汪道兵,周福建,葛洪魁,Sergio Zlotnik,楊向同,彭金龍
1)中國石油大學(xué)(北京)非常規(guī)天然氣研究院,北京100249;2)西班牙加泰羅尼亞理工大學(xué)土木工程學(xué)院,巴塞羅那E-08034,西班牙;3)中國石油勘探開發(fā)研究院采油工程研究所,北京100083;4)中國石油塔里木油田分公司,新疆維吾爾自治區(qū)庫爾勒841000;5)中國石油大慶油田有限責(zé)任公司第二采油廠,黑龍江大慶163414
【環(huán)境與能源 / Environment and Energy】
相互垂直裂縫應(yīng)力陰影的影響因素及規(guī)律
汪道兵1,2,3,周福建1,葛洪魁1,Sergio Zlotnik2,楊向同4,彭金龍5
1)中國石油大學(xué)(北京)非常規(guī)天然氣研究院,北京100249;2)西班牙加泰羅尼亞理工大學(xué)土木工程學(xué)院,巴塞羅那E-08034,西班牙;3)中國石油勘探開發(fā)研究院采油工程研究所,北京100083;4)中國石油塔里木油田分公司,新疆維吾爾自治區(qū)庫爾勒841000;5)中國石油大慶油田有限責(zé)任公司第二采油廠,黑龍江大慶163414
基于彈性力學(xué)理論,采用Galerkin有限元數(shù)值離散化方法,編制Matlab有限元程序,數(shù)值模擬兩條相互垂直裂縫干擾時(shí)的“應(yīng)力陰影”分布狀態(tài),其主應(yīng)力與主方向分布具有關(guān)于交點(diǎn)(坐標(biāo)原點(diǎn))的對稱性特征.分析了流壓比值、孔隙壓力、縫面流壓及水平應(yīng)力差值等因素對兩縫間主應(yīng)力及主方向的影響,通過改進(jìn)變排量施工、改變壓裂液黏度、油氣井開采降低孔隙壓力和增大注入液量等工藝,發(fā)揮應(yīng)力陰影效應(yīng)的優(yōu)點(diǎn),增加復(fù)雜縫網(wǎng)形成的可能性.
應(yīng)力干擾;縫網(wǎng)壓裂;垂直裂縫;有限元方法;轉(zhuǎn)向劑;可降解纖維;流體壓力;流固耦合;線彈性力學(xué)
頁巖氣和致密氣等非常規(guī)油氣藏要通過分簇射孔、分級完井和分段水力壓裂形成復(fù)雜裂縫才能獲得經(jīng)濟(jì)產(chǎn)能,而每次形成的人工裂縫將會改變裂縫周圍的應(yīng)力場分布,當(dāng)裂縫間距較近時(shí),將會發(fā)生應(yīng)力陰影效應(yīng),即后續(xù)人工裂縫的起裂與擴(kuò)展會受到先前產(chǎn)生裂縫應(yīng)力場的影響[1].正確利用應(yīng)力陰影效應(yīng)將有助于合理設(shè)計(jì)頁巖氣井的完井方式、壓裂工藝和提高氣井產(chǎn)能.
