• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ASYMPTOTIC PROPERTIES OF A CLASS OF NONLINEAR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

    2017-07-18 11:47:12WANGLinSUNLinHUANGDongshengWENWenhao
    數(shù)學(xué)雜志 2017年4期
    關(guān)鍵詞:方程解文豪時(shí)滯

    WANG Lin,SUN Lin,HUANG Dong-sheng,WEN Wen-hao

    (School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China)

    ASYMPTOTIC PROPERTIES OF A CLASS OF NONLINEAR STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

    WANG Lin,SUN Lin,HUANG Dong-sheng,WEN Wen-hao

    (School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China)

    In this paper,the existence and uniqueness and moment boundedness of solutions to stochastic functional di ff erential equations with in fi nite delay are studied.By using the method of Lyapunov functions and the introduction of probability measures,a new condition which assures that the equations have a unique solution and at the same time the moment boundedness,the moment average in time boundedness of this solution is obtained.Relevant results about the Khasminskii-Mao theorems are generalized.

    moment boundedness;Itformula;Brownian motion;in fi nite delay

    1 Introduction

    Stochastic di ff erential equations are well known to model problems from many areas of science and engineering,wherein quite often the future state of such systems depends not only on the present state but also on its past history(delay)leading to stochastic functional di ff erential equations with delay.In recent years,there was an increasing interest in stochastic functional di ff erential equations with in fi nite delay(ISFDEs in short)under less restrictive conditions.The existence and uniqueness of solutions to ISFDEs were discussed(see[1-4]).Some stabilities such as robustness,attraction,pathwise estimation of solutions to ISFDEs were studied(see[5-13]).It is well known that,in order for a stochastic di ff erential equation to have a unique global solution for any given initial value,the coefficients of the equation are generally required to satisfy the linear growth condition and the local Lipschitz condition or a non-Lipschitz condition and the linear growth condition.In the above two classes of conditions,the linear growth condition plays an important role to suppress thegrowth of the solution and avoid explosion in a fi nite time.However,such results are limited on applications since the coefficients of many important systems which do not satisfy the linear growth condition.It is therefore important to fi nd conditions to guarantee the existence of global solutions under the nonlinear growth coefficients.

    Motivated by some results such as[3]and[9],this paper considers a class of stochastic functional di ff erential equations with in fi nite delay whose coefficients are polynomial or controlled by the polynomial functions.We mainly examine the existence and uniqueness of the global solutions of such equations,moment boundedness and moment average boundedness in time.

    In this paper,we consider the stochastic functional di ff erential equation with in fi nite delay

    where

    Assumption 1.1Bothfandgare locally Lipschitz continuous.

    Denote a solution to eq.(1.1)byx(t).Ifx(t)is defined on(-∞,+∞),we call it a global solution.To show the dependence on the initial dataξ,we writex(t)=x(t,ξ).This paper hopes to fi nd some conditions on the coefficients under which there exists a unique global solutionx(t,ξ)to eq.(1.1)and this solution has properties

    and

    whereα ≥0 andp>0 are proper parameters,Kpandare positive constants independent ofξ.

    In order to examine the above problems,a general result is given in Section 3.In Section 4 the general result is discussed in details and two classes of conditions assuring a unique global solution to eq.(1.1)and moment of this solution boundedness are provided in this paper.

    2 Preliminaries

    First,we give some concepts,notations and stipulations which will be used in this paper.Let{ Ω,F,P}be a complete probability space with a fi ltration{Ft}t≥0satisfying the usual conditions(i.e.,it is right continuous andF0contains allP-null sets).LetW(t)(t≥0)be anm-dimensional Brownian motion defined on the probability space.Denote byC((-∞,0];Rn)the family of continuous functions from(-∞,0]to Rn.Denote byBC((-∞,0];Rn)the family of bounded continuous functions from(-∞,0]to Rnwith the norm

    which forms a Banach space,which forms a Banach space.IfAis a vector or matrix,its transpose is denoted byAT.IfAis a matrix,denote its trace norm and operator norm by|A|and‖A‖respectively.Denote the Euclidean norm ofx∈Rnby|x|.Letfor everyi=1,···,n}and0 for everyi=1,···,n}.For any,define

    where diag(d1,···,dn)represents then×nmatrix with all elements zero except those on the diagonal which ared1,···,dn.For the positive de fi nite matrixQ,letλmin(Q)be the smallest eigenvalue ofQ.Denoteh(x)byo(|x|α)if for anyα>0,Throughout this paper,when we use the notationo(|x|α),it is always under the condition|x|→+∞.LetLp((-∞,0];Rn)denote all functionsl:(-∞,0]→Rnsuch that

    The sign function sgn(x)will be used several times in this paper,and therefore,we provide the de fi nition of the function sgn(x)as follows

    For the convenience of reference,several elementary results(see[14])are given as lemmas in the following which will be used frequently.

