魏 彬, BUCHER I, ATHERTON M, STOLASKI T A
(1.清華大學(xué)摩擦學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 100084;2.西門(mén)子研究院(中國(guó)),北京 100102;3.以色列理工學(xué)院機(jī)械工程學(xué)院,海法,以色列 32000;4.布魯內(nèi)爾大學(xué)工程、設(shè)計(jì)與物理科學(xué)學(xué)院,倫敦,英國(guó) UB8 3PH)
近場(chǎng)超聲懸浮平臺(tái)模態(tài)振型優(yōu)化設(shè)計(jì)及可行性分析
魏 彬1,2, BUCHER I3, ATHERTON M4, STOLASKI T A4
(1.清華大學(xué)摩擦學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 100084;2.西門(mén)子研究院(中國(guó)),北京 100102;3.以色列理工學(xué)院機(jī)械工程學(xué)院,海法,以色列 32000;4.布魯內(nèi)爾大學(xué)工程、設(shè)計(jì)與物理科學(xué)學(xué)院,倫敦,英國(guó) UB8 3PH)
為了避免在傳送過(guò)程中傳送帶與精密元件之間的摩擦損傷,設(shè)計(jì)了一種緊湊型非接觸超聲傳送平臺(tái),對(duì)其可行性進(jìn)行理論研究和實(shí)驗(yàn)驗(yàn)證。通過(guò)ANSYS動(dòng)力學(xué)分析建立對(duì)稱(chēng)模型,模擬傳送平臺(tái)的模態(tài)和傳送平臺(tái)中心點(diǎn)的諧響應(yīng)振型,結(jié)果顯示,不同波數(shù)條件傳送平臺(tái)呈現(xiàn)出純彎曲或混合波驅(qū)動(dòng)狀態(tài)。對(duì)所設(shè)計(jì)的緊湊型傳送平臺(tái)原型進(jìn)行掃頻實(shí)驗(yàn),驗(yàn)證了超聲傳送過(guò)程的可行性以及懸浮頻帶和振型。理論及實(shí)驗(yàn)結(jié)果表明,根據(jù)不同使用條件,需要對(duì)驅(qū)動(dòng)平臺(tái)進(jìn)行模態(tài)及承載能力的優(yōu)化設(shè)計(jì)。研究成果可為超聲懸浮平臺(tái)模態(tài)振型和帶寬的設(shè)計(jì)提供參考。
摩擦學(xué);近場(chǎng)超聲懸浮;諧振;模態(tài)振型;正交波形
為了滿(mǎn)足生物工程、醫(yī)療器械、半導(dǎo)體等行業(yè)對(duì)精密元件清潔度、低功耗以及高穩(wěn)定性生產(chǎn)運(yùn)輸環(huán)境的要求,非接觸式載運(yùn)傳輸平臺(tái)逐漸進(jìn)入精密制造領(lǐng)域。近場(chǎng)超聲懸浮(near field acoustic levitation,簡(jiǎn)稱(chēng)NFAL)是近年來(lái)應(yīng)用于微機(jī)電技術(shù)領(lǐng)域非接觸式支撐與傳輸系統(tǒng)的新技術(shù),相對(duì)于其他懸浮形式,具有清潔無(wú)污染、高精度、系統(tǒng)結(jié)構(gòu)簡(jiǎn)單等優(yōu)點(diǎn)。針對(duì)現(xiàn)有精密制造領(lǐng)域元件傳輸過(guò)程對(duì)精度保持和環(huán)境控制方面的需求,設(shè)計(jì)開(kāi)發(fā)基于NFAL的無(wú)變幅機(jī)構(gòu)超聲傳送平臺(tái)新構(gòu)型,并對(duì)其驅(qū)動(dòng)機(jī)理和推送能力開(kāi)展理論和實(shí)驗(yàn)研究。超聲傳送平臺(tái)可以解決現(xiàn)代制造領(lǐng)域精密元件運(yùn)輸、暫存過(guò)程的精度保持及環(huán)境控制問(wèn)題,具有廣闊的應(yīng)用前景。
