鄧國(guó)孫,李鎮(zhèn)伽
?
·基礎(chǔ)醫(yī)學(xué)· ·論著·
miRNA-10a對(duì)小鼠肝纖維化細(xì)胞增殖及TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路表達(dá)的影響
鄧國(guó)孫,李鎮(zhèn)伽
目的 通過(guò)觀察肝纖維化(hepatic fibrosis,HF)小鼠肝組織TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路的表達(dá)與HF進(jìn)展的關(guān)系,探討微小RNA(microRNA,miRNA)-10a對(duì)于HF的作用機(jī)制。方法 選用9周齡健康雄性小鼠(C57BL6/J)40只,按照數(shù)字表法隨機(jī)分為對(duì)照組和HF模型組(觀察組),對(duì)照組生理鹽水5 μl/g腹腔注射,每周2次,注射8周;觀察組10% CCL4橄欖油5 μl/g腹腔注射,每周2次,注射8周,制作小鼠HF模型。RT-PCR法檢測(cè)HF細(xì)胞中miRNA-10a表達(dá)后,將觀察組HF細(xì)胞進(jìn)行培養(yǎng)及miRNA-10a模擬物轉(zhuǎn)染(轉(zhuǎn)染組),CCK-8法檢測(cè)HF細(xì)胞增殖能力,Western blotting檢測(cè)HF細(xì)胞中TGFβ1、Smad7的表達(dá)水平。結(jié)果 與對(duì)照組比較,觀察組miRNA-10a表達(dá)水平明顯增加(P<0.05);與對(duì)照組比較,轉(zhuǎn)染組肝細(xì)胞miRNA-10a表達(dá)水平明顯降低(P<0.05);與對(duì)照組相比,低表達(dá)miRNA-10a明顯降低觀察組TGFβ1的表達(dá)水平,提高Smad7的表達(dá)水平(均P<0.05)。結(jié)論 小鼠HF細(xì)胞中低表達(dá)miRNA-10a,轉(zhuǎn)染miRNA-10a模擬物可明顯促進(jìn)小鼠HF細(xì)胞增殖,其作用機(jī)制是通過(guò)miRNA-10a調(diào)控TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)小鼠HF。
肝纖維化;轉(zhuǎn)化生長(zhǎng)因子β1;Smad7蛋白;TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路
肝纖維化(hepatic fibrosis,HF)是機(jī)體對(duì)各種原因誘發(fā)的慢性肝細(xì)胞損傷后的一種自我修復(fù)反應(yīng)。有研究[1]顯示,HF是一個(gè)可逆的病理生理過(guò)程,消除相關(guān)致病因素或有效的早期干預(yù)治療可改善HF程度,反之則可進(jìn)展為終末失代償期肝硬化。微小RNA(microRNA,miRNA)是一類大小為18~22個(gè)核苷酸的內(nèi)源性非編碼單鏈小分子RNA,通過(guò)與靶mRNA完全或不完全互補(bǔ)配對(duì),引起mRNA降解或翻譯抑制,從而能在轉(zhuǎn)錄后水平調(diào)控機(jī)體基因的表達(dá)[2]。有研究[3]顯示,一些miRNA在肝細(xì)胞內(nèi)表達(dá)相對(duì)豐富,并在疾病的進(jìn)展中表達(dá)有明顯差異,從而影響肝臟疾病的發(fā)生發(fā)展。也有研究[4-5]表明,miRNA-10a參與造血細(xì)胞的分化、腫瘤的發(fā)生發(fā)展、免疫功能的調(diào)節(jié)等多個(gè)病理生理過(guò)程。在博萊霉素所致的肺纖維化小鼠肺組織中,發(fā)現(xiàn)了161個(gè)差異表達(dá)的miRNA,其中miRNA-10a通過(guò)調(diào)節(jié)TGF-β信號(hào)通路參與調(diào)控纖維母細(xì)胞激活和膠原沉著[6]。