    Lemma 2.1For anyx,y,α≥ 0,β,ε>0,

    in particular,whenε=1,

    Lemma 2.2For anyx,y∈Rn,0<δ<1,

    Lemma 2.3For anyh(x)∈C(Rn;R),α,a>0,when|x|→∞,h(x)=o(|x|α),then

    When we use the notationo(|x|α)in this paper,it is always under the condition|x|→+∞.

    In addition,throughout this paper,const represents a positive constant,whose precise value or expression is not important.I(x)≤const always implies that I(x)(x∈Rn)has the bounded above.Hence Lemma 2.3 can be rewritten as

    Note that the notationo(|x|α)includes the continuity.

    Lemma 2.4(see[9])Let

    for anyp>0.Then for anyq>p,φ∈Lq((-∞,0];Rn).

    LetM0denote all probability measuresμon(-∞,0].For anyε≥0,define

    Lemma 2.5(see[9])Fixε0>0.For anyε∈[0,ε0],μεis continuously nondecreasing and satis fi esμε0≥με≥μ0=1 andMε0?Mε?M0.

    LetC1,2(R+×Rn;R+)denote the family of all nonnegative functionsV(t,x)on R+×Rnwhich are continuously di ff erential intand twice di ff erential inx,define

    For eq.(1.1),define an operatorLVfromto R by

    Ifx(t)is a solution to eq.(1.1),then by the Itformula(see[15]),we have

    whereLV(t,x(t))=LV(t,x(t),xt).

    In this paper,let

    whereQ∈Rn×nare positive de fi nite matrices andp>0.De fi ne

    Clearly,we have

    By(2.3),

    3 An Elementary Lemma

    The following lemma plays a key role in this paper.

    Lemma 3.1Under Assumption 1.1,if there exist constantsα≥ 0,a,ε,p,K0,Kj,αj>0,probability measuresμj∈Mε(1≤j≤N,j∈N),and a positive de fi nite matrixQ,such that for the functionVdefined in(2.5),φ∈BC((-∞,0];Rn),

    then for any initial data

    ProofFirst,note that condition(3.1)includes the following three inequalities

    and

    For any given initial dataξ∈BC((-∞,0];Rn)∩L?α((-∞,0];Rn),we will divide the whole proof into three steps.

    Step 1Let us fi rst show the existence of the global solutionx(t,ξ).Under Assumption 1.1,eq.(1.1)admits a unique maximal local solutionx(t)for-∞<t<σ,whereσis the explosion time.De fi ne the stopping time

    Sinceξis bounded,whenkis sufficiently large such thatV(θ,x(θ))≤kfor-∞<θ≤0,thusσk≥ 0.Ifσ<+∞,whent→σ,x(t)may explode.Hence

    shows thatσk≤σ.Thus,we may assume 0≤σk≤σ(?k∈N).Obviously,σkis increasing andσk→σ+∞≤σ(k→+∞)a.s..If we can showσ+∞=+∞,thenσ=+∞a.s.,which implies thatx(t)is a global solution.This is also to prove that,for anyt>0,P(σk≤t)→0 ask→+∞.

    Fixt>0.Now we prove thatP(σk≤t)→0(k→+∞).First note that ifσk<+∞,then by the continuity ofx(t),V(σk,x(σk))≥k.Hence,by(2.4)and(3.2),Lemmas 2.4 and 2.5,we can compute that

    whereKtis a positive constant independent ofk.Therefore we have

    which shows thatx(t)=x(t,ξ)is a global solution to eq.(1.1).

    Step 2Let us now show inequality(1.2).Applying the Itformula toeεtV(t,x(t)),by(2.4)and(3.3),Lemmas 2.4 and 2.5,yields

    wherecis a positive constant independent oftandK=ε-1K0is a positive constant independent ofξ.Hence,we have.Then the required assertion(1.2)follows from(2.7).

