• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of Properties of GaAs-based Dilute Nitrides by Beryllium Doping

    2017-08-02 01:37:31HUODayunSHIZhenwuXUChaoDENGChangweiCHENChenCHENLinsenWANGWenxinPENGChangsi
    發(fā)光學(xué)報(bào) 2017年8期
    關(guān)鍵詞:實(shí)驗(yàn)室

    HUO Da-yun, SHI Zhen-wu, XU Chao, DENG Chang-wei, CHEN Chen, CHEN Lin-sen, WANG Wen-xin, PENG Chang-si*

    (1. School of Optoelectronics Information Science and Engineering, Collaborative Innovation Center of Suzhou Nano Scienceand Technology, Soochow University, Suzhou 215006, China; 2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies ofEducation Ministry of China, Soochow University, Suzhou 215006, China; 3. Beijing National Laboratory of Condensed Matter, Institue of Physics, Chinese Academy of Sciences, Beijing 100190, China)*Corresponding Author, E-mail: changsipeng@suda.edu.cn

    Improvement of Properties of GaAs-based Dilute Nitrides by Beryllium Doping

    HUO Da-yun1,2, SHI Zhen-wu1,2, XU Chao1,2, DENG Chang-wei1,2, CHEN Chen1,2, CHEN Lin-sen1,2, WANG Wen-xin3, PENG Chang-si1,2*

    (1.SchoolofOptoelectronicsInformationScienceandEngineering,CollaborativeInnovationCenterofSuzhouNanoScienceandTechnology,SoochowUniversity,Suzhou215006,China; 2.KeyLabofAdvancedOpticalManufacturingTechnologiesofJiangsuProvince,KeyLabofModernOpticalTechnologiesofEducationMinistryofChina,SoochowUniversity,Suzhou215006,China; 3.BeijingNationalLaboratoryofCondensedMatter,InstitueofPhysics,ChineseAcademyofSciences,Beijing100190,China)
    *CorrespondingAuthor,E-mail:changsipeng@suda.edu.cn

    Heavily doping beryllium in the InGaAsN/GaAs quantum well (QW) can improve the optical properties significantly, while the emission wavelength is red-shifted. The X-ray diffraction (XRD) rocking curves provide clear-cut evidence that the doping of Be suppresses the strain relaxation in InGaAsN(Be)/GaAs QW during thermal annealing. An obvious XRD rocking curve peak shift of no-Be QW diffraction towards GaAs substrate peak before and after annealing was observed, while the shift for the Be-doped QW was much smaller than undoped QW.

    dilute nitride; molecular beam epitaxy; quantum well; strain relaxation; X-ray diffraction

    1 Introduction

    Due to the rapid development of the internet communication, the bandwidth of the metal cable communication is much less than the requirement of the application. Optical fiber telecommunication is dominating the market, especially in the 1.3m and 1.55m spectral region due to the minimum light absorption in the fiber. InP-based technology is dominating the optic telecommunication in those spectral region because it is much easier for InP-based materials to emit photons with wavelength beyond 1.3m than GaAs[1]. Compare to InP-based technology, GaAs shows advantages over InP: (1) low-cost substrate; (2) a high refractive index difference and almost lattice matching enabling Al(Ga)As/GaAs distributed Brag reflecting mirrors can be epitaxially grown together with active region; (3) GaAs has high thermal stability for lasers. A small amount of substitutional nitrogen atoms in the lattice of InGaAs induce a large difference in electronegativity and in atom size between nitrogen and arsenic leads to a reduction of the energy bandgap of dilute nitride (DN) InGaAsN grown on GaAs substrates[2-5]. The electronic structure can maintain strong carrier confinement[6-8]. Lattice matching to GaAs makes pseudomorphic InGaAsN a promising semiconductor for cost-effective GaAs-based optoelectronic applications in the 1.0-1.3m spectral region[9-12]. At present, DNs were even used to suppress the surface-related nonradiative recombination centers to improve surface quality of the Ⅲ-Ⅴ nanowires[13]. However, the solubility of N in the DNs is quite limited. Nitrogen atom composition is low and the telecommunication in the 1.55m spectral region is hard to be realized by DNs InGaAsN[1]. Many efforts have been tried to push the emission to long wavelength or high emission efficiency. Besides insert strain compensation structures in the active region[14-15], incorporating another element such as, antimony, bismuth, into the (In)-GaAsN materials successfully moved the emission wavelength to 1.55m range[16-18].

    Doping DNs was studied with both first-principle calculations[19]and experiments with dopants such as silicon[20]. In this paper, we reported the doping of beryllium (Be) in the DN InGaAsN materials. Normally, in Ⅲ-Ⅴ materials, Be acts as p-type dopant and this kind of doping in the active region is forbidden to avoid the point defects. While, in our research, when the Be composition in the active region of the DN materials reached to 1019cm-3level, it significantly improved both the photoluminescence (PL) and stability of quantum well (QW) structures.

    2 Experiments

    The samples were grown by molecular beam epitaxy (MBE) on n-type epiready GaAs (001) substrates. Arsenic was produced by a thermal cracker. Atomic nitrogen was provided by a radio frequency nitrogen plasma cell. Ga, In and Be were produced by thermal cells.