有文獻(xiàn)[7]報(bào)道,肝星狀細(xì)胞(hepatic stellate cell,HSC)的激活或表型轉(zhuǎn)化為成纖維細(xì)胞是HF形成的中心環(huán)節(jié),轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor beta 1,TGFβ1)是公認(rèn)的最強(qiáng)致HF的細(xì)胞因子之一[8],Smad蛋白是TGFβ1關(guān)鍵的作用底物[9],可誘發(fā)HSC激活,啟動(dòng)膠原基因表達(dá),從而導(dǎo)致HF的發(fā)生。TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路的激活及引起的相應(yīng)病理變化, 在HF的發(fā)生發(fā)展中具有非常重要的意義[10]。本研究探討miRNA-10a調(diào)控HF的分子機(jī)制,并將miRNA-10a作為HF藥物靶點(diǎn),從而指導(dǎo)HF的診斷與治療。
1.1 主要材料與試劑 Pronase E購(gòu)于美國(guó)Merck公司,Collagenase II購(gòu)于美國(guó)Sigma公司,淋巴細(xì)胞分離液購(gòu)自中科院生工所,DMEM培養(yǎng)液及干粉購(gòu)于GIBCO公司,胎牛血清購(gòu)于杭州四季青公司,Interferin siRNA轉(zhuǎn)染劑購(gòu)自Polypus公司,miRNA分析系統(tǒng)購(gòu)自Applied 公司,PrimeScript RT-PCR反轉(zhuǎn)錄試劑盒購(gòu)自TOYOBO公司,miRNA-10購(gòu)于廣東銳博公司,各類單抗均購(gòu)于美國(guó)Abcam公司,細(xì)胞裂解液CLB購(gòu)自Cell Signaling T公司。
1.2 建立HF小鼠模型 選用9周齡健康雄性小鼠(C57BL6/J)40只,體質(zhì)量19~22 g,按照隨機(jī)數(shù)字表法分為對(duì)照組和HF模型組(觀察組),對(duì)照組生理鹽水5 μl/g腹腔注射,每周2次,注射8周;觀察組10% CCL4橄欖油5 μl/g腹腔注射,每周2次,注射8周,制作小鼠HF模型。
1.3 制備標(biāo)本 實(shí)驗(yàn)小鼠禁食12 h,在乙醚麻醉下,斷頭取血,部分肝臟組織采用10%中性甲醛固定,備制病理切片,其余肝組織液氮快速冷凍,置于-80 ℃冰箱保存,備用。
1.4 HSC分離 75%酒精消毒腹部皮膚后,2%戊巴比妥鈉(40 mg/kg)小鼠腹腔注射,十字切口開腹,充分暴露小鼠心臟和下腔靜脈,18號(hào)套管針連接輸液瓶,從左心室進(jìn)針注入灌注液,下腔靜脈放血,10 ml/min流速肝臟灌流,直至肝臟變?yōu)橥咙S色,隨后采用酶灌注液繼續(xù)灌流14~18 min,直至肝臟呈現(xiàn)爛泥狀,取肝臟,生理鹽水沖洗后,剔除肝臟包膜及結(jié)締組織,剪碎后加入振蕩消化液,37 ℃振蕩20 min,200×g離心5 min,細(xì)胞懸液經(jīng)300目鋼網(wǎng)過(guò)濾后,收集于2個(gè)30 ml離心管中,1 400×g離心5 min,棄上清,D-Hanks液重懸沉淀,取上清進(jìn)行梯度分離。采用淋巴細(xì)胞分離液鋪梯度,上層加充分消化的單細(xì)胞懸液,25 ℃,1 500×g離心25 min,平拋離心后的分離細(xì)胞,小心吸出中層少量白色液體,即為HSC。DMEM制備,1 400 ×g離心10 min,洗滌2次,以1.0×106個(gè)細(xì)胞接種于100 ml塑料培養(yǎng)瓶中24 h,靜置培養(yǎng)72 h后換成含10%胎牛血清DMEM培養(yǎng)液,每3 d更換培養(yǎng)液1次。采用臺(tái)盼藍(lán)進(jìn)行染色,計(jì)算細(xì)胞成活率,以2組小鼠HSC成活率均達(dá)到90%以上表示分離成功。