    Step 3Finally,let us show assertion(1.3).Using(3.4),Lemmas 2.4 and 2.5,we obtain that

    wherec1is a positive constant independent oft.Assertion(1.3)follows directly.The proof is therefore completed.

    Denote the left hand of(3.1)by Φ and establish the inequality

    where

    andα≥ 0,Kj,αj,a,p>0.By Lemma 2.3,

    This,together with(3.6),yields

    Substituting this into(3.5)shows that condition(3.1)is satis fi ed.To get(3.5)and(3.6),some conditions are imposed on the coefficientsfandg.These conditions are considered in the next section.

    4 Main Results

    Recall Φ to denote the left hand of(3.1).By(2.8),

    We fi rst list the following conditions that we will need

    (H1)There existα,κ,>0,the probability measureμ ∈Mεon(-∞,0],a positivede fi nite matrixQ,h(x)∈C(Rn;R),such that

    (H2)There existβ,λ,>0,the probability measureν ∈Mεon(-∞,0],h(x)∈C(Rn;R),such that

    (H3)There exista,β,σ>0,the probability measure∈Mεon(-∞,0],a positivede fi nite matrixQ,h(x)∈C(Rn;R),such that

    (F1)There exista,α,σ>0,the probability measure∈Mεon[-∞,0],a positivede fi nite matrixQ,h(x)∈C(Rn;R),such that

    (F2)There existβ,λ,>0,the probability measureν ∈Mεon[-∞,0],h(x)∈C(Rn;R),such that

    The continuity ofh(x)is important in all these conditions.

    Now we can state one of our main results in this paper.

    Theorem 4.1Under Assumption 1.1,if conditions(H1)-(H3)hold,α ≤2βand

    whereqandRare as defined in(2.6),then for any given initial dataξ∈BC((-∞,0];Rn)∩L?α((-∞,0];Rn),there exists a unique global solutionx(t,ξ)to eq.(1.1).Ifp∈(0,2)satis fi es

    then the solutionx(t,ξ)has properties(1.2)and(1.3),except thatαis replaced by 2β.

    ProofLetVbe as defined in(2.5),p∈(0,2),andε>0 be sufficiently small.Now we estimate I1-I4,respectively.First,by condition(H1)and Lemma 2.1,

    Next,by condition(H2)and Lemma 2.2,for anyu,δ∈(0,1),

    Noting thatp<2 and by condition(H3),we have

    It is easy to see thatI4=o(|φ(0)|2β+p).Then substituting(4.4)-(4.6)into(4.1)yields

    whose form is similar to(3.5),where

    Then we consider(4.8)under di ff erent cases.First,let condition(4.3)hold.Ifα<2β,then by(4.8),

    where

    Therefore

    Letλ,>0(otherwise,we can compute directly).Choosingδ=λ/(λ+)∈(0,1),minimizing the right hand of the above formula and by(4.3),we obtain

    Sinceεis sufficiently small,letuapproach to 1 adequately such that>0.Therefore,the form of(4.9)is similar to(3.6).

    Ifα=2β,then by(4.8),

    where

    If condition(4.2)holds andp>0 is sufficiently small,then condition(4.3)holds.Therefore,there exists a unique global solutionx(t,ξ)(?ξ∈BC((-∞,0];Rn)∩L?α((-∞,0];Rn)to eq.(1.1)).The proof is completed.

    If we impose condition(F1)on functionf,we have

    Theorem 4.2Under Assumption 1.1,if conditions(F1)and(F2)hold,p≥2,α≥2β-2 and

    whereRis as defined in(2.6),m=‖Q‖[1+R(p-2)],then for any initial dataξ∈BC((-∞,0];Rn)∩L((-∞,0];Rn),there exists a unique global solutionx(t,ξ)to eq.(1.1)and this solution satis fi es(1.2)and(1.3).

    ProofThe proof is similar to that of Theorem 4.1,so we omit it.

    [1]Wei Fengying,Wang Ke.The existence and uniqueness of the solution for stochastic functional di ff erential equations with in fi nite delay[J].J.Math.Anal.Appl.,2007,331:516-531.