    The samples were simple single QW structures: the temperature of both surface oxides evaporation and 100 nm GaAs buffer layer growth was 580 ℃. Then, the substrate temperature was ramped down to 460 ℃ for InGaAsN(Be) QW layer growth. In the QW layer, the indium and nitrogen composition were 35% and 1% respectively. The nitrogen composition was calibrated by X-ray diffraction (XRD, by simulation software accompanied with Bede D1 system by Bede Instruments) with GaAs/GaAsN (20 nm)/GaAs (001) QW grown at the same growth rate of GaAsN as InGaAsN(Be) and the same nitrogen plasma parameters. The indium composition was calibrated by XRD with 5 nm of single QW of GaAs/InGaAs/GaAs (001) grown at the same growth rate of InGaAs as InGaAsN(Be). After 6 nm (samples named “NQW-no-Be” and “NQW-Be” for without and with Be doping, respectively) or 6.5 nm (samples named “WQW-no-Be” and “WQW-Be” for without and with Be doping, respectively) of InGaAsN(Be) QW was grown, the substrate was ramped up to 580 ℃ for 100 nm GaAs cap layer deposition. All the other growth parameters were the same, except: (1) No Be doping in the QWs of samples “NQW-no-Be” and “WQW-no-Be”, while ~11019cm-3of Be was doped in the QWs of samples “NQW-Be” and “WQW-Be”. (2) QW thickness was 6 nm for the NQW-series: “NQW-no-Be” and “NQW-Be”, which were avoid strain relaxation during thermal annealing treatment to get good optical properties, while, QW thickness of 6.5 nm for the WQW-series. “WQW-no-Be” and “WQW-Be”, which were used to increase the strain relaxation during thermal annealing treatment and get obvious different results of XRD evaluation before and after annealing. Here, the maximum incorporating capability of Be was ~1×1019cm-3. To suppress the diffusion of Be outside of the QW, one more sample called “NQW-Be1” was grown with Be doping thickness of 10 nm, and all the other growth parameters were exactly the same as “NQW-Be”. In “NQW-Be1”, out of both sides of QW, 2 nm more thickness of GaAs barriers was doped with Be. Tab.1 shows the detail of the growth parameters.

    Tab.1 Structures and growth parameters

    H-thickness,TG-growth temperature, SUB-substrate, InGaAsN-In0.35Ga0.65As0.99N0.01

    532 nm Nd-YAG CW laser was used for PL light source. The PL spectra were measured at room temperature. Rapid thermal annealing (RTA) was used for sample annealing under N2protection atmosphere. The samples under the RTA treatment were sandwiched by GaAs wafers to avoid the surface damage by arsenic evaporating from the sample surface[21]. XRD rocking curves inω-2θgeometry were measured by using a double-crystal diffractometer and Cu Kα radiation.

    3 Results and Discussion

    Fig.1 shows the effects of annealing on integrated PL intensities for the QWs with and without Be dopant. The wavelengths of samples of “NQW-Be (RTA)”, “NQW-no-Be (RTA)”, “NQW-Be (as-grown)”, and “NQW-no-Be (as-grown)” were 1 251, 1 228, 1 315, 1 267 nm, respectively. After 50 min of annealing, the PL wavelength of the sample “NQW-Be (RTA)” was longer than that of “NQW-no-Be (RTA)”. The relative peak intensities were 2.57, 0.24, 0.13, and 0.04, respectively. For the as-grown case, the Be doping increased the PL intensity about 3 times, while for 50 min of annealing at 700 ℃, the Be doping increased the PL intensity more than 10 times.

    Fig.1 PL spectra of the NQW-series for as-grown and 50 min of RTA at 700 ℃

    The lattice structure change during the RTA was evaluated by XRD. The XRD (004) rocking curves of samples “NQW-no-Be” and “NQW-Be” in Fig.2 revealed that the QW peak moves closer to the GaAs substrate peak upon annealing. Annealing introduced larger lattice strain relaxation in QWs without Be-dopant than with Be-dopant due to the high strain inside the QWs. For the as-grown cases, the XRD rocking curves of both samples “NQW-no-Be” and “NQW-Be” fitted exactly each other indicates that the Be dopant didn’t affect the lattice structure during the growth.

    Fig.2 XRD (004) rocking curves for NQW-series before and after 64 s of RTA at 800 ℃ and the strain relaxation simulations (white solid lines) for these curves. For the as-grown cases, the XRD rocking curves of both samples “NQW-no-Be” and “NQW-Be” fitted exactly each other so that only that of the sample “NQW-no-Be” is shown in this figure.

    According to the significant improvement of the optical properties and strain relaxation suppression by Be doping, we suggest the following possible physics models: (1) Be doping passivated the N-related points defects; (2) Be doping relaxed the local strain in the InGaAsN(Be) layer.

    In previous study[22], the nitrogen related point defects density in DN grown by MBE was reported around 1019cm-3. The Be composition here was also around 1019cm-3. Before thermal annealing, most of the Be atoms were at the interstitial sites of the InGaAsN lattices as well as the N-related point defects due to high composition of both nitrogen and beryllium and low growth temperature. Some of the Be atoms bound with interstitial N atoms[23]. Therefore, Be atoms passivated the N-related point defects. This induces that the PL intensity of the QW with Be (“NQW-Be”) was higher than that without Be (“NQW-no-Be”).

