周瑞琪,劉 潔,劉 輝,杭太俊
(1.中國藥科大學(xué)藥物分析教研室,江蘇 南京 210009;2.海南省食品藥品檢驗(yàn)所,海南 ???570100)
LC/MS用于匹多莫德有關(guān)物質(zhì)結(jié)構(gòu)鑒定
周瑞琪1,劉 潔2,劉 輝2,杭太俊1
(1.中國藥科大學(xué)藥物分析教研室,江蘇 南京 210009;2.海南省食品藥品檢驗(yàn)所,海南 海口 570100)
采用液相色譜-質(zhì)譜(LC/MS)技術(shù)鑒定匹多莫德的有關(guān)物質(zhì),選取Sepax GP-C8色譜柱(250 mm×4.6 mm×5 μm),以甲醇-三氟乙酸溶液為流動(dòng)相,梯度洗脫,對匹多莫德有關(guān)物質(zhì)進(jìn)行分離;采用電噴霧正離子化-高分辨飛行時(shí)間質(zhì)譜法(ESI-TOF MS)測定各有關(guān)物質(zhì)離子的準(zhǔn)確質(zhì)量和元素組成,三重四極桿串聯(lián)質(zhì)譜(ESI-MS/MS)測定子離子特征。結(jié)果表明:在所建立的條件下,匹多莫德及其有關(guān)物質(zhì)的分離良好,檢測并鑒定出11個(gè)主要有關(guān)物質(zhì)。該技術(shù)能有效地分離鑒定匹多莫德中的有關(guān)物質(zhì),其鑒定結(jié)果可為質(zhì)量控制和工藝優(yōu)化提供參考。
匹多莫德;有關(guān)物質(zhì);降解產(chǎn)物;結(jié)構(gòu)鑒定;液相色譜-質(zhì)譜(LC/MS)
圖1 匹多莫德的化學(xué)結(jié)構(gòu)Fig.1 Chemical structure of pidotimod
匹多莫德(pidotimod,(R)-3-[(S)-(5-氧代-2-吡咯烷基)羰基]-四氫噻唑-4-羧酸)是一種化學(xué)合成的口服免疫促進(jìn)劑,其化學(xué)結(jié)構(gòu)類似于二肽,示于圖1。20世紀(jì)80年代后期,該化合物由意大利Poli化學(xué)公司成功合成,并于1993年獲準(zhǔn)上市應(yīng)用于臨床,目前上市劑型有片劑、膠囊、口服溶液和散劑等[1]。它既可以促進(jìn)非特異性免疫反應(yīng),又可以促進(jìn)特異性免疫反應(yīng),具有顯著的抗病毒、抗感染、抗氧化和抗刺激等作用[2-4]。匹多莫德可以用于多種疾病的輔助治療,比如,臨床上常用于呼吸道疾病的預(yù)防及治療[5-9],及細(xì)菌感染、病毒感染和復(fù)發(fā)性口瘡、白癜風(fēng)、過敏性紫癜等與免疫功能失衡的有關(guān)疾病的治療[3,10-11]。
關(guān)于匹多莫德的質(zhì)量研究和生物樣本分析已有文獻(xiàn)報(bào)道[12-19],其中涉及到的液相色譜-質(zhì)譜(LC/MS)方法的建立尚不完善。該方法多在流動(dòng)相中添加甲酸和乙酸等存在末端吸收的成分[12-16],對匹多莫德及其有關(guān)物質(zhì)的紫外吸收干擾較大,目前仍未有完善的LC/MS方法對匹多莫德有關(guān)物質(zhì)進(jìn)行分析鑒定。有關(guān)物質(zhì)檢測方法的液相條件多在流動(dòng)相中添加磷酸和磷酸鹽等非揮發(fā)性物質(zhì)[17-19],不適用于LC/MS檢測。
本工作擬建立適用于匹多莫德有關(guān)物質(zhì)檢查的LC/MS方法,通過飛行時(shí)間質(zhì)譜(TOF MS)和三重四極桿串聯(lián)質(zhì)譜(MS/MS)分別測定有關(guān)物質(zhì)的準(zhǔn)確質(zhì)量和二級質(zhì)譜,并且通過與對照品比對、二級質(zhì)譜裂解解析、合成工藝分析,推測它們的結(jié)構(gòu),希望為匹多莫德的生產(chǎn)工藝和質(zhì)量控制提供方法參考和依據(jù)。