    [2]Ren Yong,Lu Shiping,Xia Ningmao.Remarks on the existence and uniqueness of the solutions to stochastic functional di ff erential equations with in fi nite delay[J].J.Comput.Appl.Math.,2008,220(1):364-372.

    [3]Wang Lin,Wu Fuke.Existence,uniqueness and asymptotic properties of a class of nonlinear stochastic di ff erential delay equations with Markovian switching[J].Stoc.Dyns.,2009,9(2):253-275.

    [4]Xu Yong,Hu Shigeng.The existence and uniqueness of the solution for neutral stochastic functional di ff erential equations with in fi nite delay in abstract space[J].Acta.Appl.,2009,doi:10.1007/s 10440-009-9465-x.

    [5]Hu Yangzi,Wu Fuke,Huang Chengming.Robustness of exponential stability of a class of stochastic functional di ff erential equations with in fi nite delay[J].Auto.,2009,45:2577-2584.

    [6]Wu Fuke,Xu Yong.Stochastic Lotka-Volterra population dynamics with in fi nite delay[J].SIAM J.Appl.Math.,2009,70:641-657.

    [7]Zhou Shaobo,Wang Zhiyong,Feng Dan.Stochastic functional di ff erential equations with in fi nite delay[J].J.Math.Anal.Appl.,2009,357:416-426.

    [8]Liu Yue,Meng Xuejing,Wu Fuke.Some stability criteria of stochastic functional di ff erential equations with in fi nite delay[J].J.Appl.Math.Stoc.Anal.,2010,doi:10.1155/2010/875908.

    [9]Wu Fuke,Hu Shigeng,Huang Chengming.Robustness of general decay stability of nonlinear neutral stochastic functional di ff erential equations with in fi nite delay[J].Sys.Contr.Lett.,2010,59:195-202.

    [10]Meng Xuejing,Hu Shigeng,Wu Ping.Pathwise estimation of stochastic di ff erential equations with unbounded delay and its application to stochastic pantograph equations[J].Acta.Appi.Math.,2011,113:231-246.

    [11]Wu Fuke,Hu Shigeng.Attraction,stability and robustness for stochastic functional di ff erential equations with in fi nite delay[J].Auto.,2011,47:2224-2232.

    [12]Yue Chaohui.Neutral stochastic functional di ff erential equations with in fi nite delay and Poisson jumps in the Cg space[J].Appl.Math.Comp.,2014,237:595-604.

    [13]Guo Ying,Su Huan,Ding Xiaohua,Wang Ke.Global stochastic stability analysis for stochastic neural networks with in fi nite delay and Markovian switching[J].Appl.Math.Comp.,2014,245:53-65.

    [14]Beckenbach E F,Bellman R.Inequalities[M].Berlin:Springer-Verlag,1961.

    [15]Mao Xuerong.Stochastic di ff erential equations and applications[M].Chichester:Ellis Horwood,1997.

    無(wú)限時(shí)滯的隨機(jī)泛函微分方程解的漸近性質(zhì)

    王 琳,孫 琳,黃冬生,溫文豪

    (廣東工業(yè)大學(xué)應(yīng)用數(shù)學(xué)學(xué)院,廣東廣州 510520)

    本文研究了無(wú)限時(shí)滯隨機(jī)泛函微分方程解的存在唯一性,矩有界性的問(wèn)題.利用Lyapunov函數(shù)法以及概率測(cè)度的引入得到了確保方程解在唯一、矩有界、時(shí)間平均矩有界同時(shí)成立的一個(gè)新的條件.推廣了Khasminskii-Mao定理的相關(guān)結(jié)果.

    矩有界;伊藤公式;Brown運(yùn)動(dòng);無(wú)限時(shí)滯

    O211.63

    on:34K50;60H10

    A

    0255-7797(2017)04-0769-12

    date:2015-06-04Accepted date:2015-11-18

    Supported by National Natural Science Foundation of China(11201083);Natural Science Foundation of Guangdong Province(S2013010016270);Foundation of College Students Innovation Project(XJ201511845094).

    Biography:Wang Lin(1980-),female,born at Xinyang,Henan,lecturer,major in the theories of stochastic dynamic system.