近年來,不少學(xué)者研究了水力壓裂引起的應(yīng)力陰影效應(yīng).Suppachoknirun等[1]數(shù)值模擬了天然裂縫、裂縫間距、巖石力學(xué)性質(zhì)和就地應(yīng)力條件等因素對多條平行裂縫產(chǎn)生的應(yīng)力陰影的影響規(guī)律,提供了一種定量優(yōu)化頁巖完井方式的方法,理解裂縫間距對應(yīng)力陰影效應(yīng)的影響,促進(jìn)復(fù)雜裂縫的形成.Skomorowski等[2]研究了非常規(guī)氣藏多級水力壓裂(multi-stage hydraulic fracturing, MSHF)過程中的應(yīng)力陰影效應(yīng),提供了優(yōu)化裂縫間距的可能性,得出了應(yīng)力差改變對完井方式的影響,指出非常規(guī)油氣藏水力壓裂期間波動的瞬時(shí)停泵壓力(instantaneous shut-in pressure, ISIP)和破裂壓力很好地體現(xiàn)了應(yīng)力陰影干擾現(xiàn)象,并可能影響延伸裂縫的重新定向.Wu等[3]分析了多條平行裂縫沿水平井筒的非均勻擴(kuò)展問題,提供了控制多條裂縫同時(shí)擴(kuò)展的新視角.Stepanova等[4]推導(dǎo)了無限大彈性體中裂縫周圍的應(yīng)力場計(jì)算公式.Damjanac等[5]的室內(nèi)實(shí)驗(yàn)證實(shí),油氣井壓裂后,孔隙壓力在前次裂縫周圍成橢圓形狀分布,隨著油氣生產(chǎn)的進(jìn)行,孔隙壓力在裂縫周圍的分布將很不均勻,從而改變了地層中裂縫周圍的孔隙壓力梯度,導(dǎo)致整個(gè)儲層內(nèi)的地應(yīng)力重新分布.Kumar等[6]用流固耦合的二維數(shù)值模型研究了前次裂縫周圍孔隙壓力隨時(shí)間變化的影響,并證明了長期生產(chǎn)能逐漸改變地應(yīng)力場,使應(yīng)力發(fā)生90°反轉(zhuǎn).Pankaj等[7-9]根據(jù)試驗(yàn)和模擬研究認(rèn)為,地層中存在的支撐裂縫將改變井眼附近應(yīng)力分布,使重復(fù)壓裂裂縫的啟裂方位垂直于初次裂縫方位,離開井眼一定范圍再發(fā)生轉(zhuǎn)向,以平行于初次裂縫方位延伸.Morales等[10]在應(yīng)力軌跡理論的基礎(chǔ)上通過對影響重復(fù)壓裂裂縫擴(kuò)展的無因次量的分析,得到了重復(fù)壓裂裂縫延伸的軌跡.汪道兵等[11-12]系統(tǒng)地研究了引起垂直裂縫井重復(fù)壓裂前原地應(yīng)力場變化的主要因素,建立了重復(fù)壓裂時(shí)的總應(yīng)力場計(jì)算模型.
前人對水力壓裂引起的應(yīng)力場的研究對象多集中于單縫或平行裂縫,多數(shù)以Sneddon解析解為基礎(chǔ)進(jìn)行數(shù)值模擬,而頁巖水力壓裂以形成縫網(wǎng)為主,但目前對垂直交叉裂縫形成應(yīng)力陰影報(bào)道較少[1-9].本研究從有限元變分原理出發(fā),采用Galerkin有限元數(shù)值離散化方法,基于彈性力學(xué)理論,編制應(yīng)力平衡方程的有限元程序,數(shù)值模擬了兩條相互垂直裂縫干擾時(shí)的“應(yīng)力陰影”分布狀態(tài),研究了兩裂縫流壓比值、孔隙壓力、縫面流壓和水平地應(yīng)力差等因素對“應(yīng)力陰影”的影響.
兩條垂直裂縫間形成應(yīng)力干擾的物理模型如圖1,其假設(shè)條件[11-14]如下:
1)滲透率各向同性的有限地層中間存在兩條相互垂直的人工裂縫,它們縫長、縫寬均相同,且數(shù)值保持不變化,半縫長記為L;
2)問題簡化為二維平面應(yīng)變問題;
3)外邊界地層地應(yīng)力最大、最小水平主應(yīng)力分別為σH和σh;
4)液體作用在兩縫面上的流壓分別為p11和p21;
5)假設(shè)應(yīng)力干擾在地層溫度條件下進(jìn)行,即視應(yīng)力干擾過程為等溫過程;
6)不考慮流固耦合效應(yīng),即固定兩縫面壓力情況下,研究兩垂直縫間的干擾效應(yīng);
7)原始地層孔隙壓力為pp, 地層流體微可壓縮,不考慮應(yīng)力變化引起的巖石基質(zhì)變形對孔壓的影響;
8)邊界Γ=ΓL∪ΓR∪ΓT∪ΓB∪ΓF,ΓL和ΓR分別為遠(yuǎn)場左、右邊界,ΓT和ΓB分別為上、下邊界,4個(gè)邊界上的遠(yuǎn)場應(yīng)力分別為σH和σh,ΓF為兩裂縫邊緣,其上流壓為p11與p21.