1.1主要儀器與裝置
1290 Infinity 液相色譜-6224飛行時(shí)間質(zhì)譜儀:美國Agilent公司產(chǎn)品,配有二極管陣列檢測器、電噴霧離子源和MassHunter工作站;TSQ Quantum Ultra AM型MS/MS聯(lián)用儀:美國Thermo公司產(chǎn)品,配有電噴霧離子源和Xcalibur3.0數(shù)據(jù)處理系統(tǒng)。
1.2試藥與試劑
匹多莫德原料藥(批號:04.1015-160613):浙江仙琚制藥股份有限公司產(chǎn)品;雜質(zhì)A、B對照品:江蘇吳中醫(yī)藥集團(tuán)有限公司蘇州制藥廠產(chǎn)品;三氟乙酸:純度99%,薩恩化學(xué)技術(shù)有限公司產(chǎn)品;甲醇:色譜純,美國Tedia公司產(chǎn)品;去離子水:杭州娃哈哈公司產(chǎn)品。
1.3實(shí)驗(yàn)條件
1.3.1色譜條件 色譜柱為Sepax GP-C8(250 mm×4.6 mm×5 μm);流動(dòng)相:A為0.005%三氟乙酸溶液, B為甲醇;線性梯度洗脫:0 min(95%A)→20 min(95%A)→35 min(90%A)→36 min(95%A)→40 min(95%A);流速1 mL/min;柱溫30 ℃;進(jìn)樣量20 μL;檢測波長210 nm。
1.3.3MS/MS質(zhì)譜條件 三重四極桿質(zhì)譜電噴霧離子源,正離子檢測模式;噴霧電壓3.5 kV;鞘氣(N2)壓力310 kPa;輔助氣(N2)壓力10 kPa;毛細(xì)管溫度350 ℃;碰撞氣(Ar)0.20 Pa;碰撞能量10~30 eV。
1.4樣品制備
1.4.1供試品溶液的制備 精密稱定10 mg匹多莫德原料藥,置于10 mL容量瓶中,加入甲醇-水溶液(5∶95,V/V)溶解樣品并稀釋至刻度,搖勻即得供試品溶液。精密量取適量上述溶液,加溶樣液定量稀釋,分別制成1%和0.1%的自身對照溶液。
1.4.2對照品溶液的制備 取適量各對照品,分別精密稱定,加溶樣液溶解并定量稀釋成1 g/L樣品;各取1 mL對照品溶液和堿破壞樣品,混合均勻,即得混合對照品溶液。
1.4.3強(qiáng)制降解實(shí)驗(yàn)溶液的制備 強(qiáng)制降解條件如下:酸破壞(1 mL 4 mol/L HCl,室溫,3 h),堿破壞(1 mL 1 mol/L NaOH,室溫,2 h),氧化破壞(1 mL 3%H2O2,室溫,5 min),熱破壞(2 mL 溶樣液,90 ℃水浴,5 h)和光照破壞(4 500 lx±500 lx,15 d)。酸破壞和堿破壞在稀釋前使用相應(yīng)的NaOH溶液和HCl溶液中和,所有破壞樣最終使用溶樣液稀釋成約含1 g/L的強(qiáng)制降解實(shí)驗(yàn)溶液。
2.1有關(guān)物質(zhì)檢測
本實(shí)驗(yàn)采用HPLC法分析匹多莫德有關(guān)物質(zhì),在優(yōu)化的色譜條件下,匹多莫德原料藥及強(qiáng)制降解實(shí)驗(yàn)供試溶液的各有關(guān)物質(zhì)均得到良好分離,測得的各有關(guān)物質(zhì)保留時(shí)間從小到大依次編號,其色譜圖示于圖2。圖2a顯示原料藥中雜質(zhì)含量較少,采用自身0.1%對照法估算有關(guān)物質(zhì)含量,只有雜質(zhì)9的含量大于0.1%。強(qiáng)制降解實(shí)驗(yàn)結(jié)果表明:在氧化條件下主要降解為有關(guān)物質(zhì)2和3(圖2b);在高溫條件下主要降解為有關(guān)物質(zhì)1、4、9和11(圖2c);在強(qiáng)酸條件下主要降解為有關(guān)物質(zhì)1、4、5、9和11(圖2d);在強(qiáng)堿條件下主要降解為有關(guān)物質(zhì)1、4、5、8、9和11(圖2e);在光照條件下主要降解為有關(guān)物質(zhì)1、2、4、6、7、9和11(圖2f)。未在供試品及強(qiáng)制降解樣品中檢測到雜質(zhì)對照品B(有關(guān)物質(zhì)10)。