    猜你喜歡
    方程解文豪時(shí)滯
    Navier-Stokes-Coriolis方程解的長(zhǎng)時(shí)間存在性
    黨的光輝亞克西
    心聲歌刊(2022年1期)2022-06-06 10:30:44
    帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
    朱文豪陶藝作品
    一類Choquard型方程解的存在性
    劉老師是一本萬(wàn)能書(shū)
    一類Kirchhoff-Poisson方程解的存在性
    同一個(gè)夢(mèng)
    一階非線性時(shí)滯微分方程正周期解的存在性
    一類時(shí)滯Duffing微分方程同宿解的存在性
    2021少妇久久久久久久久久久| 国产日韩欧美在线精品| 不卡视频在线观看欧美| freevideosex欧美| 一边亲一边摸免费视频| 国产亚洲精品久久久com| 自线自在国产av| a级片在线免费高清观看视频| 久久狼人影院| 丝袜喷水一区| 国产色爽女视频免费观看| 蜜桃久久精品国产亚洲av| 99热全是精品| 狂野欧美白嫩少妇大欣赏| 欧美xxxx性猛交bbbb| 999精品在线视频| 久久久久久久久久久丰满| 国产精品99久久久久久久久| 免费人妻精品一区二区三区视频| 一级二级三级毛片免费看| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院 | 你懂的网址亚洲精品在线观看| 欧美日韩视频精品一区| 免费观看性生交大片5| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 免费高清在线观看视频在线观看| 国产精品三级大全| 久久人人爽人人片av| 成年女人在线观看亚洲视频| 久久久亚洲精品成人影院| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 亚洲精品久久成人aⅴ小说 | 高清欧美精品videossex| 欧美成人午夜免费资源| 国产精品.久久久| 欧美成人午夜免费资源| 一级爰片在线观看| 狠狠婷婷综合久久久久久88av| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 最后的刺客免费高清国语| 亚洲精品456在线播放app| 在线播放无遮挡| a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av成人精品| 老熟女久久久| 国产男女超爽视频在线观看| 22中文网久久字幕| www.av在线官网国产| 精品少妇黑人巨大在线播放| 亚洲国产精品999| 伊人久久精品亚洲午夜| 新久久久久国产一级毛片| 九九爱精品视频在线观看| 久久精品国产亚洲网站| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 久久影院123| 免费黄色在线免费观看| 国产探花极品一区二区| 午夜av观看不卡| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| 久久国产精品大桥未久av| 亚洲国产av影院在线观看| 国产成人a∨麻豆精品| 18禁观看日本| 黄色一级大片看看| 成人国语在线视频| 欧美精品亚洲一区二区| 亚洲性久久影院| av播播在线观看一区| 成人漫画全彩无遮挡| 国产日韩欧美视频二区| 免费大片黄手机在线观看| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡 | 成人国产麻豆网| 大片免费播放器 马上看| 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 成人综合一区亚洲| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 国产精品一二三区在线看| 中国美白少妇内射xxxbb| 在线观看免费日韩欧美大片 | 黑丝袜美女国产一区| 亚洲av男天堂| 熟女人妻精品中文字幕| 少妇被粗大的猛进出69影院 | 精品国产乱码久久久久久小说| 麻豆乱淫一区二区| 曰老女人黄片| 最近2019中文字幕mv第一页| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 乱人伦中国视频| 久久av网站| 免费观看在线日韩| 制服诱惑二区| 亚洲精品色激情综合| videossex国产| 国产亚洲精品第一综合不卡 | 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 亚洲三级黄色毛片| 男的添女的下面高潮视频| 多毛熟女@视频| 99热全是精品| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 麻豆乱淫一区二区| 99国产综合亚洲精品| 亚洲精品色激情综合| 狂野欧美白嫩少妇大欣赏| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级爰片在线观看| 99久久精品国产国产毛片| 