超聲懸浮理論起源于流體動(dòng)力潤(rùn)滑理論中的擠壓效應(yīng),最早由GROSS[1]提出,隨后, SALBU[2]提出了墻式擠壓模型,并假設(shè)擠壓過(guò)程類(lèi)似于密閉活塞情況,計(jì)算了擠壓特性和承載力。自由懸浮狀態(tài)擠壓模型最早由BECK等[3]提出, 并通過(guò)數(shù)值差分方法進(jìn)行了求解。隨后KURODA等[4]提升了模型精度和算法的效率。MINIKES等[5-6]將擠壓效應(yīng)和聲懸浮效應(yīng)相結(jié)合,計(jì)算了波數(shù)和振型的關(guān)系。WEI等[7-13]和ALMURSHEDI等[14-15]建立了自由釋放過(guò)程超聲懸浮動(dòng)力學(xué)模型,將差分法和有限元法應(yīng)用于超聲懸浮數(shù)值分析中。研究人員[16-20]也對(duì)超聲懸浮和擠壓模型的結(jié)果開(kāi)展了對(duì)比研究,超聲擠壓膜理論得到了進(jìn)一步發(fā)展。
直角坐標(biāo)系絕熱條件二維Reynolds方程的無(wú)量綱形式為[2]
(1)
可壓縮瞬態(tài)Reynolds方程是二階非線性偏微分方程,不僅得到解析解非常困難,因?yàn)槭撬矐B(tài)方程,所以數(shù)值解也極其耗時(shí)。為了加快求解速度,以實(shí)際情況為基礎(chǔ),對(duì)模型進(jìn)行簡(jiǎn)化。
為了驗(yàn)證擠壓膜的懸浮性能,假設(shè)懸浮表面與支撐表面沒(méi)有橫向的相對(duì)移動(dòng),即u0=0,所以Λ=0。
1)無(wú)限寬擠壓膜模型
(2)
2)軸對(duì)稱(chēng)模型
(3)
3)二維直角坐標(biāo)模型
對(duì)于振源是矩形的激勵(lì),當(dāng)振源的長(zhǎng)度、寬度差別不大時(shí),要采用直角坐標(biāo)系下的二維模型,二維模型計(jì)算復(fù)雜,計(jì)算時(shí)間較長(zhǎng)。二維模型的控制方程無(wú)量綱形式為
(4)
固定懸浮物體的擠壓膜模型的控制方程如下:
1) 膜厚的無(wú)量綱方程
(5)
2) Reynolds方程的無(wú)量綱形式
(6)
邊界條件如下:
在每計(jì)算完一個(gè)周期后需檢查定常周期條件是否得到滿(mǎn)足,除了頻率極低、間隙極大的特殊情況外,在計(jì)算完第1個(gè)周期后,周期邊界條件是不可能得到滿(mǎn)足的。將所得到的結(jié)果作為第2個(gè)周期的初始條件繼續(xù)計(jì)算,當(dāng)周期性誤差小于規(guī)定的判據(jù),就可以結(jié)束計(jì)算而把周期的結(jié)果作為問(wèn)題的解答,最后可以利用無(wú)量綱壓力積分求出無(wú)量綱承載力:
式中f(T)為實(shí)際承載力。
利用二階精度無(wú)條件穩(wěn)定的Crank-Nicholson形式計(jì)算此瞬態(tài)Reynolds方程(見(jiàn)式(3)),通過(guò)Reynolds方程來(lái)求解擠壓膜的靜、動(dòng)態(tài)特性,按照?qǐng)D1所示流程編寫(xiě)程序。
圖1 程序計(jì)算流程圖Fig.1 Program flow chart
所設(shè)計(jì)的NFAL平臺(tái)原型采用底部粘貼壓電陶瓷片的形式,為了產(chǎn)生正交方向的懸浮波形和驅(qū)動(dòng)波形,可以采用多組壓電片交叉分布的形式,采用專(zhuān)業(yè)膠水固定,進(jìn)行去應(yīng)力處理,超聲懸浮傳送試驗(yàn)平臺(tái)及設(shè)計(jì)原型如圖2、圖3所示,仿真模型如表1所示,其中材料屬性如表2所示。
圖2 超聲懸浮傳送平臺(tái)設(shè)計(jì)原型Fig.2 Designed prototype of NFAL platform