2.2有關(guān)物質(zhì)結(jié)構(gòu)分析
HPLC-ESI+-TOF MS測得各有關(guān)物質(zhì)母離子的準(zhǔn)確質(zhì)量與離子組成,三重四極桿質(zhì)譜獲取二級質(zhì)譜碎片信息,通過與匹多莫德及其有關(guān)物質(zhì)對照品二級質(zhì)譜碎片離子的對比分析,鑒定各有關(guān)物質(zhì)結(jié)構(gòu),結(jié)果示于表1和圖3。
ESI+-TOF MS測得匹多莫德[M+H]+離子的準(zhǔn)確質(zhì)量為245.058 3,與離子式C9H13N2O4S+相應(yīng),MS/MS主要特征碎片離子為m/z227、199、134、88、84;匹多莫德的二級碎片離子中,m/z88 碎片與有關(guān)物質(zhì)10一致,來源于相同的噻唑烷結(jié)構(gòu);m/z84碎片與有關(guān)物質(zhì)4一致,來自相同的吡咯烷酮結(jié)構(gòu);m/z227與[M+H]+離子中氨基與羧基縮合脫去H2O相應(yīng);m/z134為酰胺鍵斷裂而產(chǎn)生的特征碎片;m/z199與[M+H]+離子中噻唑烷環(huán)脫去HCOOH相應(yīng),該離子進(jìn)一步發(fā)生酰胺鍵斷裂產(chǎn)生m/z84離子。匹多莫德的二級質(zhì)譜分析結(jié)果示于圖4,該結(jié)果對其有關(guān)物質(zhì)的解析確證具有參考意義。
注:a.原料藥供試品;b.氧化破壞;c.高溫破壞;d.酸破壞;e.堿破壞;f.光照破壞;g.混合對照品圖2 匹多莫德及其強(qiáng)制降解樣品的高效液相色譜圖Fig.2 HPLC chromatograms of pidotimod and the degradation samples from stress tests
表1 匹多莫德有關(guān)物質(zhì)結(jié)構(gòu)的LC-TOF MS和LC-MS/MS鑒定結(jié)果Table 1 Identified results of related substances of pidotimod by LC-TOF MS and LC-MS/MS
圖3 匹多莫德有關(guān)物質(zhì)結(jié)構(gòu)圖Fig.3 Chemical structures of the related substances of pidotimod
圖4 匹多莫德[M+H]+(m/z 245)離子的二級質(zhì)譜圖及其裂解途徑Fig.4 MS/MS spectrum of pidotimod [M+H]+(m/z 245) ion and its fragmentation pathways
圖5 有關(guān)物質(zhì)1[M+H]+(m/z 134)離子的二級質(zhì)譜圖及其裂解途徑Fig.5 MS/MS spectrum of related substance 1 [M+H]+(m/z 134) ion and its fragmentation pathways
有關(guān)物質(zhì)1:ESI+-TOF MS測得有關(guān)物質(zhì)1[M+H]+離子的準(zhǔn)確質(zhì)量為134.026 6,與離子式C4H8NO2S+相應(yīng),MS/MS主要特征碎片離子為m/z88,與噻唑烷結(jié)構(gòu)相應(yīng)。該有關(guān)物質(zhì)在酸、堿、熱和光照破壞中均有產(chǎn)生,為易降解產(chǎn)生的雜質(zhì),結(jié)合其質(zhì)譜信息,鑒定為匹多莫德兩個(gè)環(huán)之間酰胺鍵的水解產(chǎn)物,結(jié)果示于圖5。