成人综合一区亚洲| 2022亚洲国产成人精品| 国产精品久久久久久av不卡| 国产av一区二区精品久久| 亚洲精品,欧美精品| 国产黄片视频在线免费观看| 亚洲精品乱码久久久v下载方式| 大陆偷拍与自拍| 国产亚洲欧美精品永久| 亚洲精品第二区| 免费看光身美女| 精品国产一区二区久久| 日韩免费高清中文字幕av| 中文字幕久久专区| 2021少妇久久久久久久久久久| 精品一品国产午夜福利视频| 3wmmmm亚洲av在线观看| 国产精品一区www在线观看| 国产精品人妻久久久久久| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 久久午夜福利片| 精品亚洲成国产av| 午夜日本视频在线| 嫩草影院入口| 国产午夜精品一二区理论片| 一区二区av电影网| 一级黄片播放器| 亚洲国产日韩一区二区| 国产精品免费大片| 九九爱精品视频在线观看| 国产成人精品久久久久久| 成人影院久久| 国产日韩欧美亚洲二区| av不卡在线播放| 99热这里只有精品一区| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 女人久久www免费人成看片| 熟女电影av网| 看非洲黑人一级黄片| 高清av免费在线| 美女福利国产在线| 妹子高潮喷水视频| 80岁老熟妇乱子伦牲交| 大话2 男鬼变身卡| 日日撸夜夜添| 男女高潮啪啪啪动态图| 十分钟在线观看高清视频www| 亚洲成人av在线免费| 日本与韩国留学比较| 又大又黄又爽视频免费| 最近中文字幕高清免费大全6| 久久人人爽人人片av| 欧美一级a爱片免费观看看| 尾随美女入室| 欧美精品一区二区免费开放| 一级毛片电影观看| 国产高清有码在线观看视频| 欧美日韩av久久| 又黄又爽又刺激的免费视频.| 亚洲成色77777| 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 国产高清三级在线| av福利片在线| 五月天丁香电影| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 亚洲av不卡在线观看| 在线观看美女被高潮喷水网站| 亚洲图色成人| 这个男人来自地球电影免费观看 | 观看美女的网站| 婷婷色麻豆天堂久久| 哪个播放器可以免费观看大片| 国产黄片视频在线免费观看| 午夜精品国产一区二区电影| 午夜免费男女啪啪视频观看| 天堂中文最新版在线下载| 国产国语露脸激情在线看| 久久人人爽av亚洲精品天堂| 美女福利国产在线| 韩国av在线不卡| 亚洲精品久久成人aⅴ小说 | 亚洲精品日韩av片在线观看| 亚洲精品日韩av片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| 国产亚洲精品第一综合不卡 | 爱豆传媒免费全集在线观看| 又粗又硬又长又爽又黄的视频| 亚洲综合精品二区| 午夜影院在线不卡| 欧美日韩一区二区视频在线观看视频在线| 一本色道久久久久久精品综合| 色婷婷久久久亚洲欧美| 免费少妇av软件| 久久99一区二区三区| 2018国产大陆天天弄谢| 久久国内精品自在自线图片| 中文字幕免费在线视频6| 亚洲国产日韩一区二区| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 丰满饥渴人妻一区二区三| 亚洲欧美成人精品一区二区| 纵有疾风起免费观看全集完整版| 日日撸夜夜添| 一本大道久久a久久精品| 国产一区有黄有色的免费视频| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 99九九在线精品视频| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99| 视频区图区小说| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 国产不卡av网站在线观看| 国产精品国产三级专区第一集| 国产亚洲最大av| 18禁动态无遮挡网站| 大香蕉久久网| 亚洲国产av影院在线观看| 高清不卡的av网站| 久久久精品区二区三区| 久久亚洲国产成人精品v| 亚洲一区二区三区欧美精品| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 亚洲欧美一区二区三区黑人 | 国产av一区二区精品久久| 美女大奶头黄色视频| 精品午夜福利在线看| 能在线免费看毛片的网站| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久久久电影| 亚洲综合色惰| 国产成人a∨麻豆精品| 成年av动漫网址| 国产有黄有色有爽视频| 我的女老师完整版在线观看| 婷婷色综合www| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人av在线免费| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 中文乱码字字幕精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 精品一区二区免费观看| 