1.5 Real-time PCR檢測(cè)miRNA-10a表達(dá) 采用TRIzol試劑,提取2組肝組織總RNA,利用SYBR Premix ExTaq熒光定量PCR試劑盒及LightCycler儀器,進(jìn)行操作及分析。miRNA-10a逆轉(zhuǎn)錄引物序列:5’-GTCGTATC-CAGCAGGGTCCGTATTCGCACTGGATACGACACA-3’;miRNA-10a定量引物上游序列:5’-ACGTACCTGTAGATCCG-3’,引物下游序列:5’-GTG-CAGGTCCGAGGT-3’。U6逆轉(zhuǎn)錄引物序列:5’-CGCTCACGAATTTGCGTGTAT-3’;U6定量引物上游序列:5’-CTCGCTTCGCAGCACA-3’,引物下游序列:5’-AACGCTTCACGAATTTCGT-3’。按3步法進(jìn)行DNA擴(kuò)增,反應(yīng)條件:95 ℃、20 s;94 ℃、25 s;55 ℃、15 s;75 ℃、10 s;40次循環(huán)條件:72 ℃、10 min。每次Real-timePCR被測(cè)標(biāo)本的Ct值減去對(duì)應(yīng)樣品中U6Ct值,即為ΔCt,HF細(xì)胞中miRNA-10a的表達(dá)量采用2-ΔΔCt計(jì)算,HF組織標(biāo)本中miRNA-10a表達(dá)量采用log22-ΔΔCt計(jì)算。
1.6 HF細(xì)胞培養(yǎng)和miRNA-10a模擬物轉(zhuǎn)染 小鼠HF細(xì)胞置于含10%胎牛血清的DMEM培養(yǎng)液中,37 ℃、5%CO2飽和濕度培養(yǎng)箱進(jìn)行傳代培養(yǎng)。將處于對(duì)數(shù)期生長(zhǎng)的HF細(xì)胞接種于12孔板,每孔細(xì)胞密度為3×105個(gè),當(dāng)細(xì)胞生長(zhǎng)融合度至50%時(shí),再將其分為2組,一組為miRNA-10a模擬物轉(zhuǎn)染組,一組為對(duì)照組,分別用含有miRNA-10a模擬物和對(duì)照miRNAOpti-MEM培養(yǎng)基轉(zhuǎn)染細(xì)胞,同時(shí)加入Interferin提高轉(zhuǎn)染率。轉(zhuǎn)染時(shí)每孔miRNA-10a模擬物或?qū)φ誱iRNAOpti-MEM的終濃度均為20 nmol/L,Interferin為4 μl,轉(zhuǎn)染72 h。本實(shí)驗(yàn)重復(fù)3次。
1.6 CCK-8法檢測(cè)HF細(xì)胞的增殖能力 根據(jù)CCK-8試劑盒說(shuō)明書操作,HF細(xì)胞轉(zhuǎn)染miRNA-10a模擬物或?qū)φ誱iRNA Opti-MEM 72 h后,將2組細(xì)胞根據(jù)每孔2×104個(gè),接種于96孔培養(yǎng)板中,并各設(shè)置3個(gè)平行孔,3~5 h后細(xì)胞貼壁,加入100 μl 1640培養(yǎng)液、10 μl CCK-8,置于37 ℃、5%CO2培養(yǎng)箱培養(yǎng)2 h,酶標(biāo)儀測(cè)定光密度(D)值。本試驗(yàn)重復(fù)3次。
1.7 Western blotting檢測(cè)HF細(xì)胞中TGFβ1、Smad 7蛋白的表達(dá) HF細(xì)胞轉(zhuǎn)染72 h后,收集轉(zhuǎn)染組和對(duì)照組待測(cè)細(xì)胞,細(xì)胞裂解液裂解,BCA法測(cè)定蛋白濃度,取50 μg蛋白經(jīng)8% SDS-PAGE分離后,轉(zhuǎn)至PVDF膜,25 ℃封閉1 h,分別加入TGFβ1抗體(1∶2 000)、Smad 7抗體(1∶2 000)、β-actin抗體(1∶1 000),4 ℃孵育過(guò)夜,洗膜后加過(guò)氧化物酶標(biāo)記的二抗,25 ℃孵育1h,洗膜后ECL法顯影,Gene gnome采集圖片,利用Image J軟件進(jìn)行灰度分析。本試驗(yàn)重復(fù)3次。
1.8 統(tǒng)計(jì)學(xué)處理 采用SPSS 18.0統(tǒng)計(jì)學(xué)軟件,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較采用t檢驗(yàn),P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2.1 miRNA-10a在小鼠HF中高表達(dá) Real-time PCR檢測(cè)觀察與對(duì)照組中miRNA-10a相對(duì)表達(dá)量,結(jié)果顯示,觀察組HF組織中miRNA-10a表達(dá)量明顯高于對(duì)照組[(-7.84±1.38)vs(-9.97±1.59),P<0.05]。