有關(guān)物質(zhì)2:ESI+-TOF MS測得有關(guān)物質(zhì)2[M+H]+離子的準(zhǔn)確質(zhì)量為261.051 1,與離子式C9H13N2O5S+相應(yīng),比匹多莫德質(zhì)量數(shù)多16,與增加1個(gè)氧原子相應(yīng);MS/MS主要特征碎片離子為m/z243、225、215、197、150、132、104和84,其中m/z243、150均比匹多莫德相應(yīng)的特征碎片離子m/z227和134多16,故有關(guān)物質(zhì)2可能為匹多莫德的噻唑烷環(huán)生成亞砜后的產(chǎn)物,其質(zhì)譜信息及裂解途徑示于圖6。
有關(guān)物質(zhì)3:ESI+-TOF MS測得有關(guān)物質(zhì)3[M+H]+離子的準(zhǔn)確質(zhì)量為243.040 4,與離子式C9H11N2O4S+相應(yīng),比有關(guān)物質(zhì)2質(zhì)量數(shù)少18,與脫去一分子H2O相應(yīng);MS/MS主要特征碎片離子為m/z225、215、197、132、104和84,均存在于有關(guān)物質(zhì)2的二級碎片離子中,故推測其為有關(guān)物質(zhì)2的羧基與氨基縮合產(chǎn)生,其質(zhì)譜信息及裂解途徑示于圖7。
圖6 有關(guān)物質(zhì)2[M+H]+(m/z 261)離子的二級質(zhì)譜圖及其裂解途徑Fig.6 MS/MS spectrum of related substance 2 [M+H]+(m/z 261) ion and its fragmentation pathways
圖7 有關(guān)物質(zhì)3[M+H]+(m/z 243)離子的二級質(zhì)譜圖及其裂解途徑Fig.7 MS/MS spectrum of related substance 3 [M+H]+(m/z 243) ion and its fragmentation pathways
有關(guān)物質(zhì)5:ESI+-TOF MS測得有關(guān)物質(zhì)5[M+H]+離子的準(zhǔn)確質(zhì)量為263.069 4,與離子式C9H15N2O5S+相應(yīng),比匹多莫德質(zhì)量數(shù)多18,與增加一分子H2O相應(yīng),MS/MS主要特征碎片離子為m/z245、227、134。該有關(guān)物質(zhì)在酸、堿和高溫破壞樣品中均明顯增加,其二級碎片離子與匹多莫德及其特征碎片一致,故推測為吡咯烷酮環(huán)上的酰胺鍵水解產(chǎn)生,其質(zhì)譜信息及裂解途徑示于圖8。
有關(guān)物質(zhì)6:ESI+-TOF MS測得有關(guān)物質(zhì)6[M+H]+離子的準(zhǔn)確質(zhì)量為104.016 5,與離子式C3H6NOS+相應(yīng),MS/MS主要特征碎片離子為m/z86、60、58、45。該有關(guān)物質(zhì)僅存在于光照破壞樣品中,分子質(zhì)量較小,且m/z104 存在于氧化破壞產(chǎn)生的有關(guān)物質(zhì)2和3的二級碎片中,故推測為氧化產(chǎn)物斷裂產(chǎn)生的小分子有關(guān)物質(zhì),其質(zhì)譜信息及裂解途徑示于圖9。
有關(guān)物質(zhì)7:ESI+-TOF MS測得有關(guān)物質(zhì)7[M+H]+離子的準(zhǔn)確質(zhì)量為261.055 3,與離子式C9H13N2O5S+相應(yīng),MS/MS主要特征碎片離子為m/z215、84。該有關(guān)物質(zhì)比匹多莫德質(zhì)量數(shù)多16,可能為匹多莫德氧化產(chǎn)物,其二級碎片離子m/z84 為吡咯烷酮結(jié)構(gòu)特征碎片,且無明顯的噻唑烷結(jié)構(gòu)碎片離子,推測其噻唑烷結(jié)構(gòu)發(fā)生變化不易在二級質(zhì)譜中攜帶正電荷,有關(guān)物質(zhì)7為匹多莫德噻唑烷環(huán)的氮被氧化為氧化胺后的產(chǎn)物,其質(zhì)譜信息及裂解途徑示于圖10。