    There is huge compress strain in the InGaAsN/GaAs QW. The indium atom is much bigger than gallium and induces compress strain in the InGa(N)/GaAs heterostructures. During the thermal annealing of the sample “NQW-no-Be”, the strain in the InGaAsN layer can be easily relaxed by inducing large number of interface mismatch dislocations which act as large number of nonradiative centers. As for the Be-doping samples, Be atoms bound with interstitial N atoms were activated to the substitutional sites and relaxed the local strain instead of inducing lattice dislocation. From Fig.3, the PL of the sample “NQW-no-Be” was decreased rapidly after 65 s of RTA indicates that the compress strain in this sample was relaxed and dislocations were induced. While the PL of the sample “NQW-Be” decreased slowly after 255 s of annealing. This implies that large number of nonradiative centers were removed and the local strain was relaxed by the Be atoms without dislocation induction before 255 s of annealing. Be atoms bound with interstitial N atoms were activated respectively to both group Ⅲ and Ⅴ sites of the InGaAsN lattices to relax the huge local strain[23]because both Be and N atoms are much smaller than In, Ga and As atoms.

    The Be composition in the sample “NQW-Be” was limited due to the limited solubility of Be during growth. Due to the Be composition difference, some of the Be near the interface of InGaAsN(Be)/GaAs was diffused out of the QW. To suppress such diffusion, in the sample “NQW-Be1”, the difference of Be composition at the interface of InGaAsN(Be)/GaAs was removed by increasing 2 nm more Be-doping in GaAs layers at the interfaces of InGaAsN-(Be)/GaAs in both sides of the QW (Fig.3). From Fig.3, the PL intensity of the sample “NQW-Be1” was higher than both “NQW-Be” and “NQW-no-Be”. From the PL dependence of the RTA time that the PL intensity of “NQW-Be1” increased rapidly before 255 s of RTA and turned to saturated after that. This indicates that the Be-doping near the interfaces of the InGaAsN(Be)/GaAs QW successfully suppressed the Be diffusing out of the QW and thus improved the optical properties.

    Fig.3 PL peak intensity dependence of RTA time at 700 ℃ for samples NQW-No-Be, NQW-Be, and NQW-Be1. Insert shows the Be profiles of the as-grown samples.

    To enlarge the effect of Be-doping in the InGaAsN/GaAs QW, two factors were changed: (1) A set of InGaAsN(Be)/GaAs QW samples were grown with thicker (6.5 nm) QW layer (samples “WQW-no-Be” and “WQW-Be”) which indicates larger strain was in the QW and the QW relaxed more easily during the RTA, than those samples used above. (2) The RTA temperature was increased from 700 to 800 ℃. The structure and PL change were much more obvious than the thinner QW samples. It was observed that, even for the Be-doped QW, the XRD rocking curve peak of the QW moved closer to the GaAs main peak (Fig.4) than 6 nm of QWs. The XRD rocking curves showed strain relaxation of the QW without Be was much more than that of the Be-doped QW. For the as-grown cases, the XRD rocking curves of both samples with and without Be were fitted each other as the samples “NQW-no-Be” and “NQW-Be” did. This indicated that the strain was not relaxed for the as-grown cases when the thickness of the QWs increased from 6.0 to 6.5 nm. The PL from the QW without Be (sample “WQW-no-Be”) reached its maximum in a few seconds time of annealing at 800 ℃ and then decreased quickly and saturated at a level lower than the as-grown case. While, for sample “WQW-Be”, we observed that the PL from the Be-doped QW reached its maximum also in a few seconds but then the decrease rate was smaller than that without Be and increased again after 100 s of annealing and this increasing continued without a saturation even after 900 s of annealing. Fig.5 shows the PL spectra of the two samples (“WQW-no-Be” and “WQW-Be”) after 900 s of annealing at 800 ℃. The wavelengths of the samples “WQW-no-Be” and “WQW-Be” were 1 131 nm and 1 154 nm, respectively. The PL peak intensity of “WQW-Be” was about 80 times higher than “WQW-no-Be” after annealing.

    Fig.4 XRD (004) rocking curves for the WQW-series before (black solid lines) and after (red solid lines) 900 s of RTA at 800 ℃ without Be (sample “WQW-Be”) and with Be (sample “WQW-no-Be”). Notice a large shift of non-Be QW diffraction towards the GaAs substrate peak, as opposed to a small shift for Be-doped QW.

    Fig.5 PL spectra of the WQW-series for 900 s of RTA at 800 ℃

    4 Conclusion

    There are large number of defects in the dilute nitride materials due to low growth temperature and N-plasma radiation. Large strain is required to produce good carrier confinement in the QWs. The doping of Be in the dilute nitride InGaAsN/GaAs QW passivates the point defects and improves the optical properties significantly. The doping of Be also relaxes the local strain without inducing mismatch dislocation and suppresses the dislocations during thermal treatment. Be-doping near the interfaces of the InGaAsN(Be)/GaAs QW successfully suppressed the Be diffusing out of the QW and thus improved the optical properties.

    [1] HARRIS J S JR. GaInNAs long-wavelength lasers: progress and challenges [J].Semicond.Sci.Technol., 2002, 17(8):880-891.