2.2 轉(zhuǎn)染miRNA-10a模擬物后HF細(xì)胞miRNA-10a的表達(dá) Real-time PCR檢測(cè)轉(zhuǎn)染組及對(duì)照組中miRNA-10a的相對(duì)表達(dá)量,結(jié)果(圖1)顯示,轉(zhuǎn)染組(miRNA-10a mimics)HF細(xì)胞miRNA-10a表達(dá)量明顯低于對(duì)照組(P<0.01)。
注:與對(duì)照組比較aP<0.01圖1 Real-time PCR檢測(cè)2組肝細(xì)胞miRNA-10a表達(dá)水平
2.3 低表達(dá)miRNA-10a促進(jìn)HF細(xì)胞增殖 為了研究低表達(dá)miRNA-10a對(duì)HF細(xì)胞增殖的影響,利用CCK-8法檢測(cè)轉(zhuǎn)染組及對(duì)照組HF細(xì)胞的增殖水平,結(jié)果(圖2)顯示,與對(duì)照組相比,低表達(dá)miRNA-10a的HF細(xì)胞增殖水平明顯提高(P<0.05)。
注:與對(duì)照組比較aP<0.05圖2 CCK-8法檢測(cè)轉(zhuǎn)染組及對(duì)照組HF細(xì)胞的增殖情況
2.4 miRNA-10a調(diào)控TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路 Western blotting檢測(cè)轉(zhuǎn)染miRNA-10a模擬物后HF細(xì)胞中TGFβ1、Smad 7蛋白的表達(dá),結(jié)果(圖3)顯示,與對(duì)照組比較,轉(zhuǎn)染組TGFβ1蛋白的表達(dá)量明顯降低(P<0.05),顯示miRNA-10a上調(diào)HF細(xì)胞中TGFβl表達(dá),而轉(zhuǎn)染組Smad 7蛋白的表達(dá)量顯著增多(P<0.05),顯示miRNA-10a下調(diào)Smad 7蛋白的表達(dá)。
注:與對(duì)照組比較aP<0.05圖3 Western blotting檢測(cè)miRNA-10a對(duì)TGFβ1/Smads表達(dá)的影響
有研究顯示[11-12],TGFβ1及其Smad信號(hào)轉(zhuǎn)導(dǎo)通路與HF的發(fā)生發(fā)展密切相關(guān),其中TGFβ1為雙硫鍵結(jié)構(gòu)的二聚體堿性蛋白,是激活HF細(xì)胞的主要細(xì)胞因子,也是最強(qiáng)的HF促進(jìn)劑[13];Smad蛋白是目前發(fā)現(xiàn)的TGFβ家族受體激酶的關(guān)鍵作用底物之一,根據(jù)其結(jié)構(gòu)和功能的不同分為3類,其中抑制型Smad蛋白中的Smad 7主要功能為抑制TGFβ的轉(zhuǎn)導(dǎo)通路。Smad 7可與活化的TGFβ1受體結(jié)合,抑制Smad蛋白磷酸化;進(jìn)入胞漿Smad 7,使Smad蛋白不能與其受體相結(jié)合,在TGFβ信號(hào)轉(zhuǎn)導(dǎo)中形成負(fù)反饋環(huán)路,從而發(fā)揮抗HF作用[14]。
研究[15-17]顯示,miRNA參與HF的發(fā)生發(fā)展,但關(guān)于miRNA調(diào)控HF的分子機(jī)制還不是很清楚。miRNA-10a作為miRNA家族中成員之一,本研究顯示,miRNA-10a在小鼠HF組織中高表達(dá),并且低表達(dá)miRNA-10a能夠促進(jìn)HF細(xì)胞增殖,進(jìn)一步表明miRNA-10a在HF中發(fā)揮著促纖維化因子的作用。本研究同時(shí)發(fā)現(xiàn),與對(duì)照組相比,轉(zhuǎn)染組TGFβ1蛋白表達(dá)明顯降低,表明miRNA-10a上調(diào)TGFβ1的表達(dá);而轉(zhuǎn)染組Smad 7蛋白表達(dá)顯著增多,表明miRNA-10a能夠下調(diào)Smad 7表達(dá),說(shuō)明miRNA-10a通過(guò)調(diào)控TGFβ1/Smads信號(hào)轉(zhuǎn)導(dǎo)通路發(fā)揮促HF作用,這為HF的治療提供了潛在的治療靶點(diǎn)。