圖8 有關(guān)物質(zhì)5[M+H]+(m/z 263)離子的二級質(zhì)譜圖及其裂解途徑Fig.8 MS/MS spectrum of related substance 5 [M+H]+(m/z 263) ion and its fragmentation pathways
圖9 有關(guān)物質(zhì)6[M+H]+(m/z 104)離子的二級質(zhì)譜圖及其裂解途徑Fig.9 MS/MS spectrum of related substance 6 [M+H]+(m/z 104) ion and its fragmentation pathways
有關(guān)物質(zhì)8:ESI+-TOF MS測得有關(guān)物質(zhì)8[M+H]+離子的準(zhǔn)確質(zhì)量為245.058 9,與離子式C9H13N2O4S+相應(yīng),MS/MS主要特征碎片離子為m/z227、188、134、88、84,該有關(guān)物質(zhì)為堿破壞的典型產(chǎn)物,與匹多莫德互為同分異構(gòu)體,二級碎片多數(shù)與匹多莫德一致,m/z188為其特有的碎片離子,推測為匹多莫德環(huán)合再水解產(chǎn)生的同分異構(gòu)體,其質(zhì)譜信息及裂解途徑示于圖11。
圖10 有關(guān)物質(zhì)7[M+H]+(m/z 261)離子的二級質(zhì)譜圖及其裂解途徑Fig.10 MS/MS spectrum of related substance 7 [M+H]+(m/z 261) ion and its fragmentation pathways
圖11 有關(guān)物質(zhì)8[M+H]+(m/z 245)離子的二級質(zhì)譜圖及其裂解途徑Fig.11 MS/MS spectrum of related substance 8 [M+H]+(m/z 245) ion and its fragmentation pathways
有關(guān)物質(zhì)9:ESI+-TOF MS測得有關(guān)物質(zhì)9[M+H]+離子的準(zhǔn)確質(zhì)量為227.048 8,與離子式C9H11N2O3S+相應(yīng),比匹多莫德質(zhì)量數(shù)少18,與脫去一分子H2O相應(yīng);MS/MS主要特征碎片離子為m/z199、181、170、88、84,該有關(guān)物質(zhì)在供試品和酸、堿、高溫、光照樣品中均被檢測到,為較易產(chǎn)生的雜質(zhì),推測為匹多莫德分子內(nèi)形成酰胺鍵環(huán)合產(chǎn)生,其質(zhì)譜信息及裂解途徑示于圖12。
有關(guān)物質(zhì)10:ESI+-TOF/MS測得有關(guān)物質(zhì)10(雜質(zhì)對照品)[M+H]+離子的準(zhǔn)確質(zhì)量為162.058 3,與離子式C6H12NO2S+相應(yīng);MS/MS主要特征碎片離子為m/z88,該有關(guān)物質(zhì)在強(qiáng)制降解實(shí)驗(yàn)樣品和供試品中均未檢出,m/z88碎片離子來源于其結(jié)構(gòu)中的噻唑烷環(huán),有關(guān)物質(zhì)10的二級質(zhì)譜分析結(jié)果對其他有關(guān)物質(zhì)的解析具有參考意義。