    [2] KONDOW M, UOMI K, NIWA A,etal.. GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance [J].Jpn.J.Appl.Phys., 1996, 35(2B):1273-1275.

    [3] LAAKSONEN K, KOMSA H P, AROLA E,etal.. Computational study of GaAs1-xNxand GaN1-yAsyalloys and arsenic impurities in GaN [J].J.Phys.Condens.Matter, 2006, 18(44):10097-10114.

    [5] SCHIRES K, AL SEYAB R, HURTADO A,etal.. Optically-pumped dilute nitride spin-VCSEL [J].Opt.Express, 2012, 20(4):3550-3555.

    [6] CARRON R, FEKETE D, GALLO P,etal.. Dilute nitride InGaAsN/GaAs V-groove quantum wires emitting at 1.3 μm wavelength at room temperature [J].Appl.Phys.Lett., 2011, 99(10):101107-1-3.

    [7] KLANGTAKAI P, SANORPIM S, ONABE K. Optical study of GaAsN/GaAs and InGaAsN/GaAs T-shaped quantum wires grown by MOVPE [J].J.Cryst.Growth, 2013, 370:200-203.

    [8] GLADYSIEWICZ M, KUDRAWIEC R, WARTAK M S. Electronic band structure and material gain of dilute nitride quantum wells grown on InP substrate [J].IEEEJ.Quant.Electron., 2015, 51(5):7100212.

    [9] PENG C S, LAINE N, KONTTINEN J,etal.. High-performance singlemode InGaNAs/GaAs laser [J].Electron.Lett., 2004, 40(10):604-605.

    [10] ZHAO H, XU Y Q, NI H Q,etal.. Application of rapid thermal annealing on 1.3-1.55 μm GaInNAs(Sb) lasers grown by molecular beam epitaxy [J].J.Cryst.Growth, 2007, 301-302:979-983.

    [11] DIMROTH F, GRAVE M, BEUTEL P,etal.. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency [J].Prog.Photovolt.Res.Appl., 2014, 22(3):277-282.

    [12] CHEN S L, JANSSON M, STEHR J E,etal.. Dilute nitride nanowire lasers based on a GaAs/GaNAs core/shell structure [J].NanoLett., 2017, 17(3):1775-1781.

    [13] LANGER F, PERL S, H?FLING S,etal.. Graded band gap GaInNAs solar cells [J].Appl.Phys.Lett., 2015, 106(23):233902-1-5.

    [14] PENG C S, PAVELESCU E M, JOUHTI T,etal.. Suppression of interfacial atomic diffusion in InGaNAs/GaAs heterostructures grown by molecular-beam epitaxy [J].Appl.Phys.Lett., 2002, 80(25):4720-4722.

    [15] TANSU N, QUANDT A, KANSKAR M,etal.. High-performance and high-temperature continuous-wave-operation 1 300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy [J].Appl.Phys.Lett., 2003, 83(1):18-20.

    [16] BANK S R, YUEN H B, WISTEY M A,etal.. Effects of growth temperature on the structural and optical properties of 1.55 μm GaInNAsSb quantum wells grown on GaAs [J].Appl.Phys.Lett., 2005, 87(2):021908-1-3.

    [17] FAN W J, BOSE S, ZHANG D H. Electronic bandstructure and optical gain of lattice matched Ⅲ-Ⅴ dilute nitride bismide quantum wells for 1.55 μm optical communication systems [J].J.Appl.Phys., 2016, 120(9):093111-1-9.

    [18] KASANABOINA P K, AHMAD E, LI J,etal.. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy [J].Appl.Phys.Lett., 2015, 107(10):103111-1-3.

    [19] JANOTTI A, REUNCHAN P, LIMPIJUMNONG S,etal.. Mutual passivation of electrically active and isovalent impurities in dilute nitrides [J].Phys.Rev.Lett., 2008, 100(4):045505-1-4.

    [20] YU K M, WALUKIEWICZ W, WU J,etal.. Mutual passivation of electrically active and isovalent impurities [J].Nat.Mater., 2002, 1(3):185-189.

    [21] PAKARINEN J, PENG C S, PUUSTINEN J,etal.. Postgrowth annealing of GaInAs/GaAs and GaInAsN/GaAs quantum well samples placed in a proximity GaAs box: a simple method to improve the crystalline quality [J].Appl.Phys.Lett., 2008, 92(23):232105-1-4.

    [22] PENG C S, LI W, JOUHTI T,etal.. A study and control of lattice sites of N and In/Ga interdiffusion in dilute nitride quantum wells [J].J.Cryst.Growth, 2003, 251(1-4):378-382.

    [23] KOMSA H P, AROLA E, PAKARINEN J,etal.. Beryllium doping of GaAs and GaAsN studied from first principles [J].Phys.Rev. B, 2009, 79(11):115208-1-9.

