• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Small-Scale Effect on the Static deflection of a Clamped Graphene Sheet

    2015-12-13 10:54:32XieWang2Zhang
    Computers Materials&Continua 2015年11期

    G.Q.Xie,J.P.Wang2,Q.L.Zhang

    Small-Scale Effect on the Static deflection of a Clamped Graphene Sheet

    G.Q.Xie1,J.P.Wang2,Q.L.Zhang1

    Small-scale effect on the static deflection of a clamped graphene sheet and influence of the helical angle of the clamped graphene sheet on its static deflection are investigated.Static equilibrium equations of the graphene sheet are formulated based on the concept of nonlocal elastic theory.Galerkin method is used to obtain the classical and the nonlocal static deflection from Static equilibrium equations,respectively.The numerical results show that the static deflection and small-scale effect of a clamped graphene sheet is affected by its small size and helical angle.Small-scale effect will decrease with increase of the length and width of the graphene sheet,and small-scale effect will disappear when the length and the width of graphene sheet are both larger than 200 um.

    Nonlocal theory;Graphene sheet;Small-scale effect;Static deflection;Helical angle.

    1 Introduction

    Since carbon nanotube was discovered by Iijima(1991),it has shown a broad application prospect in various fields because of its high mechanical strength,strong energy storage and catalytic effect etc.Due to the surface effect and the small-scale effect of nanomaterials,classical continuum mechanics will lead to an inaccurate result when it is used to solve the mechanics problem of nanomaterials.Fortunately,the nonlocal theory given by Eringen(1972)can remove the shortcoming of classical continuum mechanics.Based on the nonlocal theory,Zhang,Liu,and Wang,(2004)studied the buckling of multi-walled carbon nanotube.Xie,Han,and Long(2006,2006,2007)investigated the small scale effect and the vibration of carbon nanotube.Wang(2011)used a modified nonlocal beam model to study vibration and stability of nanotubes conveying fluid.Hybrid nonlocal beam model[Zhang,Wang,and Challamel(2009)]was employed to study bending,buckling,and vibration of micro/nanobeams.Reddy(2010)presented nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates.Fang,Zhen,and Zhang(2013)carried out nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory.Liang and Han(2014)gave prediction of the nonlocal scaling parameter for graphene sheet.Recently,Miandoab,Yousefi-Koma,and Pishkenari(2015)used nonlocal and strain gradient based model to study the electrostatically actuated silicon nano-beams.Zhao and Shi(2011)used an improved molecular structural mechanics model to study poisson ratios of single-walled carbon nanotubes.

    In this paper,a nonlocal model of nanoplate is developed for the static deflection of graphene sheet.Small-scale effect on the static deflection of a clamped graphene sheet is investigated.

    2 Formulation

    2.1 Nonlocal stress tensor

    In Eringen nonlocal elasticity model,Eringen(1983)considered that the physics of material bodies whose behavior at a material point is influenced by the state of all points in the body.This result is in accordance with atomic theory of lattice dynamics and experimental observations on phonon dispersion.The most general form of the nonlocal constitutive equation involves an integral over the entire regionof interest.

    For homogeneous and isotropic elastic solids,the nonlocal constitutive equation is

    Where symbols ‘:’is the double dot product,is the elastic modulus matrix of classical isotropic material,denotes the nonlocal stress tensor atandis the strain tensor at any pointin the body.The kernel functionis the nonlocal modulus,is the Euclidean distance,andwhereis a constant appropriate to each material,a is an internal characteristic size(e.g.length of C-C bond,lattice spacing,granular distance etc.)and l is an external characteristic size(e.g.crack size,wave length etc.).The volume integral in Eq.(1)is over the regionV occupied by the body.However,e0and l of graphene sheet have not been found in theoretical or experimental literature.

    Based on nonlocal elasticity model,we chose a representative element of graphene sheet shown as Fig.1.

    The stress of a reference point xxx in the representative element can be expressed as

    Figure 1:A representative element of graphene sheet.

    Figure 2:A helical graphene sheet.

    Taylor series

    To take the average of σij(x1,x2)over the representative element,in terms of the symmetry of the representative element,we have

    Where l is the length of C-C bond.

    Inversion of eq.(3)yields

    Whereσij(x1,x2)is the nonlocal stress tensor.

    2.2 Geometric equations

    A helical graphene sheet shown as Fig.2,(x1,x2)is the local coordinate system,andis the global coordinate system.andare parallel to both sides of the graphene sheet,respectively.