有關(guān)物質(zhì)11:ESI+-TOF MS測得有關(guān)物質(zhì)11[M+H]+離子的準(zhǔn)確質(zhì)量為245.059 0,與離子式C9H13N2O4S+相應(yīng),與匹多莫德質(zhì)量數(shù)相同;MS/MS主要特征碎片離子為m/z227、199、88、84,與匹多莫德二級碎片離子相比,m/z134的二級碎片離子不明顯,說明噻唑烷環(huán)相關(guān)結(jié)構(gòu)發(fā)生變化,該有關(guān)物質(zhì)在酸、堿、高溫和光照實(shí)驗(yàn)中含量均明顯增加,推測為匹多莫德分子內(nèi)脫水縮合后異位酰胺鍵水解產(chǎn)生,其質(zhì)譜信息及裂解途徑示于圖13。
圖12 有關(guān)物質(zhì)9[M+H]+(m/z 227)離子的二級質(zhì)譜圖及其裂解途徑Fig.12 MS/MS spectrum of related substance 9 [M+H]+(m/z 227) ion and its fragmentation pathways
圖13 有關(guān)物質(zhì)11[M+H]+(m/z 245)離子的二級質(zhì)譜圖及其裂解途徑Fig.13 MS/MS spectrum of related substance 11 [M+H]+(m/z 245) ion and its fragmentation pathways
本研究建立了揮發(fā)性流動(dòng)相液相色譜-質(zhì)譜聯(lián)用方法分析匹多莫德有關(guān)物質(zhì),匹多莫德與檢出的11個(gè)主要有關(guān)物質(zhì)均可得到有效分離。緩沖溶液pH值是影響色譜保留的關(guān)鍵因素,pH降低可以增強(qiáng)高極性有關(guān)物質(zhì)的色譜保留,而常用的甲酸和乙酸等pH調(diào)節(jié)劑對210 nm的檢測波長干擾較大。為兼顧色譜分離和紫外檢測靈敏度,本研究選用0.005%三氟乙酸溶液作為水相流動(dòng)相,甲醇作為有機(jī)相流動(dòng)相,結(jié)合梯度洗脫的色譜方法實(shí)現(xiàn)了匹多莫德與11種主要有關(guān)物質(zhì)的良好分離。
本實(shí)驗(yàn)檢出并鑒定了匹多莫德的11個(gè)主要有關(guān)物質(zhì),其中2個(gè)(有關(guān)物質(zhì)4、10)為已知雜質(zhì),4個(gè)(有關(guān)物質(zhì)1、2、8、9)已有文獻(xiàn)報(bào)道[17],另外5個(gè)為未知雜質(zhì)。根據(jù)雜質(zhì)來源可將所有有關(guān)物質(zhì)分為工藝雜質(zhì)和降解雜質(zhì)。有關(guān)物質(zhì)1~9和11均在強(qiáng)制降解樣品中明顯增加,可歸屬于降解雜質(zhì);有關(guān)物質(zhì)1、4和10作為起始原料或中間體參與匹多莫德的合成,故也有可能來源于合成工藝雜質(zhì)。
[1] 李慧,王永軍,孫進(jìn). 匹多莫德及其制劑的研究進(jìn)展[J]. 中國藥劑學(xué)雜志,2012,10(4):68-73.
LI Hui, WANG Yongjun, SUN Jin. Progress of pidotimod and its preparation[J], Chinese Journal of Pharmaceutics, 2012, 10(4): 68-73(in Chinese).
[2] ZUCCOTTI G V, MAMELI C. Pidotimod: the past and the present[J]. Italian Journal of Pediatrics, 2013, 39(1): 75-77.
[3] FERRARIO B E, GARUTI S, BRAIDO F, et al. Pidotimod: the state of art[J]. Clinical and Molecular Allergy, 2015, 13(1): 8-17.