    霍大云(1988-),男,安徽當(dāng)涂人,博士生研究生,2012年于淮北師范大學(xué)獲得學(xué)士學(xué)位,主要從事半導(dǎo)體量子點(diǎn)的研究。

    E-mail: huodayun@126.com彭長(zhǎng)四(1966-),男,湖南漣源人,博士,教授,1998年于中科院北京物理所獲得博士學(xué)位,2009年于芬蘭坦佩雷科技大學(xué)獲得博士學(xué)位(在職),主要從事半導(dǎo)體量子點(diǎn)、納米仿生和太陽(yáng)能電池等方面的研究。

    E-mail: changsipeng@suda.edu.cn

    2017-01-19;

    2017-03-13

    國(guó)家自然科學(xué)基金 (11504251,51302179); 江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程; 科技部國(guó)際合作項(xiàng)目(2013DFG12210); 江蘇省高校自然科學(xué)研究重大項(xiàng)目(12KJA140001); 江蘇省普通高校研究生科研創(chuàng)新計(jì)劃(KYLX15_1252)資助項(xiàng)目 Supported by National Natural Science Foundation of China (91323303, 11504251); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); International Cooperation Project by MOST (2014DFG12600); Natural Science Research Project of Jiangsu Higher Education (13KJA510006); Research Plan of Graduate Students in Jiangsu Province (KYLX15_1252)

    Be摻雜對(duì)InGaAsN/GaAs量子阱性能的提高

    霍大云1,2, 石震武1,2, 徐 超1,2, 鄧長(zhǎng)威1,2, 陳 晨1,2,陳林森1,2, 王文新3, 彭長(zhǎng)四1,2*

    (1. 蘇州大學(xué) 光電信息科學(xué)與工程學(xué)院, 蘇州納米科技協(xié)同創(chuàng)新中心, 江蘇 蘇州 215006; 2. 蘇州大學(xué) 江蘇省先進(jìn)光學(xué)技術(shù)重點(diǎn)實(shí)驗(yàn)室, 教育部現(xiàn)代光學(xué)技術(shù)重點(diǎn)實(shí)驗(yàn)室, 江蘇 蘇州 215006; 3. 中國(guó)科學(xué)院物理研究所 北京凝聚態(tài)物理國(guó)家實(shí)驗(yàn)室, 北京 100190)

    InGaAsN/GaAs量子阱中進(jìn)行鈹(Be)元素重?fù)诫s能顯著提高其光學(xué)性質(zhì),并且發(fā)光波長(zhǎng)發(fā)生了紅移。X射線衍射搖擺曲線清楚地證實(shí)了鈹摻雜抑制了InGaAsN(Be)/GaAs量子阱在退火過(guò)程中的應(yīng)力釋放。對(duì)比退火前,退火后的沒(méi)有進(jìn)行鈹摻雜的量子阱樣品的量子阱的X射線搖擺曲線衍射峰明顯向GaAs襯底峰偏移;而對(duì)于摻鈹?shù)牧孔于鍢悠范?,這樣的偏移要小很多。