    Geometric equations of the helical graphene sheet in the global coordinate are

    Where w is the static deflection of the graphene sheet,

    According to the transformation relationship of strains,we have

    Where

    2.3 Nonlocal constitutive equation

    Based on Eq.(4),the nonlocal constitutive equations of graphene are rewritten as

    Where E is the elastic modulus of graphene,and μ Poisson’s ratio.

    Eq.(9)can be approximately expressed as

    Substituting Eq.(6)into Eq.(10),we have

    2.4 Physic equations

    The normal and shear stresses can be collected into bending momentand torquerespectively.

    The bending equilibrium equation of the plate on which a distribution force q is applied

    Combination of Eqs.(11)-(14)yields

    3 Numerical examples and discussions

    A clamped rectangle graphene sheet is shown as Fig.3.

    Figure 3:A clamped rectangle graphene sheet.

    The boundary conditions of the clamped graphene sheet can be written as

    Where a and b are,respectively,the length and the width of the graphene sheet.

    The deflection expression of the graphene sheet in terms of Galerkin method is given by

    Eq.(18)are consistent with the clamped boundary conditions of the graphene sheet.

    Galerkin weak form of Eq.(15)is given by

    Where m=1,2,3,...

    The approximate solution of Eq.(19)is given as following

    Where

    Substituting of Eqs.(21)-(23)into Eq.(19)has

    C1,C2andC3can be obtained from the solution of Eq.(24).

    Classical static deflection of the graphene sheet can be obtained by substituting l=0 into Eq.(19).

    To illustrate the small-scale effect on the static deflections of the graphene sheet,the small-scale effect factor η is de fined as

    Where wcsand wnsare,respectively,the classical and nonlocal static deflections of the center point of the graphene sheet

    For all the subsequent numerical example,the length of C-C bond l=0.142×10-9m,in-plane stiffness Eh=360 J/m2(Sanchez-Portal,D,1999),Poisson’s ratioμ=0.26,the thickness of the graphene sheet h=0.34 nm.

    To investigate the effect of the small-scale on the static deflection of the graphene sheet,we calculated the small-scale effect factor η of the graphene sheets with the different helical angles and geometric sizes.

    Figure 4:Small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).

    Fig.4 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).It can be found From Fig.4 that the small-scale effect factor η is influence by the helical angle of the graphene sheet.The small-scale effect factor is far from 1,the small-scale effect is very obvious when the side length of the helical graphene sheet is smaller than 20 um.the small-scale effect will not always decrease with increase of the geometrical size of the helical graphene sheet.

    Fig.5 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).It can be seen from comparison of Fig.5 and Fig.4 that the small-scale effect factor η changes periodically with change of helical angle,the change cycle is π/4.

    Figure 5:Small-scale effect factor of the static deflection of the center point of graphene sheet with the different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).

    Fig.6 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(40 um≤a≤200 um,40 um≤b≤200 um).It can be seen from Fig.6 that the small-scale effect factor η is more and more close to 1 with increase of the side length of the graphene sheet no matter how much the helix angle is.When the length and the width of the helical graphene sheet are both larger than 200um,the small-scale effect of the static deflection of the graphene sheet almost disappears.

    Figure 6:Small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric dimensions(40 um≤a≤200 um,40 um≤b≤200 um).

    Figure 7:small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(40 um≤a≤200 um,40 um≤b≤200 um).

    Fig.7 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angle and geometric sizes(40 um≤a≤200 um,40 um≤b≤200 um).It can be seen from comparison of Fig.6 and Fig.7 that the small-scale effect factor η will change periodically with change of helical angle,the change cycle is π/4.

    Fig.8 shows that comparison of small-scale effect factor of the static deflection of the graphene sheet with the different helical angles(40 um≤a≤200 um,40 um≤b ≤ 200 um).It can also be found from Fig.8 that the small-scale effect factor η of the same geometrical dimension graphene sheet will increase when the helical angles change from β =0 to β =4π/16.In other words,the small-scale effect of the same geometrical dimension graphene sheet will decrease with increase of its helical angle from β =0 to β =4π/16.

    Figure 8:Comparison of small-scale effect factor of the static deflection of the graphene sheet with the different helical angles.

    Fig.10 shows that comparison of the static deflection of the center point of the

    Figure 9:Comparison of small-scale effect factor of the static deflection of the graphene sheet with the different helical angles.