圖1 兩條垂直裂縫干擾的物理模型Fig.1 (Color online) The physical model of two parallel disturbed fractures
2.1 控制方程
根據(jù)彈性力學(xué)理論,應(yīng)力平衡方程[13-14]為
σij,j+bi=0
(1)
其中,σij為二階Cauthy應(yīng)力張量;bi為一階體積力張量;i,j=1, 2.
假設(shè)多孔介質(zhì)為線彈性變形,應(yīng)力應(yīng)變服從小變形假設(shè),則應(yīng)力應(yīng)變張量關(guān)系式[15-16]為
σij=Dijklεkl
(2)
根據(jù)有效應(yīng)力概念,柯西應(yīng)力可以分解成兩部分,代表流體孔隙壓力對固體基質(zhì)產(chǎn)生的效應(yīng)[17],即
σeff=σ-αppI
(3)
其中,σeff為有效應(yīng)力張量;α為Biot彈性常數(shù),α∈[0,1];pp為地層原始孔隙壓力;I為單位張量.
應(yīng)變與位移張量間關(guān)系式[13-14,17]為
(4)
2.2 邊界條件
1)左邊界ΓL和右邊界ΓR:t1=-σH;
2)上邊界ΓT與下邊界ΓB:t2=-σh;
3)第1條裂縫:t1=0,t2=p1;
4)第2條裂縫:t1=0,t2=p2.
2.3 有限元離散化方法
2.3.1 變分形式
根據(jù)有限元變分理論,設(shè)Ω為圖1中的區(qū)域,對任意的測試函數(shù)wi∈Vi={wi|wi=0, 在Γqi上},Vi為變分空間,Γqi對應(yīng)區(qū)域Ω中的位移邊界條件(數(shù)學(xué)上為Dirichlet條件)的邊,得出應(yīng)力平衡方程的變分形式15-16]為
a(w,u)=(w,b)+(w,t)Γ
(5)
2.3.2 應(yīng)力平衡方程的Galerkin離散化
Kd=F
(6)
ndof為自由度小數(shù).
用Matlab高級語言編制了有限元計(jì)算程序,由于三角形單元節(jié)點(diǎn)數(shù)較多(12 044個(gè)),剛度矩陣K采用稀疏矩陣方式來存儲,即K=sparse(allJ,allI,allK),allI和allJ表示非零元素allK的指標(biāo)[19];有限元算法求解出方程(6)后,得出位移節(jié)點(diǎn)分布,再根據(jù)本構(gòu)關(guān)系可以分別求出應(yīng)力與應(yīng)變分量,最后分別得出主方向與主應(yīng)力的大小分布,計(jì)算公式[13-14]為
(7)
(8)
其中,θ表示主方向;σ1和σ2表示兩水平主應(yīng)力大小,且σ1>σ2, 進(jìn)而可以得出區(qū)域中的主方向與主應(yīng)力的平面分布狀態(tài)(本研究只計(jì)算最大主應(yīng)力σ1).
2.4 模型驗(yàn)證
取與表1相同的最大和最小水平應(yīng)力值,孔隙壓力和井壁流壓均設(shè)為0,采用式(6)中有限元離散化結(jié)果模擬了半徑為0.1m直井井眼在1m處的切向應(yīng)力大小,并與彈性力學(xué)中的周向應(yīng)力解析解對比[11-13,20],如圖2.有限元數(shù)值解與解析解一致,驗(yàn)證了本模型有限元數(shù)值解的可靠性.
表1 基本輸入?yún)?shù)
圖2 周向應(yīng)力的有限元解與解析解比較(r=1 m)Fig.2 (Color online) Comparison of finite element solution and analytical solution of hoop stress (r=1 m)
為分析兩條垂直裂縫間應(yīng)力干擾的影響,分別模擬了它們的主應(yīng)力、主方向分布,并對孔隙壓力、縫面流體壓力、兩縫面流壓比和水平應(yīng)力差值進(jìn)行了因素敏感性分析.