    稀氮化物; 分子束外延; 量子阱; 應(yīng)變弛豫; X射線衍射

    1000-7032(2017)08-1056-07

    O484.4 Document code: A

    10.3788/fgxb20173808.1056

    猜你喜歡
    實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    日本五十路高清| 久久热在线av| av又黄又爽大尺度在线免费看| 国产男人的电影天堂91| 亚洲欧洲日产国产| 国产精品欧美亚洲77777| 国产成人91sexporn| 日本一区二区免费在线视频| 18禁黄网站禁片午夜丰满| 后天国语完整版免费观看| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av高清一级| 亚洲九九香蕉| 你懂的网址亚洲精品在线观看| 久久中文字幕一级| 黑丝袜美女国产一区| 90打野战视频偷拍视频| 欧美日韩综合久久久久久| 日本a在线网址| 大香蕉久久成人网| 精品第一国产精品| 一区二区三区激情视频| 1024香蕉在线观看| 国产色视频综合| 久久久久精品国产欧美久久久 | 在线av久久热| 国精品久久久久久国模美| 热re99久久精品国产66热6| 两个人免费观看高清视频| 久久99一区二区三区| 成人国产av品久久久| 国产精品秋霞免费鲁丝片| 一级毛片女人18水好多 | 久久这里只有精品19| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 五月开心婷婷网| 麻豆国产av国片精品| 国产日韩一区二区三区精品不卡| 亚洲精品国产区一区二| 成年人免费黄色播放视频| 日本av免费视频播放| 国产日韩一区二区三区精品不卡| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 在线观看免费日韩欧美大片| av国产精品久久久久影院| 婷婷色av中文字幕| 欧美激情极品国产一区二区三区| 女警被强在线播放| 一级毛片我不卡| 十八禁高潮呻吟视频| 成人免费观看视频高清| 操美女的视频在线观看| 久久久久网色| 国产不卡av网站在线观看| 一级,二级,三级黄色视频| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 免费高清在线观看日韩| 首页视频小说图片口味搜索 | 亚洲精品日韩在线中文字幕| 我的亚洲天堂| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 日日夜夜操网爽| 性色av一级| 欧美黑人精品巨大| 久久青草综合色| 99热全是精品| 欧美激情极品国产一区二区三区| 操出白浆在线播放| 中文字幕精品免费在线观看视频| 日韩欧美一区视频在线观看| 男女下面插进去视频免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 岛国毛片在线播放| 狂野欧美激情性bbbbbb| 成年人午夜在线观看视频| 国产视频一区二区在线看| 亚洲熟女毛片儿| 午夜精品国产一区二区电影| 亚洲国产精品国产精品| 无遮挡黄片免费观看| 久久狼人影院| 深夜精品福利| 成人亚洲精品一区在线观看| 欧美精品一区二区大全| 久9热在线精品视频| 免费久久久久久久精品成人欧美视频| 欧美乱码精品一区二区三区| 91成人精品电影| 你懂的网址亚洲精品在线观看| 777米奇影视久久| 男人爽女人下面视频在线观看| 精品国产一区二区三区四区第35| 亚洲av国产av综合av卡| 久久青草综合色| 久久精品国产a三级三级三级| 黑丝袜美女国产一区| 久久久久视频综合| 侵犯人妻中文字幕一二三四区| 亚洲国产精品999| 亚洲天堂av无毛| 久久精品久久精品一区二区三区| 日本91视频免费播放| 精品免费久久久久久久清纯 | 日韩 欧美 亚洲 中文字幕| 久久免费观看电影| 日日夜夜操网爽| 好男人电影高清在线观看| 亚洲人成77777在线视频| 女人精品久久久久毛片| av不卡在线播放| avwww免费| 免费人妻精品一区二区三区视频| 国产成人精品久久二区二区免费| 午夜福利一区二区在线看| 最新的欧美精品一区二区| 精品一区二区三区av网在线观看 | 精品少妇内射三级| 国产免费又黄又爽又色| 中国美女看黄片| 欧美日韩视频高清一区二区三区二| 18禁观看日本| 国产福利在线免费观看视频| xxxhd国产人妻xxx| 无遮挡黄片免费观看| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 国产精品 国内视频| 黄色a级毛片大全视频| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| av天堂久久9| 老司机靠b影院| 免费高清在线观看日韩| 夫妻午夜视频| 成人国产一区最新在线观看 | 国产日韩欧美视频二区| 欧美激情高清一区二区三区| 久久影院123| 好男人电影高清在线观看| 性色av乱码一区二区三区2| 黑人猛操日本美女一级片| 国产精品一二三区在线看| videosex国产| 免费av中文字幕在线| 国产无遮挡羞羞视频在线观看| 日韩熟女老妇一区二区性免费视频| 十分钟在线观看高清视频www| 手机成人av网站| 欧美黄色片欧美黄色片| 国产97色在线日韩免费| 韩国高清视频一区二区三区| 国产成人精品久久久久久| 欧美大码av| 国产欧美日韩一区二区三区在线| 交换朋友夫妻互换小说| 亚洲欧美日韩高清在线视频 | 中文字幕制服av| 亚洲九九香蕉| 亚洲精品久久午夜乱码| 久久精品aⅴ一区二区三区四区| 91国产中文字幕| 国产成人a∨麻豆精品| 精品一区二区三卡| 午夜av观看不卡| 9191精品国产免费久久| 成人午夜精彩视频在线观看| 两人在一起打扑克的视频| 狂野欧美激情性bbbbbb| 丝袜美腿诱惑在线| 亚洲情色 制服丝袜| 亚洲伊人色综图| 久久久久久久久久久久大奶| 精品少妇内射三级| 91麻豆精品激情在线观看国产 | 亚洲av片天天在线观看| 国产精品国产av在线观看| 美女主播在线视频| 国产精品免费视频内射| 亚洲九九香蕉| 两个人看的免费小视频| 免费黄频网站在线观看国产| 亚洲熟女精品中文字幕| 欧美日韩精品网址| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 悠悠久久av| 狠狠婷婷综合久久久久久88av| 