圖3 超聲懸浮傳送激振平臺(tái)設(shè)計(jì)示意圖Fig.3 Schematic diagram of designed NFAL platform
幾何模型及材料六面體網(wǎng)格載荷與邊界條件
表2 懸浮平臺(tái)材料屬性
懸浮平臺(tái)電固耦合ANSYS計(jì)算結(jié)果如表3所示。結(jié)果顯示出懸浮平臺(tái)的3種模態(tài)振型,第1種為沿x方向的純彎曲振型,如1階、3階、5階模態(tài);第2種為沿y方向的純彎曲振型,如2階、6階、12階模態(tài);以及沿x,y方向具有不同波數(shù)的混合模態(tài)。
計(jì)算結(jié)果表明,純彎曲模態(tài)振型和混合模態(tài)振型為近場(chǎng)超聲懸浮平臺(tái)設(shè)計(jì)過(guò)程中所采用的2種主要振型,其中混合模態(tài)呈現(xiàn)出沿x,y正交方向駐波、行波解耦驅(qū)動(dòng)的模式,該模式有助于實(shí)現(xiàn)傳送平臺(tái)在法向承載的同時(shí)沿某一方向產(chǎn)生推動(dòng)力,筆者利用橫向和縱向的波數(shù)來(lái)表征混合模態(tài)的振型分布,通過(guò)S,T標(biāo)識(shí)來(lái)區(qū)分某一方向的駐波與行波。該分析方法可以針對(duì)不同尺度、材料懸浮樣本給出最優(yōu)激振條件,實(shí)現(xiàn)超聲懸浮正交振型的精確模擬和設(shè)計(jì)。
表3 超聲懸浮平臺(tái)ANSYS 模態(tài)振型
采用點(diǎn)陣式激光掃描設(shè)備對(duì)懸浮平臺(tái)的固有特性和諧響應(yīng)特性進(jìn)行測(cè)試,實(shí)驗(yàn)測(cè)試結(jié)果及誤差如表4所示[21-22]。對(duì)比模擬結(jié)果(見(jiàn)表3)可以發(fā)現(xiàn),對(duì)稱(chēng)模型可以很好的預(yù)計(jì)整體懸浮平臺(tái)的固有特征,所有實(shí)驗(yàn)中的諧響應(yīng)振型在理論模擬中都有所體現(xiàn),其中峰值頻率誤差值小于15%,第3階、第5階、第9階較大的誤差來(lái)源于簡(jiǎn)化的邊界條件。結(jié)果表明,并不是所有的諧振點(diǎn)都能產(chǎn)法相的承載能力,純彎曲波形更適合應(yīng)用于激振頻率較低、振幅較大的場(chǎng)合,這種現(xiàn)象為研究人員對(duì)懸浮平臺(tái)結(jié)構(gòu)和模態(tài)的優(yōu)化提供了一定的指導(dǎo)作用。
表4 點(diǎn)陣掃描設(shè)備實(shí)驗(yàn)結(jié)果
通過(guò)對(duì)懸浮平臺(tái)理論和實(shí)驗(yàn)的分析,得到以下結(jié)論。
1)懸浮平臺(tái)激振振型對(duì)膜厚和壓力分布有很大影響,一般不能忽略。
2)對(duì)于超聲懸浮傳送平臺(tái),4個(gè)壓電片環(huán)形布置的形式可以產(chǎn)生可觀的承載能力,其中混合波形驅(qū)動(dòng)中的行波可以使懸浮體向某一方向推進(jìn)。
3)幾乎所有的諧響應(yīng)振型都可以通過(guò)1/4理論模型進(jìn)行表達(dá),對(duì)稱(chēng)的驅(qū)動(dòng)波形具有更大的承載能力和懸浮穩(wěn)定性。
4)懸浮平臺(tái)模型受到驅(qū)動(dòng)器驅(qū)動(dòng)帶寬的限制。對(duì)于低頻懸浮,純彎曲模態(tài)振型比較適合;相反,混合波驅(qū)動(dòng)懸浮平臺(tái)適合應(yīng)用于較高的頻率。
/References:
[1] GROSS W A. Gas Film Lubrication[M]. New York: Wiley,1962.