[1] Lee YA, Friedman SL. Reversal, maintenance or progression: what happens to the liver after a virologic cure of hepatitis C[J]. Antiviral Res, 2014, 107(1): 23-30. DOI:10.1016/j.antiviral.2014.03.012.
[2] van der Ree MH, de Bruijne J, Kootstra NA, et al. MicroRNAs: role and therapeutic targets in viral hepatitis[J]. Antivir Ther (Lond), 2014, 19(6): 533-541. DOI:10.3851/IMP2766.
[3] Kim KM, Kim SG. Autophagy and microRNA dysregulation in liver diseases[J]. Arch Pharm Res, 2014, 37(9): 1097-1116. DOI:10.1007/s12272-014-0439-9.
[4] Havelange V, Ranganathan P, Geyer S, et al. Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML[J]. Blood, 2014, 123(15): 2412-2415. DOI:10.1182/blood-2013-10-532374.
[5] Ohuchida K, Mizumoto K, Lin C, et al. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene[J]. Ann Surg Oncol, 2012, 19(7): 2394-2402. DOI:10.1245/s10434-012-2252-3.
[6] Xie T, Liang J, Guo R, et al. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation[J]. Physiol Genomics, 2011, 43(9): 479-487. DOI:10.1152/physiolgenomics.00222.2010.
[7] Uemura M, Swenson ES, Gamna MD, et al. Smad 2 and Smad 3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization[J]. Mol Biol Cell, 2005, 16(9): 4214-4224. DOI:10.1091/mbc.E05-02-0149.
[8] Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice[J]. Gut, 2006, 55(3): 415-424. DOI:10.1136/gut.2005.071118.
[9] Heldin CH, Miyazono K, Dijke P. TGF-beta signalling from cell membrane to nucleus through Smad proteins[J]. Nature, 1997, 390(6659): 465-471. DOI:10.1038/37284.
[10] Schnabl B, Kweon YO, Frederick JP, et al. The role of Smad3 in mediating mouse hepatic stellate cell activation[J]. Hepatology, 2001, 34(1): 89-100. DOI:10.1053/jhep.2001.25349.