[4] 田新平,曾小峰. 新型合成免疫調(diào)節(jié)劑——匹多莫德[J]. 中國新藥雜志,2005,14(1):111-114.
TIAN Xinping, ZENG Xiaofeng. A new synthetic immunomodulator—pidotimod[J]. Chinese Journal of New Drugs, 2005, 14(1): 111-114(in Chinese).
[5] BOZZETTO S, PIRILLO P, CARRARO S, et al. Metabolomic profile of children with recurrent respiratory infections[J]. Pharmacological Research, 2017, 115: 162-167.
[6] MANIKAM L, REED K, VENEKAMP R P, et al. Limited evidence on the management of respiratory tract infections in down’s syndrome: a systematic review[J]. Pediatric Infectious Disease Journal, 2016, 35(10): 1 075-1 079.
[7] ESPOSITO S, GARZIANO M, RAINONE V, et al. Immunomodulatory activity of pidotimod administered with standard antibiotic therapy in children hospitalized for community-acquired pneumonia[J]. Journal of Translational Medicine, 2015, 13(1): 288-297.
[8] ZUCCOTTI G V, MAMELI C. Respiratory infections and immunostimulants in childhood: an update[J]. Journal of Pediatric and Neonatal Individualized Medicine, 2015, 4(2): e040218.
[9] NAMAZOVA-BARANOVA L S, ALEKSEEVA A A, KHARIT S M, et al. Efficacy and safety of pidotimod in the prevention of recurrent respiratory infections in children: a multicentre study[J]. International Journal of Immunopathology & Pharmacology, 2014, 27(3): 413-419.
[10]LI E, RUAN Y, QIAN C, et al. Streptococcal infection and immune response in children with Tourette’s syndrome[J]. Child’s Nervous System, 2015, 31(7): 1 157-1 163.
[11]莊俊鵬,林小燕,王璟. 匹多莫德臨床應(yīng)用進(jìn)展[J]. 哈爾濱醫(yī)藥,2015,35(5):401-403.
ZHUANG Junpeng, LIN Xiaoyan, WANG Jing. Advances in clinical application of pidotimod[J]. Harbin Medical Journal, 2015, 35(5): 401-403(in Chinese).
[12]MADHURI BAGHEL, SADHANA J, RAJPUT. HPLC Separation of pidotimod enantiomers using beta-cyclodextrin based chiral stationary phase[J]. Indo American Journal of Pharmaceutical Research, 2016, 6(7): 6 182-6 189.
[13]WANG G, WANG Q, RAO T, et al. A robust LC-MS/MS method for the determination of pidotimod in different biological matrixes and its application to in vivo and in vitro pharmacokinetic studies[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2016, (1 023/1 024): 36-43.
[14]HUANG J H, HUANG X H, WANG K, et al. Bioequivalence evaluation of two formulations of pidotimod using a limited sampling strategy[J]. Biomedicine and Pharmacotherapy, 2013, 67(6): 475-480.
[15]LOU H G, RUAN Z R, JIANG B. Quantitative determination of pidotimod in human plasma by liquid chromatography tandem mass spectrometry: application to a bioequivalence study[J]. Arzneimittel-Forschung, 2012, 62(2): 99-104.
[16]CHEN H S, SHEN M, CHEN L Y. HILIC-MS-MS for the quantification of pidotimod in human plasma[J]. Chromatographia, 2011, 73(7): 767-773.
[17]毛柯,徐斌,孔蓉,等. 匹多莫德口服液中有關(guān)物質(zhì)的HPLC法測定[J]. 中國醫(yī)藥工業(yè)雜志,2016,47(12):1 568-1 572.
MAO Ke, XU Bin, KONG Rong, et al. Determination of related substances of pidotimod oral solution by HPLC[J]. Chinese Journal of Pharmaceuticals, 2016, 47(12): 1 568-1 572(in Chinese).