[2] SALBU E O J. Compressible squeeze films and squeeze bearings[J]. ASME J of Basic Eng, 1964,86(3):355-366.
[3] BECK J V,HOLIDAY W G, STRODTMAN C L. Experimental and analysis of a flat disk squeeze-film bearing including effects of supported mass motion[J]. ASME J of Lubr, 1969,91(1):138-148.
[4] KURODA S, HIRATA N. The characteristic of motion of a round plate supported on squeeze air film[J]. J of Lubr, 1984, 50(6):2727-2731.
[5] MINIKES A, BUCHER I. Levitation force induced by pressure radiation in gas squeeze films[J]. J Acoustic Soc, 2004,116(1): 217-226.
[6] MINIKES A, BUCHER I. Comparing numerical and analytical solutions for squeeze-film levitation force[J]. Journal of Fluids and Structures,2006, 22(5):713-719.
[7] WEI B, MA X Z, TANG W K. Study on characteristics of ultrasonic levitation with Piezo-ceramics exciting[J]. Piezoelectrics Acoustooptics,2011, 33(1):76-79.
[8] WANG Yanzhong, WEI Bin. Wet multi-disc brake temperature field and optimal oil supply under continuous braking condition[J]. Industrial Lubrication Tribology, 2014, 66(6): 653-661.
[9] WANG Yanzhong, WEI Bin. A linear solution for film characteristics in ultrasonic excitation condition[J]. Industry lubrication and Tribology, 2013, 34(5): 469-473.
[10]魏彬, 馬希直. 擠壓膜懸浮導(dǎo)軌的懸浮特性研究[J]. 潤(rùn)滑與密封, 2010,35(12): 54-58. WEI Bin, MA Xizhi. Research on the characteristic of the floating guide way with squeeze film[J]. Lubrication Engneering, 2010,35(12): 54-58.
[11]魏彬, 馬希直. 考慮激振模態(tài)的擠壓膜懸浮導(dǎo)軌特性分析[J]. 潤(rùn)滑與密封2010, 35(8): 32-35. WEI Bin, MA Xizhi. Research on the characteristic of the floating guide way including the mode effect[J]. Lubrication Engneering, 2010, 35(8): 32-35.
[12]魏彬,馬希直.氣體擠壓膜懸浮平臺(tái)的研究方法[J]. 江蘇航空學(xué)報(bào), 2008(sup1):145-148. WEI Bin, MA Xizhi. Research on the characteristic of the floating guide way with squeeze film[J]. Journal of Jiangsu Aviation Science, 2008(sup1):145-148.
[13]馮美君,魏彬, 佟勇. 自懸浮線性空氣軸承的理論分析和軸承設(shè)計(jì)[J].軍民兩用技術(shù)與產(chǎn)品, 2012,53(1): 53-57. FENG Meijun, WEI Bin, TONG Yong. Analysis and design on self-levitation linear gas bearing[J]. Dual Use Technologies & Products, 2012,53(1): 53-57.
[14]ALMURSHEDI A, ATHERTON M, MARES C, et al. Squeeze-film levitation characteristics of plates excited by piezoelectric actuators[EB/OL]. http://bura.brunel.ac.uk/handle/2438/13663.
