妇的丰满在线观看| 免费黄频网站在线观看国产| 777米奇影视久久| 亚洲第一av免费看| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 麻豆国产av国片精品| 久久久久国产精品人妻一区二区| 黄色视频不卡| 国产又爽黄色视频| 中文字幕人妻丝袜制服| 日本猛色少妇xxxxx猛交久久| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 可以免费在线观看a视频的电影网站| 国产精品免费视频内射| 亚洲精品粉嫩美女一区| 爱豆传媒免费全集在线观看| 精品少妇一区二区三区视频日本电影| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月 | 国产福利在线免费观看视频| 亚洲国产精品成人久久小说| 母亲3免费完整高清在线观看| 亚洲成人手机| 岛国毛片在线播放| 亚洲情色 制服丝袜| 最新的欧美精品一区二区| 人妻久久中文字幕网| 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| 欧美乱码精品一区二区三区| 天堂中文最新版在线下载| 精品国内亚洲2022精品成人 | 丰满人妻熟妇乱又伦精品不卡| 午夜福利视频在线观看免费| 日韩大片免费观看网站| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 黄色 视频免费看| 伊人亚洲综合成人网| 久久国产精品影院| 国产精品久久久久久人妻精品电影 | 69精品国产乱码久久久| 性色av一级| 亚洲五月婷婷丁香| 国产精品免费视频内射| 免费人妻精品一区二区三区视频| a 毛片基地| 日韩视频一区二区在线观看| 天天躁日日躁夜夜躁夜夜| 日本精品一区二区三区蜜桃| 两人在一起打扑克的视频| 不卡一级毛片| 久久99一区二区三区| 欧美国产精品va在线观看不卡| 国产亚洲欧美在线一区二区| 色视频在线一区二区三区| 丝瓜视频免费看黄片| 天堂8中文在线网| 丝袜脚勾引网站| 美女午夜性视频免费| 国产区一区二久久| 老司机在亚洲福利影院| 18禁国产床啪视频网站| 99久久精品国产亚洲精品| 亚洲精品在线美女| 深夜精品福利| 视频在线观看一区二区三区| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 五月开心婷婷网| 午夜老司机福利片| 久久精品国产综合久久久| 热99久久久久精品小说推荐| 操出白浆在线播放| av不卡在线播放| 午夜福利,免费看| 欧美另类亚洲清纯唯美| 久久久精品区二区三区| 成人免费观看视频高清| 亚洲综合色网址| 免费日韩欧美在线观看| 91成年电影在线观看| 精品国产乱子伦一区二区三区 | 亚洲精品av麻豆狂野| 久久亚洲精品不卡| 亚洲国产av影院在线观看| 天堂俺去俺来也www色官网| 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 久久精品国产a三级三级三级| 精品久久蜜臀av无| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 国产在线观看jvid| 精品欧美一区二区三区在线| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 国产精品一区二区在线不卡| 宅男免费午夜| 日日爽夜夜爽网站| 日韩,欧美,国产一区二区三区| 丰满迷人的少妇在线观看| 性高湖久久久久久久久免费观看| 美女福利国产在线| 国产亚洲精品久久久久5区| 咕卡用的链子| 亚洲一区二区三区欧美精品| 亚洲五月色婷婷综合| 国产福利在线免费观看视频| 亚洲精品中文字幕在线视频| 波多野结衣一区麻豆| 国产野战对白在线观看| 国产97色在线日韩免费| 国产免费av片在线观看野外av| 成年女人毛片免费观看观看9 | 男女床上黄色一级片免费看| av天堂久久9| 蜜桃在线观看..| 午夜久久久在线观看| 美女高潮喷水抽搐中文字幕| 午夜免费鲁丝| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 电影成人av| 亚洲专区国产一区二区| bbb黄色大片| 亚洲成人免费电影在线观看| 午夜老司机福利片| 精品亚洲成a人片在线观看| 国产精品欧美亚洲77777| 男女无遮挡免费网站观看| 黄色a级毛片大全视频| 精品少妇黑人巨大在线播放| 黑人欧美特级aaaaaa片| 日韩欧美免费精品| 欧美 亚洲 国产 日韩一| 这个男人来自地球电影免费观看| 亚洲成人免费电影在线观看| 国产一区二区在线观看av| 成年av动漫网址| 亚洲avbb在线观看| 久久中文看片网| 久久精品国产综合久久久| 亚洲九九香蕉| 丝袜美足系列| 亚洲av国产av综合av卡| 国产精品一区二区精品视频观看| 成人黄色视频免费在线看| 老汉色∧v一级毛片| 爱豆传媒免费全集在线观看| 美女午夜性视频免费| 亚洲精品久久午夜乱码| www.av在线官网国产| 国产老妇伦熟女老妇高清| 久久99一区二区三区| a 毛片基地| 香蕉国产在线看| 免费黄频网站在线观看国产| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 国精品久久久久久国模美| 亚洲一码二码三码区别大吗| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 99精品久久久久人妻精品| 久久狼人影院| 男女高潮啪啪啪动态图| 老司机影院毛片| 国产成+人综合+亚洲专区| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 精品欧美一区二区三区在线| 午夜福利乱码中文字幕| 国产成人a∨麻豆精品| 久久女婷五月综合色啪小说| 99国产精品99久久久久| 少妇裸体淫交视频免费看高清 | 国产一区二区三区av在线| 国产亚洲av片在线观看秒播厂| 中文字幕最新亚洲高清| 精品乱码久久久久久99久播| 老司机深夜福利视频在线观看 | 亚洲熟女毛片儿| 日韩大片免费观看网站| 国产主播在线观看一区二区| 99国产精品99久久久久| 中文字幕另类日韩欧美亚洲嫩草| 婷婷成人精品国产| 国产麻豆69| 亚洲第一青青草原| 精品少妇久久久久久888优播| 国产成人精品无人区| av免费在线观看网站| 国产成人av教育| 国产亚洲精品第一综合不卡| 国产成人av激情在线播放| 国产精品九九99| 久久久久国产精品人妻一区二区| 国产黄频视频在线观看| 波多野结衣av一区二区av| 午夜久久久在线观看| 一个人免费在线观看的高清视频 | 亚洲国产精品成人久久小说| 日本av免费视频播放| 亚洲全国av大片| 欧美少妇被猛烈插入视频| 高清视频免费观看一区二区| 老司机深夜福利视频在线观看 | 亚洲一区中文字幕在线| 日韩大码丰满熟妇| 久久久久国产精品人妻一区二区| 最新在线观看一区二区三区| 黄片小视频在线播放| 免费在线观看日本一区| 日韩三级视频一区二区三区| 丰满少妇做爰视频| 国产av又大| 乱人伦中国视频| 91老司机精品| 久久女婷五月综合色啪小说| 丰满饥渴人妻一区二区三| 女警被强在线播放| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 电影成人av| 999精品在线视频| svipshipincom国产片| 国产欧美日韩一区二区三 | 99国产精品一区二区三区| 久9热在线精品视频| 中文字幕制服av| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 精品熟女少妇八av免费久了| 亚洲精品国产av蜜桃| 亚洲精品久久久久久婷婷小说| 老熟妇乱子伦视频在线观看 | 亚洲国产欧美一区二区综合| 国产日韩欧美视频二区| 亚洲av日韩在线播放| 欧美日韩av久久| 国产成人精品无人区| 岛国在线观看网站| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜制服|