[11] Martinez FE, Lopez CL, Regordan C, et al. Meningitis by Cryptococcus neoformans in patients with HIV infection[J]. Neurologia, 1999,14(5):218-223.
[12] Paradis V, Dargere D, Bonvoust F, et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells[J]. Lab Invest, 2002, 82(6): 767-774. DOI:10.1097/01.lab.0000017365.18894.d3.
[13] Long J, Wang G, Matsuura I, et al. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3)[J]. Proc Natl Acad Sci USA, 2004, 101(1): 99-104. DOI:10.1073/pnas.0307598100.
[14] Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf 2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation[J]. Mol Cell, 2000, 6(6): 1365-1375. DOI:10.1016/s1097-2765(00)00134-9.
[15] Roderburg C, Luedde M, Vargas CD, et al. miR-133a mediates TGF dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis[J]. J Hepatol, 2013, 58(4): 736-742. DOI:10.1016/j.jhep.2012.11.022.
[16] Kumar V, Mahato RI. Delivery and targeting of miRNAs for treating liver fibrosis[J]. Pharm Res, 2015, 32(2): 341-361. DOI:10.1007/s11095-014-1497-x.
[17] Chen SL, Zheng MH, Shi KQ, et al. A new strategy for treatment of liver fibrosis: letting microRNA do the job[J]. Bio Drugs, 2013, 27(1): 25-34. DOI:10.1007/s40259-012-0005-2.
(本文編輯:王映紅)
Effects of miRNA-10a on the proliferation of hepatic fibrosis cells and the expression of TGF beta 1/Smads signal transduction pathway in mice
DengGuosun,LiZhen′ga
(DepartmentofGastroenterology,ChongmingBranch,XinhuaHospitalAffiliatedtoShanghaiJiaotongUniversity,Shanghai202150,China)
Objective To investigate the possible mechanism involved in the effect of micro RNA-10a(miRNA)on hepatic fibrosis (HF), through the observation on the expression of TGFβ1/Smads signal transduction pathway in mice with HF and its correlation with the development of hepatic fibrosis.Methods Forty healthy male mice with an age of 9 weeks (C57BL6/J) were randomly divided into the control group and the HF model group (or the observation group). The animals in the control group were given normal saline abdominally at a dosage of 5 μl/g, twice a week, for a succession of 8 weeks, while the animals in the observation group received 10% CCL4 olive oil also at a dosage of 5 μl/g with the same frequency and for the same length of time to develop the model of hepatic fibrosis. The expression of miRNA-10a was detected by RT-PCR. HF cells were cultured in the animals of the observation group and miRNA-10a mimics were transfected (the transfection group). CCK-8 method was used to detect the proliferation of HF cells, and the expression levels of TGFβ1 and Smad 7 in the HF cells were detected by Western-blotting. Results As compared with that of the control group, the expression level of miRNA-10a in the observation group was increased significantly (P<0.05); and as compared with that of the control group, the expression level of miRNA-10a in the transfection group were significantly decreased (P<0.05); and furthermore, as compared with that of the control group, the lower expression of miRNA-10a significantly decreased the expression level of TGFβ1 and increased the expression level of Smad 7(P<0.05).Conclusion The expression of miRNA-10a in the HF cells was lower, and the transfected miRNA-10a mimics could significantly promote the proliferation of HF cells, the possible mechanism of which might be associated with the regulation of TGFβ1/Smads signal transduction pathway in HF promotion.
Hepatic fibrosis; Transforming growth factor β1; Smad 7 protein; TGFβ1/Smads signal pathway
202150 上海,上海交通大學(xué)附屬新華醫(yī)院崇明分院消化內(nèi)科(鄧國(guó)孫);南昌大學(xué)醫(yī)學(xué)院第二附屬醫(yī)院普外科(李鎮(zhèn)伽)
R575.3
A
10.3969/j.issn.1009-0754.2017.03.013
2016-10-27)