[15]ALMURSHEDI A, ATHERTON M, MARES C, et al. Plate actuator vibration modes for levitation[EB/OL].http://bura.brunel.ac.uk/bitstream/2438/11907/1/Fulltext.pdf.
[16]WANG C C. Bifurcation and nonlinear dynamic analysis of united gas-lubricated bearing system[J]. Computers & Mathematicswith Applications, 2012,64(5):127-132.
[17]LIU P, LI J, DING H, et al. Modeling and experimental study on near-field acoustic levitation by flexural mode[J]. IEEE Transaction Ultrasonics Ferroelectrics & Frequency Control,2009, 56(12):2679-2685.
[18]LI J, CAO W W, LIU P K, et al. Influence of gas inertia and edge effect on squeeze film in near field acoustic levitation[J].Appl Phys Lett, 2010, 96(24):96-102.
[19]XIE W J, WEI B. Parametric study of single-axisacoustic levitation[J]. Appl Phys Lett,2001, 79(6):881-884.
[20]YOSHIMOTO S, KOBAYASHI H, MIYATAKE M. Float characteristics of asqueeze-film air bearing for a linear motion guide using ultrasonic vibration[J]. Tribology International, 2007,40(3):503-510.
[21]WANG Yanzhong, WEI Bin. Mixed-modal disk gas squeeze film theoretical and experimental analysis[J]. International Journal of Modern Physics, 2013, 27(25):1-20.
[22]CHANG Xiaoni, WEI Bin, MARK A, et al. NFAL prototype design and feasibility analysis for self-levitated conveying[J]. Tribology Transitions, 2016, 59(5): 957-968.
Modal shapes optimization and feasibility analysis ofNFAL platform
WEI Bin1,2, BUCHER I3, ATHERTON M4, STOLASKI T A4
(1.State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China; 2.Corporate Technology Siemens, Beijing 100102, China; 3. Faculty of Mechanical Engineering, Israel Institute of Technology, Haifa 32000, Israel; 4. College of Engineering, Design and Physical Sciences, Brunel University, London UB8 3PH, UK)
In order to avoid friction and scratching between the conveyor and the precision components when conveying object, an compact non-contact acoustic levitation prototype is designed, and the feasibility is theoretically and experimentally verified. The symmetry model is established through kinetic analysis with ANSYS. The modal and the coupled field computation at the central point of the transfer platform are simulated. The simulation results show that pure flexural or mixed flexural wave shapes appear with different wave numbers on the platform. Sweep frequency test is conducted on the compact platform prototype. The levitation experimental results confirm the feasibility of the ultrasound transfer process, the levitation frequency range and the mode of vibration. The theoretical and experimental results show that the optimal design of the modal and the carrying capacity of the driving platform is necessary according to different conditions. The research results provide a reference for the design of the mode and bandwidth of the ultrasonic levitation platform.
tribology; near field ultrasound levitation; resonance; modal shapes; orthogonal waves
2016-10-10;
2017-04-20;責(zé)任編輯:馮 民
國(guó)家自然科學(xué)基金(51605250);北京市自然科學(xué)基金(L161001);博士后科學(xué)基金(2017T100071)
魏 彬(1983—),男,河北唐山人,助理研究員,博士,主要從事超聲懸浮、極端環(huán)境摩擦學(xué)等方面的研究。
E-mail:buaaweibin@126.com
1008-1542(2017)04-0313-07
10.7535/hbkd.2017yx04001
TH133.3
A
魏 彬,BUCHER I,ATHERTON M,等.近場(chǎng)超聲懸浮平臺(tái)模態(tài)振型優(yōu)化設(shè)計(jì)及可行性分析[J].河北科技大學(xué)學(xué)報(bào),2017,38(4):313-319. WEI Bin,BUCHER I,ATHERTON M,et al.Modal shapes optimization and feasibility analysis of NFAL platform[J].Journal of Hebei University of Science and Technology,2017,38(4):313-319.