3.1 主方向與主應(yīng)力分布
圖3 主方向平面分布圖Fig.3 (Color online) The 2D distribution of principle angle
按表1中的基本參數(shù),以兩垂直裂縫交點(diǎn)為原點(diǎn),x軸沿水平向右方向,y軸沿垂直向上方向建立直角坐標(biāo)系,分別模擬了主方向與主應(yīng)力二維平面分布圖,結(jié)果如圖3和圖4.可看出它們的分布具有關(guān)于交點(diǎn)(坐標(biāo)原點(diǎn))的對稱性特征,即第一、三象限和第二、四象限分布基本相同.在垂直方向裂縫(對應(yīng)圖1的第2條)端部呈現(xiàn)了明顯的應(yīng)力集中現(xiàn)象,而水平方向裂縫端部的應(yīng)力集中現(xiàn)象不明顯(較弱),可能是兩裂縫應(yīng)力干擾疊加后應(yīng)力集中現(xiàn)象減弱的結(jié)果.但是第1條裂縫部分(端部到中間部位)主應(yīng)力值較小(圖4中圓圈標(biāo)記區(qū)域),主方向值不同于其他區(qū)域,可利用此部分“應(yīng)力陰影”效應(yīng),采用縫端端部暫堵轉(zhuǎn)向壓裂工藝,在第1條裂縫處發(fā)生人工裂縫轉(zhuǎn)向,從而產(chǎn)生新裂縫,促進(jìn)復(fù)雜縫網(wǎng)形成的可能性[12-13,21-25].
圖4 主應(yīng)力平面分布圖Fig.4 (Color online) The 2D distribution of principle stress
3.2 兩縫面流體壓力比
圖5 不同流壓比值下主應(yīng)力與主方向變化曲線Fig.5 (Color online) The relationships between fluid pressure ratio and principle stress, principle angle
輸入表1參數(shù),改變兩裂縫內(nèi)流壓比值,其他參數(shù)保持不變,模擬了P1和P2兩點(diǎn)處的主應(yīng)力值與主方向隨流壓比值的變化規(guī)律,參考表1中50MPa縫內(nèi)流壓值,結(jié)果如圖5,縱坐標(biāo)表示歸一化主應(yīng)力與歸一化主方向.從圖5可見,隨著兩縫內(nèi)流壓比值增大,主應(yīng)力和主方向均呈現(xiàn)線性單調(diào)遞減趨勢(P2點(diǎn)主應(yīng)力變化較緩慢).說明改變兩縫內(nèi)壓力分布,可以誘使主方向和主應(yīng)力發(fā)生變化,從而利用兩縫間應(yīng)力干擾效應(yīng),促使新的人工裂縫形成,形成復(fù)雜縫網(wǎng);現(xiàn)場可以多次停泵、變排量施工,使兩縫內(nèi)壓力發(fā)生波動,或者注入纖維等暫堵轉(zhuǎn)向劑,提高縫內(nèi)凈壓力,誘使縫間流壓變化,形成縫間干擾,引發(fā)復(fù)雜縫網(wǎng)形成[21-25].
3.3 孔隙壓力
按表1 中參數(shù),取不同的地層孔隙壓力值,其他參數(shù)保持不變,模擬了P1和P2兩點(diǎn)處的不同孔隙壓力下主應(yīng)力與主方向的變化,參考表1中50MPa孔隙壓力,結(jié)果如圖6,縱坐標(biāo)表示歸一化主應(yīng)力與歸一化主方向.從圖6可見,隨著孔隙壓力增加,兩點(diǎn)處的主應(yīng)力主方向均單調(diào)遞增,說明增大或減小地層孔隙壓力可誘使兩縫間應(yīng)力場變化,因此可通過開采降低孔隙壓力或注水提高孔隙壓力辦法,促使人工裂縫重新定向[21-25].