日日摸夜夜添夜夜爱| 香蕉精品网在线| 久久久久国产网址| 哪个播放器可以免费观看大片| 高清不卡的av网站| 国产精品蜜桃在线观看| 大香蕉久久网| 人人妻人人澡人人看| 国产免费一区二区三区四区乱码| 美女视频免费永久观看网站| 十八禁网站网址无遮挡| 免费播放大片免费观看视频在线观看| 性色avwww在线观看| 亚洲美女搞黄在线观看| 伦理电影大哥的女人| 精品国产乱码久久久久久小说| 国产免费一区二区三区四区乱码| 精品亚洲成a人片在线观看| 国产欧美亚洲国产| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| 精品亚洲成国产av| a级毛片在线看网站| 午夜免费鲁丝| 18禁动态无遮挡网站| 国产精品一区二区在线观看99| 一本色道久久久久久精品综合| 欧美日韩av久久| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| 91精品伊人久久大香线蕉| 午夜精品国产一区二区电影| 99视频精品全部免费 在线| 一本色道久久久久久精品综合| av女优亚洲男人天堂| 赤兔流量卡办理| 免费高清在线观看视频在线观看| 免费观看性生交大片5| 久久久久久久国产电影| 大陆偷拍与自拍| 国产男人的电影天堂91| 青春草国产在线视频| 一个人看视频在线观看www免费| 一区在线观看完整版| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| av播播在线观看一区| 91精品伊人久久大香线蕉| 久久国产精品男人的天堂亚洲 | av在线观看视频网站免费| 久久久久人妻精品一区果冻| 超碰97精品在线观看| 十八禁网站网址无遮挡| 精品一区二区免费观看| 亚洲精品国产av成人精品| 新久久久久国产一级毛片| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 成人亚洲精品一区在线观看| 亚洲av福利一区| 国产精品一区www在线观看| 欧美老熟妇乱子伦牲交| av免费观看日本| 多毛熟女@视频| 亚洲精品456在线播放app| 欧美日韩一区二区视频在线观看视频在线| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 亚洲国产日韩一区二区| 国产一区亚洲一区在线观看| 99热全是精品| av有码第一页| av免费在线看不卡| 国产乱来视频区| 伦精品一区二区三区| 大码成人一级视频| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 麻豆精品久久久久久蜜桃| 国产精品.久久久| 大码成人一级视频| 亚洲成人一二三区av| 亚洲第一区二区三区不卡| 亚洲情色 制服丝袜| 精品人妻一区二区三区麻豆| 视频在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 全区人妻精品视频| 国产精品国产三级专区第一集| 精品人妻偷拍中文字幕| 亚洲av男天堂| 久久久久久久精品精品| 丝袜脚勾引网站| 熟妇人妻不卡中文字幕| 欧美老熟妇乱子伦牲交| 中文字幕人妻丝袜制服| 婷婷色麻豆天堂久久| 国产一区亚洲一区在线观看| 大片免费播放器 马上看| 日韩一区二区三区影片| 亚洲国产成人一精品久久久| 热99久久久久精品小说推荐| 亚洲色图 男人天堂 中文字幕 | 国产免费福利视频在线观看| 在线观看国产h片| 久久久精品区二区三区| 日日摸夜夜添夜夜添av毛片| 男女边摸边吃奶| 嫩草影院入口| 中文字幕久久专区| 亚洲欧洲国产日韩| 简卡轻食公司| 欧美成人午夜免费资源| 男女啪啪激烈高潮av片| 免费观看无遮挡的男女| 97在线人人人人妻| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 久久久久久久亚洲中文字幕| 久久热精品热| av在线播放精品| 精品久久久噜噜| 69精品国产乱码久久久| 日日摸夜夜添夜夜爱| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 日韩 亚洲 欧美在线| 色网站视频免费| av天堂久久9| 国产老妇伦熟女老妇高清| 久久狼人影院| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 91精品三级在线观看| 国产成人精品婷婷| 18禁动态无遮挡网站| 满18在线观看网站| 久久国产亚洲av麻豆专区| 两个人免费观看高清视频| 久久久久久久久大av| 麻豆乱淫一区二区| 九九在线视频观看精品| 视频中文字幕在线观看| av在线老鸭窝| av播播在线观看一区| 美女国产高潮福利片在线看| 亚洲无线观看免费| 亚洲av福利一区| 乱人伦中国视频| 亚洲经典国产精华液单| 桃花免费在线播放| 天堂俺去俺来也www色官网| 亚洲欧美精品自产自拍| av国产精品久久久久影院| 成年女人在线观看亚洲视频| 99热网站在线观看| 成人二区视频| 日本黄大片高清| av卡一久久| 欧美老熟妇乱子伦牲交| 久久久久视频综合| 人妻系列 视频| 亚洲欧美精品自产自拍| 国产精品久久久久久av不卡| av视频免费观看在线观看| 