欧美国产精品一级二级三级| 午夜福利视频在线观看免费| 两性夫妻黄色片| 亚洲精品国产av成人精品| 国产精品国产av在线观看| 国产麻豆69| 一级黄色大片毛片| videosex国产| 日本av手机在线免费观看| 国产亚洲av片在线观看秒播厂| 男女边摸边吃奶| 国产免费视频播放在线视频| 久久天堂一区二区三区四区| 少妇人妻久久综合中文| 亚洲精品国产区一区二| 1024视频免费在线观看| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 老司机亚洲免费影院| 精品国产一区二区三区四区第35| 午夜福利免费观看在线| 亚洲人成电影观看| 国产成人欧美在线观看 | 精品人妻1区二区| 天天添夜夜摸| 久久这里只有精品19| 久久精品国产综合久久久| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 成人国语在线视频| 五月天丁香电影| avwww免费| 最黄视频免费看| 亚洲国产精品成人久久小说| 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 精品视频人人做人人爽| 亚洲成国产人片在线观看| 精品国产超薄肉色丝袜足j| 亚洲七黄色美女视频| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产 | 无限看片的www在线观看| 午夜影院在线不卡| 国产免费福利视频在线观看| 丝袜美足系列| 国产在线免费精品| 亚洲国产精品一区三区| 国产精品久久久人人做人人爽| 亚洲国产av影院在线观看| 精品少妇一区二区三区视频日本电影| 人成视频在线观看免费观看| av国产久精品久网站免费入址| 亚洲男人天堂网一区| 午夜激情久久久久久久| videos熟女内射| 两性夫妻黄色片| 亚洲国产精品成人久久小说| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 男人添女人高潮全过程视频| 国产成人免费观看mmmm| 18禁观看日本| 99香蕉大伊视频| 久久精品亚洲熟妇少妇任你| 少妇被粗大的猛进出69影院| 日韩av免费高清视频| 99久久人妻综合| 制服诱惑二区| 麻豆乱淫一区二区| 1024视频免费在线观看| 老司机在亚洲福利影院| 亚洲欧美精品自产自拍| 一级毛片我不卡| 欧美老熟妇乱子伦牲交| 少妇人妻久久综合中文| 好男人电影高清在线观看| 国产成人影院久久av| 久久精品亚洲熟妇少妇任你| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| 国产精品国产av在线观看| xxx大片免费视频| 国产爽快片一区二区三区| 天天操日日干夜夜撸| 人人澡人人妻人| 一区福利在线观看| av又黄又爽大尺度在线免费看| 91字幕亚洲| 只有这里有精品99| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区黑人| 国语对白做爰xxxⅹ性视频网站| 国产在线免费精品| 天堂8中文在线网| 欧美黑人精品巨大| www.精华液| 午夜影院在线不卡| 日韩中文字幕视频在线看片| 国产野战对白在线观看| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 黄色 视频免费看| 亚洲激情五月婷婷啪啪| 一二三四在线观看免费中文在| 国产成人精品久久久久久| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 尾随美女入室| 亚洲av电影在线观看一区二区三区| 国产真人三级小视频在线观看| 两人在一起打扑克的视频| 亚洲 国产 在线| 国产精品一国产av| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 亚洲精品国产av成人精品| 午夜福利在线免费观看网站| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 一级片'在线观看视频| av在线app专区| 精品国产一区二区久久| 亚洲伊人色综图| 18禁黄网站禁片午夜丰满| 国产成人欧美| 亚洲天堂av无毛| 性色av一级| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av高清一级| 最近手机中文字幕大全| 亚洲九九香蕉| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 欧美日韩国产mv在线观看视频| 女性生殖器流出的白浆| 王馨瑶露胸无遮挡在线观看| 色94色欧美一区二区| 免费在线观看日本一区| 久久鲁丝午夜福利片| 精品第一国产精品| 亚洲国产精品999| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀 | 久久中文字幕一级| 免费在线观看视频国产中文字幕亚洲 | 久久鲁丝午夜福利片| 午夜免费鲁丝| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 一区福利在线观看| 久久久久精品国产欧美久久久 | 女性生殖器流出的白浆| 好男人视频免费观看在线| 五月开心婷婷网| 国产成人免费无遮挡视频| 19禁男女啪啪无遮挡网站| 国产99久久九九免费精品| 国产在线视频一区二区| 美女福利国产在线| 精品久久久久久久毛片微露脸 | 亚洲欧美精品综合一区二区三区| 欧美在线一区亚洲| 午夜激情av网站| 一级片免费观看大全| 99久久99久久久精品蜜桃| 国产在线免费精品| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 一区二区三区乱码不卡18| 99精国产麻豆久久婷婷| 99国产精品一区二区三区| 香蕉丝袜av| 国产99久久九九免费精品| avwww免费| 日本色播在线视频| 亚洲国产欧美网| 人妻 亚洲 视频| 99久久精品国产亚洲精品| 午夜激情av网站| 叶爱在线成人免费视频播放| 91老司机精品| 国产精品香港三级国产av潘金莲 | 国语对白做爰xxxⅹ性视频网站| 亚洲第一青青草原| 亚洲天堂av无毛| 老鸭窝网址在线观看| 色网站视频免费| www.