圖6 不同地層孔隙下主應(yīng)力與主方向變化曲線Fig.6 (Color online) The relationships between pore pressure and principle stress, principle angle
3.4 縫面流體壓力
如表1 中參數(shù),保持兩裂縫中流壓相同,改變作用于縫面上流體壓力大小,模擬P1和P2兩點(diǎn)處的主應(yīng)力與主方向隨流壓的變化規(guī)律,參考表1中50MPa縫內(nèi)流體壓力,結(jié)果如圖7,縱坐標(biāo)表示歸一化主應(yīng)力與歸一化主方向.隨著流體壓力增加,主應(yīng)力和主方向呈現(xiàn)線性減小趨勢,說明可以通過改變壓裂液黏度、變排量施工的辦法來增強(qiáng)縫間干擾,促使裂縫重新定向,引導(dǎo)復(fù)雜人工縫網(wǎng)的形成[21-25].
圖7 不同流壓下主應(yīng)力與主方向變化曲線(兩縫流壓相同)Fig.7 (Color online) The relationships between fluid pressure and principle stress, principle angle (The two fractures have the same fluid pressure.)
3.5 遠(yuǎn)場水平應(yīng)力差值
如表1 中參數(shù),改變遠(yuǎn)場水平應(yīng)力差值大小,其他參數(shù)保持不變,模擬P1和P2兩點(diǎn)處的主應(yīng)力與主方向隨水平應(yīng)力差值的變化規(guī)律,以表1中水平應(yīng)力差值為參考值,結(jié)果如圖8,縱坐標(biāo)表示歸一化主應(yīng)力與歸一化主方向.隨著水平應(yīng)力差值增加,主方向線性減小,主應(yīng)力線性增大,說明較小應(yīng)力差值水平下,主應(yīng)力值較小,此時(shí)人工裂縫較易重新定向,可通過纖維暫堵轉(zhuǎn)向壓裂辦法,誘使復(fù)雜人工縫網(wǎng)的形成[21-25].
圖8 不同水平應(yīng)力差值下的主應(yīng)力與主方向變化曲線Fig.8 (Color online) The relationships between horizontal stress difference and principle stress, principle angle
A井是塔里木盆地塔北隆起輪南奧陶系潛山背斜西圍斜哈拉哈塘富油氣區(qū)帶上的一口探井,完井方式為裸眼完井,井型為直井,目的層是奧陶系一間房組及鷹山組一段,酸壓改造目的層段為奧陶系6 618.5~6 700.0m.該井油氣顯示情況較差,物探資料平面圖反映井眼向南東偏移串珠中心55m.最大水平主應(yīng)力為136~153MPa,平均值為144.8MPa;最小水平主應(yīng)力為136~152MPa,平均值為143.7MPa,應(yīng)力差值0~3MPa,平均值僅為1.1MPa.本區(qū)最大主應(yīng)力方向?yàn)镹E40°左右,A井偶極聲波各向異性玫瑰圖顯示儲層段最大主應(yīng)力方向?yàn)镹W300°—NW330°,雙井徑基本無差異,6 536~6 748m井段最大水平主應(yīng)力與最小水平主應(yīng)力差值較小(均值僅為1.06MPa).根據(jù)巖石力學(xué)規(guī)律,人工裂縫的起裂和延伸方向存在不確定性,可能影響酸壓溝通儲集體.
由于A井油層段的應(yīng)力差值較小,根據(jù)前面分析,可以采用纖維暫堵轉(zhuǎn)向壓裂技術(shù),改變縫內(nèi)凈壓力分布,促使復(fù)雜縫網(wǎng)的形成,從而提高溝通縫洞儲集體的機(jī)率.根據(jù)施工曲線,繪制出泵注兩級壓裂液過程中的泵壓和排量曲線,如圖9,第1級壓裂破裂后,泵壓持續(xù)升高(由76.8MPa升至88.4MPa),未溝通到儲集體;泵注第2級壓裂液過程中,排量低于第1級,但泵壓高于第1級,兩次泵壓不相同,說明可能是產(chǎn)生了轉(zhuǎn)向裂縫導(dǎo)致兩級泵壓有差異.