免费少妇av软件| 如何舔出高潮| 美女大奶头黄色视频| 丰满少妇做爰视频| 国产在线视频一区二区| 国产男女内射视频| 中文字幕人妻熟人妻熟丝袜美| 免费观看a级毛片全部| 亚洲四区av| 久久久国产精品麻豆| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 美女主播在线视频| 51国产日韩欧美| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 欧美人与善性xxx| 午夜激情久久久久久久| 久久精品国产亚洲av天美| 久久久午夜欧美精品| 99久久精品国产国产毛片| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 免费少妇av软件| www.色视频.com| 亚洲国产欧美日韩在线播放| freevideosex欧美| a级毛片黄视频| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 一级a做视频免费观看| 亚洲精品乱码久久久v下载方式| 国产一区二区三区av在线| 日韩一区二区三区影片| 欧美三级亚洲精品| 好男人视频免费观看在线| 国产精品99久久久久久久久| 丰满乱子伦码专区| 久久狼人影院| 国产一区亚洲一区在线观看| 老熟女久久久| 亚洲av成人精品一二三区| 丰满饥渴人妻一区二区三| 亚洲精品亚洲一区二区| 在现免费观看毛片| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 免费少妇av软件| 色吧在线观看| 丝瓜视频免费看黄片| 欧美bdsm另类| 久久久精品区二区三区| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 成人无遮挡网站| 亚洲经典国产精华液单| 热re99久久国产66热| 成人免费观看视频高清| 国产综合精华液| 日韩成人伦理影院| 久久影院123| 91精品一卡2卡3卡4卡| 欧美精品国产亚洲| 精品久久久噜噜| 欧美精品国产亚洲| 国产亚洲av片在线观看秒播厂| 国产国语露脸激情在线看| 在线亚洲精品国产二区图片欧美 | 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡 | 爱豆传媒免费全集在线观看| 高清在线视频一区二区三区| www.色视频.com| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 内地一区二区视频在线| 久久99精品国语久久久| 在线观看免费高清a一片| 亚洲国产日韩一区二区| av在线播放精品| 亚洲中文av在线| 91精品国产国语对白视频| 看十八女毛片水多多多| 啦啦啦视频在线资源免费观看| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 亚洲,欧美,日韩| 久久精品久久精品一区二区三区| 尾随美女入室| 亚洲色图综合在线观看| 黄色配什么色好看| 黄色怎么调成土黄色| 欧美激情国产日韩精品一区| 日韩成人av中文字幕在线观看| 不卡视频在线观看欧美| 久久 成人 亚洲| 看十八女毛片水多多多| 精品卡一卡二卡四卡免费| 免费观看av网站的网址| 99九九在线精品视频| 亚洲欧美精品自产自拍| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 最近2019中文字幕mv第一页| 日产精品乱码卡一卡2卡三| 欧美精品亚洲一区二区| 国产免费福利视频在线观看| 老司机亚洲免费影院| 午夜日本视频在线| 精品国产露脸久久av麻豆| 丰满少妇做爰视频| 精品熟女少妇av免费看| 老司机亚洲免费影院| 久久99一区二区三区| 水蜜桃什么品种好| 这个男人来自地球电影免费观看 | 亚洲第一av免费看| 精品午夜福利在线看| 天天影视国产精品| 国产男人的电影天堂91| 国产午夜精品一二区理论片| 国产日韩一区二区三区精品不卡 | 久久精品国产自在天天线| 久久精品国产亚洲av天美| 中国三级夫妇交换| 秋霞伦理黄片| 中国国产av一级| 欧美日本中文国产一区发布| 一二三四中文在线观看免费高清| 黑丝袜美女国产一区| 亚洲av免费高清在线观看| 亚洲av日韩在线播放| 午夜激情av网站| 国产极品天堂在线| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 久久久久久久亚洲中文字幕| 国产精品免费大片| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 亚洲成色77777| 午夜福利影视在线免费观看| 精品熟女少妇av免费看| 水蜜桃什么品种好| 91国产中文字幕| 91精品国产九色| 精品国产一区二区久久| 亚洲国产精品国产精品| 成人国语在线视频| 国产av一区二区精品久久| 人人澡人人妻人| 成人亚洲精品一区在线观看| 老司机亚洲免费影院| 亚洲激情五月婷婷啪啪| 另类精品久久| 少妇被粗大猛烈的视频| 久久久国产欧美日韩av| 午夜久久久在线观看| 国产精品99久久久久久久久| 男男h啪啪无遮挡| 在线天堂最新版资源|