[18]王建,張翼,李毓,等. 高效液相色譜法測定匹多莫德片的含量及有關(guān)物質(zhì)[J]. 西南大學(xué)學(xué)報(bào):自然科學(xué)版,2015,37(12):178-184.
WANG Jian, ZHANG Yi, LI Yu, et al. Determination of the contents of pidotimod and its related substances in the tablet products by HPLC[J]. Journal of Southwest University: Natural Science Edition, 2015, 37(12): 178-184(in Chinese).
[19]方克忠,范鋒,于治國. HPLC法測定匹多莫德中的有關(guān)物質(zhì)[J]. 沈陽藥科大學(xué)學(xué)報(bào),2014,31(10):772-777.
FANG Kezhong, FAN Feng, YU Zhiguo. Determination of pidotimod and its related substances by HPLC[J]. Journal of Shenyang Pharmaceutical University, 2014, 31(10): 772-777(in Chinese).
IdentificationoftheRelatedSubstancesofPidotimodbyLC/MS
ZHOU Rui-qi1, LIU Jie2, LIU Hui2, HANG Tai-jun1
(1.ChinaPharmaceuticalUniversity,Nanjing210009,China; 2.HainanProvincialInstituteforDrugandFoodControl,Haikou570100,China)
Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4 carboxylic acid) is a synthetic dipeptide molecule with immunomodulatory properties. Since the early 90’s, a wide scientific production has been published about it. As it’s effective in the treatment of people infected with bacteria and viruses, it is used in the treatment of repeated infections of the respiratory, urogenital, and ear, nose, throat systems. Pidotimod therapy is a reliable, simple, and safe approach to treat children with recurrent respiratory infections. Liquid chromatography-mass spectrometry (LC/MS) method has been used for determination of pidotimod in different biological matrices. Only a few HPLC-UV methods have been reported for the quantification of the related substances in pidotimod and its formulation. The reported LC/MS methods usually use formic acid or acetic acid in the mobile phase which are not suitable for UV detector, and the separation is not feasible for the related substances. And the reported HPLC-UV methods usually use phosphate and phosphoric acid in the mobile phase which are not suitable for mass spectrometry detector. However, there is no reliable LC/MS method for identification of the related substances in pidotimod. In this paper, a LC/MS method was developed for the separation and characterization of process related substances and the major degradation products in pidotimod. Electrospray positive ionization high resolution time-of-flight mass spectrometer (ESI-TOF MS) was used for the determination of the accurate mass and elemental composition of the parent ions of the related substances, and triple quadrupole tandem mass was employed for the product mass spectra determination. The separation was performed on a Sepax GP-C8 column (250 mm×4.6 mm×5 μm) using 0.005% trifluoroacetic acid (TFA) in water as mobile phase A and methanol as mobile phase B. The flow rate was 1.0 mL/min and the column temperature was set at 30 ℃. Analytes were monitored at 210 nm. The injection volume was 20 μL. Pidotimod was tending to degrade under acid, alkaline, oxidative, thermal stress and photolytic stress. The structures of the related substances were then figured out through elucidation of the fragment ions. A total of 11 related substances were detected and characterized, including process related substances (related substances 1 and 4) and degradation products. Related substances 4 and 10 were identified by synthetic reference and related substances 1, 2, 8 and 9 were reported before this study, while related substances 3, 5, 6, 7 and 11 were reported for the first time. The method is effective for separation and identification of the related substances of pidotimod, and the results are useful for the quality control and process optimization of pidotimod.
pidotimod; related substances; degradation products; structure identification; liquid chromatography-mass spectrometry (LC/MS)
2016-12-22;
2017-05-10
周瑞琪(1991—),女(漢族),山東人,碩士研究生,藥物分析專業(yè)。E-mail: ruiqi_qiqi@163.com
杭太俊(1963—),男(漢族),江蘇人,博士生導(dǎo)師,從事藥物分析研究。E-mail: hangtj@cpu.edu.cn
O657.63
:A
:1004-2997(2017)04-0433-10
10.7538/zpxb.2016.0207