圖9 泵注第1級和第2級壓裂液井口壓力和排量對比Fig.9 (Color online) The comparison of pump pressure and flow during the first and the second stage
從圖9中讀出兩級壓裂的破裂壓力(轉(zhuǎn)換成井底壓力),第2級破裂壓力比第1級破裂壓力高出約25MPa,根據(jù)轉(zhuǎn)向判定模擬結(jié)果,第2級破裂壓力至少比第1級高出12.2MPa才能產(chǎn)生轉(zhuǎn)向裂縫,兩次張性破裂壓力不同,結(jié)合注酸后泵壓大幅度下降及壓后返排殘酸情況,有力地說明第2級壓裂產(chǎn)生了轉(zhuǎn)向裂縫.
根據(jù)施工曲線,繪制出纖維進(jìn)入地層后的泵壓和排量曲線,如圖10,可以看出纖維進(jìn)入地層后泵壓升高了20MPa,說明纖維起到了暫堵裂縫作用,之后注入第2級壓裂液,破裂點(diǎn)明顯.
A井酸壓施工雖有明顯溝通,但儲集體內(nèi)流體為水.酸壓后4mm油嘴求產(chǎn),油壓0.45MPa,產(chǎn)少量氣,產(chǎn)水23.92m3/d.測試結(jié)論為含氣水層.
圖10 纖維進(jìn)地層后泵壓和排量曲線Fig.10 (Color online) The pump pressure and flow rate after fiber enters into the formation
綜上研究可見:
1) 本研究根據(jù)有限元變分理論和彈性力學(xué)理論,采用Galerkin有限元離散化方法,編制了兩條垂直裂縫間應(yīng)力干擾的有限元程序,得出了主應(yīng)力和主方向的平面分布圖.
2)模擬了主應(yīng)力與主方向的平面分布圖,它們的分布具有關(guān)于交點(diǎn)(坐標(biāo)原點(diǎn))的對稱性特征.其中一條裂縫部分(端部到中間部位)主應(yīng)力值較小,主方向值變化較強(qiáng),可利用此部分“應(yīng)力陰影”效應(yīng),采用端部暫堵轉(zhuǎn)向壓裂工藝,產(chǎn)生新裂縫,促進(jìn)復(fù)雜縫網(wǎng)形成的可能性.
3) 分析了流壓比值、孔隙壓力、縫面流壓及水平應(yīng)力差值等因素對兩縫間主應(yīng)力及主方向的影響規(guī)律,可通過改進(jìn)變排量施工、改變壓裂液黏度、油氣井開采降低孔隙壓力和增大注入液量等工藝,利用應(yīng)力陰影效應(yīng),提高復(fù)雜縫網(wǎng)形成的可能性.
/ References:
[1] Suppachoknirun T, Tutuncu A N, Kazemi H. Evaluation of multistage hydraulic fracturing techniques for production optimization in naturally fractured reservoirs using coupled geomechanics fracture and flow model[C]// International Petroleum Technology Conference. Bangkok, Thailand: International Petroleum Technology Conference, 2016: 1-24.doi: IPTC-18916-MS.
[2] Skomorowski N, Dussealut M B, Gracie R.The use of multistage hydraulic fracture data to identify stress shadow effects[C]// 49th US Rock Mechanics/Geomechanics Symposium. San Francisco, USA:American Rock Mechanics Association,2015:1-8. doi: ARMA-2015-624.
[3] Wu Kan, Olson J, Balhoff M T,et al.Numerical analysis for promoting uniform development of simultaneous multiple fracture propagation in horizontal wells[C]// SPE Annual Technical Conference and Exibition. Houston, USA:Society of Petroleum Engineers,2015:1-9. doi: SPE-174869-MS.
[4] Stepanova L, Roslyakov P. Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium[J]. International Journal of Solids and Structures, 2016, 100/101: 11-28.
[5] Damjanac B, Cundall P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294.
[6] Kumar D, Ghassemi A. 3D poroelastic simulation and analysis of multiple fracture propagation and refracturing of closely-spaced horizontal wells[C]// 50th US Rock Mechanics/Geomechanics Symposium. Houston, USA: American Rock Mechanics Association, 2016: 1-12. doi: ARMA-2016-136.
[7] Pankaj P, Gakhar K, Lindsay G. When to refrac? Combination of reservoir geomechanics with fracture modeling and reservoir simulation holds the answer[C]// SPE Asia Pacific Oil & Gas Conference and Exhibition. Perth, Australia: Society of Petroleum Engineers, 2016: 1-21. doi:SPE-182161-MS.