精华液| 三上悠亚av全集在线观看| 亚洲av日韩在线播放| 日本av手机在线免费观看| 国产又爽黄色视频| 日韩伦理黄色片| 一级黄片播放器| 人体艺术视频欧美日本| 校园人妻丝袜中文字幕| h视频一区二区三区| 人人妻人人澡人人看| 亚洲熟女毛片儿| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| 可以免费在线观看a视频的电影网站| 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 国产精品久久久久成人av| 亚洲av日韩精品久久久久久密 | 久久人人97超碰香蕉20202| 国产精品国产三级专区第一集| 一本大道久久a久久精品| 丝袜美腿诱惑在线| 老司机在亚洲福利影院| 青草久久国产| 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 日本欧美视频一区| 国产精品 欧美亚洲| kizo精华| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 不卡av一区二区三区| 一级片免费观看大全| 黄网站色视频无遮挡免费观看| 波多野结衣一区麻豆| 999久久久国产精品视频| av片东京热男人的天堂| 日韩视频在线欧美| 久久久久精品国产欧美久久久 | 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 成人黄色视频免费在线看| 纯流量卡能插随身wifi吗| 操美女的视频在线观看| 在线观看免费视频网站a站| 青春草亚洲视频在线观看| 亚洲久久久国产精品| 亚洲中文日韩欧美视频| 天堂中文最新版在线下载| 亚洲欧美精品综合一区二区三区| 波多野结衣一区麻豆| 乱人伦中国视频| 各种免费的搞黄视频| 国产精品香港三级国产av潘金莲 | 免费高清在线观看日韩| 亚洲午夜精品一区,二区,三区| 日韩大码丰满熟妇| 狠狠精品人妻久久久久久综合| 性少妇av在线| 两个人免费观看高清视频| 午夜免费鲁丝| 国产有黄有色有爽视频| 国产黄色视频一区二区在线观看| 后天国语完整版免费观看| 久久人人97超碰香蕉20202| 各种免费的搞黄视频| 赤兔流量卡办理| 国产99久久九九免费精品| 少妇的丰满在线观看| netflix在线观看网站| 免费观看av网站的网址| 丝袜脚勾引网站| 成年人黄色毛片网站| 国产深夜福利视频在线观看| 2018国产大陆天天弄谢| 熟女av电影| 中文字幕高清在线视频| 纵有疾风起免费观看全集完整版| 亚洲三区欧美一区| 一区二区av电影网| h视频一区二区三区| 色视频在线一区二区三区| 久久女婷五月综合色啪小说| a级毛片黄视频| 国产成人影院久久av| 91字幕亚洲| 啦啦啦在线观看免费高清www| 黄片小视频在线播放| 日日夜夜操网爽| 中文字幕另类日韩欧美亚洲嫩草| 麻豆乱淫一区二区| 亚洲国产av影院在线观看| 日韩精品免费视频一区二区三区| 一级毛片女人18水好多 | 一级黄色大片毛片| bbb黄色大片| 国产又爽黄色视频| 我的亚洲天堂| 久久人妻熟女aⅴ| 一边摸一边做爽爽视频免费| 亚洲av成人精品一二三区| 青春草视频在线免费观看| 青青草视频在线视频观看| 大陆偷拍与自拍| 亚洲欧美精品综合一区二区三区| av福利片在线| 日韩精品免费视频一区二区三区| av国产精品久久久久影院| 黄频高清免费视频| 黄网站色视频无遮挡免费观看| 午夜老司机福利片| 午夜福利一区二区在线看| 中文字幕av电影在线播放| 免费女性裸体啪啪无遮挡网站| 亚洲中文字幕日韩| 操美女的视频在线观看| 18禁国产床啪视频网站| 精品久久久精品久久久| 超色免费av| 97在线人人人人妻| 欧美大码av| 大陆偷拍与自拍| 99热全是精品| 女人精品久久久久毛片| 尾随美女入室| 亚洲自偷自拍图片 自拍| 91国产中文字幕| 精品亚洲成国产av| 国产精品一区二区在线不卡| 国产av精品麻豆| 麻豆乱淫一区二区| 女人精品久久久久毛片| 欧美黄色片欧美黄色片| 亚洲自偷自拍图片 自拍| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av蜜桃| 一边亲一边摸免费视频| 美女高潮到喷水免费观看| 下体分泌物呈黄色| 亚洲欧洲国产日韩| 久久亚洲精品不卡| 精品少妇内射三级| 这个男人来自地球电影免费观看| 国产在线一区二区三区精| 伦理电影免费视频| 国产精品av久久久久免费| 建设人人有责人人尽责人人享有的| 国产成人一区二区三区免费视频网站 | 免费观看av网站的网址| 蜜桃国产av成人99| 大片电影免费在线观看免费| 国产精品九九99| 男人爽女人下面视频在线观看| 精品熟女少妇八av免费久了| 久久精品熟女亚洲av麻豆精品| 免费在线观看日本一区| 国产精品久久久久久人妻精品电影 | 黄片小视频在线播放| 99国产精品99久久久久| 国产免费福利视频在线观看| 女人被躁到高潮嗷嗷叫费观| 一级毛片 在线播放| 国产午夜精品一二区理论片| 亚洲国产欧美网| 最新的欧美精品一区二区| 在线观看人妻少妇| 中文精品一卡2卡3卡4更新| 国产又爽黄色视频| 国产精品欧美亚洲77777| avwww免费| 国产片内射在线| 欧美黑人欧美精品刺激| 啦啦啦中文免费视频观看日本| 女人久久www免费人成看片| 亚洲国产欧美网| 性色av乱码一区二区三区2| 老司机在亚洲福利影院| 又大又爽又粗| 丝袜在线中文字幕| 日本wwww免费看| 国产一区有黄有色的免费视频| 国产精品三级大全| 午夜福利,免费看| 久久青草综合色| 99精国产麻豆久久婷婷| 成年人午夜在线观看视频| 超色免费av| 嫩草影视91久久| 婷婷丁香在线五月| 亚洲精品一二三| 黄色毛片三级朝国网站| 欧美激情高清一区二区三区| 一边摸一边抽搐一进一出视频| 婷婷色麻豆天堂久久| 久久久久久久大尺度免费视频| 七月丁香在线播放| 久久精品熟女亚洲av麻豆精品| 久久影院123| 美女高潮到喷水免费观看| 无限看片的www在线观看| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 亚洲av男天堂| 久久鲁丝午夜福利片| 又紧又爽又黄一区二区| 可以免费在线观看a视频的电影网站| 九草在线视频观看| 久久国产精品影院| 日韩中文字幕视频在线看片| 性高湖久久久久久久久免费观看| 亚洲三区欧美一区| 啦啦啦在线观看免费高清www| 人人妻人人澡人人爽人人夜夜| 性色av一级| 日本猛色少妇xxxxx猛交久久| 人体艺术视频欧美日本| 悠悠久久av| 中文字幕最新亚洲高清| 最近最新中文字幕大全免费视频 | 久久久国产一区二区| 99精国产麻豆久久婷婷|