[8] Curnow J S, Tutuncu A N. A coupled geomechanics and fluid flow modeling study for hydraulic fracture design and production optimization in an eagle ford shale oil reservoir[C]// SPE Hydraulic Fracturing Technology Conference. The Woodlands, USA: Society of Petroleum Engineers, 2016: 1-12. doi: SPE-179165-MS.
[9] Bartko K, McClelland K, Sadykov A, et al. Holistic approach to engineered diversion-aided completion providing new method of fracture isolation[C]// SPE Hydraulic Fracturing Technology Conference and Exhibition. The Woodlands, USA: Society of Petroleum Engineers, 2017:1-14. doi: SPE-184824-MS.
[10] Cafaro D C, Drouven M G, Grossmann I E. Optimization models for planning shale gas well refracturetreatments[J]. AIChE Journal, 2016, 62(12): 4297-4307.
[11] 汪道兵, 葛洪魁, 周福建, 等. 注入流體誘導(dǎo)應(yīng)力場模擬計(jì)算[J]. 東北石油大學(xué)學(xué)報(bào), 2015, 39(2): 85-93. Wang Daobing, Ge Hongkui, Zhou Fujian, et al. Numerical simulation of the injected fluid induced stress field[J]. Journal of Northeast Petroleum University, 2015, 39(2): 85-93.(in Chinese)
[12] 汪道兵. 直井纖維暫堵轉(zhuǎn)向壓裂裂縫啟裂與延伸數(shù)學(xué)模型研究[D]. 成都: 成都理工大學(xué), 2013. Wang Daobing. Study on the mathematical model about the fiber temporary plugging diverting fracturing crack initiation and propagation of the vertical wells[D]. Chengdu: Chengdu University of Technology, 2013.(in Chinese)
[13] Fjar E, Holt R M, Raaen A M, et al. Petroleum related rock mechanics[M]. 2nd ed.. Amsterdam, The Netherlands: Elsevier, 2008.
[14] John Conrad Jaeger, Neville G W Cook, Robert Zimmerman. Fundamentals of rock mechanics[M]. 4th ed.. Oxford, UK: Wiley-Blackwell, 2007.
[15] Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals[M]. 7th ed.. Oxford, UK: Elsevier, 2013.
[16] Hughes T J. The finite element method: linear static and dynamic finite element analysis[M]. New Jersey, USA: Courier Corporation, 2012.
[17] Pogacnik J, Elsworth D, O’Sullivan M, et al. A damage mechanics approach to the simulation of hydraulic fracturing/shearing around a geothermal injection well[J]. Computers and Geotechnics, 2016,71:338-351.
[18] Detournay E. Mechanics of hydraulic fractures[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 311-339.
[19] Signorini M, Zlotnik S, Díez P. Proper Generalized Decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems[J]. International Journal for Numerical Methods in Engineering, 2017, 109(8): 1085-1102.
[20] 周福建, 汪道兵, 伊向藝, 等. 迫使碳酸鹽巖油氣藏裂縫向下延伸的酸壓技術(shù)[J]. 石油鉆采工藝, 2012, 34(6): 65-68. Zhou Fujian, Wang Daobing, Yi Xiangyi, et al. Acid fracturing technology forcing fracture to propagate downward in carbonate reservoirs[J]. Oil Drilling & Production Technology, 2012, 34(6): 65-68.(in Chinese)
[21] 周福建, 伊向藝, 楊賢友, 等. 提高采收率纖維暫堵人工裂縫動濾失實(shí)驗(yàn)研究[J]. 鉆采工藝, 2014, 37(4): 83-86. Zhou Fujian, Yi Xiangyi, Yang Xianyou, et al. Dynamic filtration experiment study on EOR fiber on bridging the artificial fracture[J]. Drilling & Production Technology, 2014, 37(4): 83-86.(in Chinese)
[22] 汪道兵, 周福建, 葛洪魁, 等. 纖維暫堵人工裂縫附加壓差影響因素分析[J]. 科技導(dǎo)報(bào), 2015, 33(22): 73-77. Wang Daobing, Zhou Fujian, Ge Hongkui, et al. Analysis of factors influencing additional pressure drop of fiber-assisted temporary blocking of an artificial fracture[J]. Science and Technology Review, 2015, 33(22):73-77.(in Chinese)
[23] Wang Daobing, Zhou Fujian, Ding Wei, et al. A numerical simulation study of fracture reorientation with a degradable fiber-diverting agent[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 215-225.
[24] Wang Daobing, Zhou Fujian, Ge Hongkui, et al. An experimental study on the mechanism of degradable fiber-assisted diverting fracturing and its influencing factors[J]. Journal of Natural Gas Science and Engineering, 2015, 27(1): 260-273.
[25] Gomaa A M, Spurr N, Pirogov A, et al. Combining soluble particle diverter with specially engineered proppant to enhance fracture complexity and post-fracture conductivity[C]// SPE Annual Technical Conference and Exhibition. Dubai, UAE: Society of Petroleum Engineers, 2016: 1-14. doi: SPE-181486-MS.
【中文責(zé)編:晨 兮;英文責(zé)編:天 瀾】
2016-08-03;Revised:2017-03-18;Accepted:2017-04-20
Professor Zhou Fujian. E-mail: zhoufj@cup.edu.cn
The main factors and rules of stress shadow of perpendicular cracks
Wang Daobing1,2,3, Zhou Fujian1, Ge Hongkui1, Sergio Zlotnik2, Yang Xiangtong4, and Peng Jinlong5
1) Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, P.R.China 2) School of Civil Engineering, Technical University of Catalonia, Barcelona E-08034, Spain 3) Institute of Oil Production Engineering, Research Institute of Exploration & Development, PetroChina, Beijing 100083, P.R.China 4) Tarim Oilfield Company, PetroChina, Kuerle 841000, Xinjiang Uygur Autonomous Region, P.R.China 5) The Second Oil Extraction Plant of Daqing Oilfield Company Limited, PetroChina, Daqing 163414, Heilongjiang Province, P.R.China
Based on elasticity theory, we use numerical Galerkin finite element discretization method and implement Matlab finite element code to simulate “stress shadow” distributions of mutual orthogonal fractures. The principal stress and principal distributions have the symmetry characteristic on the intersection (coordinate origin). The relationships between stress shadow and flow pressure ratio, pore pressure, fluid pressure and horizontal stress contract are analyzed, respectively. By these techniques of variable displacement construction, changing the viscosity of the fracturing fluid, exploitation of oil and gas wells changing pump rate and fracturing fluid viscosity, reducing pore pressure and increasing the injection volume, taking the advantages of shadow effect, it is likely to produce a complex fracture network.
stress interference; fracture network fracturing; perpendicular crack; finite element method; diverting agent; degradable fiber; fluid pressure; fluid-solid coupling; linear elastic mechanics
:Wang Daobing, Zhou Fujian, Ge Hongkui, et al. The main factors and rules of stress shadow of perpendicular cracks[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(4): 344-351.(in Chinese)
TE 355
A
10.3724/SP.J.1249.2017.04344
國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃資助項(xiàng)目(2015CB250903);國家自然科學(xué)基金資助項(xiàng)目(51490652);“十三五”國家科技重大專項(xiàng)資助項(xiàng)目(2016ZX05030-005);中國石油大學(xué)(北京)科研基金資助項(xiàng)目(2462016YXBS10)
汪道兵(1985—),男,中國石油大學(xué)(北京)博士研究生.研究方向:非常規(guī)儲層縫網(wǎng)形成與控制機(jī)理.E-mail: 0546wdb@163.com
Foundation:National Basic Research Program of China (2015CB250903); National Natural Science Foundation of China (51490652); Science and Technology Major Special Program for the 13th Five-Year Plan of China (2016ZX05030-005); Scientific Research Fund of China University of Petroleum in Beijing(2462016YXBS10)
引 文:汪道兵,周福建,葛洪魁,等. 相互垂直裂縫應(yīng)力陰影的影響因素及規(guī)律[J]. 深圳大學(xué)學(xué)報(bào)理工版,2017,34(4):344-351.