    Figure 10:Comparison of the static deflection of the center point of the graphene sheet with the different helical angles and geometrical dimensions.

    graphene sheet with the different helical angles.It can be seen from Fig.10 that the static deflection of the center point of the graphene sheet will increase when the helical angle of the same length and width graphene sheet increases from β=0 to β =4π/16 or the length and width of the same helical angle graphene sheet increases.

    Figure 11:Comparison of the static deflections of the center point of the graphene sheet with the different helical angles and geometrical dimensions.

    Fig.11 shows that comparison of the static deflection of the center point of the graphene sheet with the different helical angles.It can be seen from Fig.11 that the static deflection of the center point of the graphene sheet will increase when the helical angle of the same length and width graphene sheet decreases from β =8π/16 to β =4π/16 or when the length and width of the same helical angle graphene sheet increases.The static deflection of the same geometrical dimension helical graphene sheet has a periodic change of β = π/4 with the change of the helical angle.

    4 Conclusion

    Taking the typical hexagonal element of the graphene sheet as the research object,based on the concept of nonlocal theory,the stress tensor of any point within the typical element is expanded into Taylor series,the nonlocal constitutive equations of the graphene sheet was established.Galerkin weak form is used to solve the equilibrium equation of the graphene sheet.The classical and the nonlocal static deflections of the graphene sheet were obtained from solution of the equilibrium equation.To illustrate the small-scale effect on the static deflections of the graphene sheet,the small-scale effect factor is de fined as the ratio of the static deflections of the center point of the classical plate to that of the nonlocal plate.Numerical results show that

    1.When the length and width of the graphene sheet are less than 20 um,the small-scale effect factor of the static deflection of the graphene sheet will be very large,the small-scale effect is very obvious,and the small-scale effect will not always decrease with increase of the geometrical dimensions of the helical graphene sheet,the small-scale effect factor η is influence by the helical angle of the graphene sheet

    2.For 40 um≤a≤200 um,40 um≤b≤200 um,small-scale effect factor of the static deflection of the graphene sheet is more and more close to 1with the increase of the length and width of the graphene sheet,the small-scale effect will disappear when the length and the width of the plate are both larger than 200um.When the helical angle of the graphene sheet changes from 0 to π/4,The small-scale effect will decrease.

    3.For the same geometrical dimension graphene sheet,the small-scale effect factor has a periodic change of β = π/4 with the change of the helical angle.

    4.The static deflection of the center point of the graphene sheet will increase when the helical angle of the same length and width graphene sheet reduces from β =0 to β =4π/16 or when the length and width of the same helical angle graphene sheet increases.The static deflection has a periodic change of β = π/4 with the change of the helical angle.

    Acknowledgement:This work is supported by National Natural Science Foundation of China under the Grant Number 11372109

    Eringen,A.C.(1983):On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.Journal of Applied Physics.vol.54,no.9,pp.4703-4710.

    Eringen,A.C.;Edelen,D.G.B.(1972):On nonlocal elasticity.Int.J.Enging,no.10,pp.233-248.

    Fang,B.;Zhen,Y.X.;Zhang,C.P.(2013):Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory.Appl.Math.Modeling,vol.37,no.3,pp.1096-1107.

    Iijima,S.(1991):Helical microtubes of graphitic carbon.Nature.vol.354,pp.56-58.

    Liang,Y.;Han,Q.(2014):Prediction of the nonlocal scaling parameter for graphene sheet.European Journal of Mechanics-A/Solids,vol.45,pp.153-160.

    Miandoab,E.M.;Youse fi-Koma,A.;Pishkenari,H.N.(2015):Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams.Microsystem Technologies,vol.21,no.2,pp.457-464.

    Reddy,J.N.(2010):Nonlocal nonlinear formulations for bending of classicalal and shear deformation theories of beams and plates.Int.J.Eng.Sci.,vol.48,no.11,pp.1507-1518.

    Sanchez-Portal,D.;Emilio A.(1999):A study based on ab initio structural,elastic,and vibrational properties of carbon nanotubes,Phys.Rev.B,vol.59,no.18,pp.12678-12688.

    Wang,L.(2011):A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid.Phys.E.,vol.44,no.1,pp.25-28.

    Xie,G.Q.;Han,X.;Long,S.Y.(2006):Effect of small-scale scale on the radial Buckling pressure of a clamped multi-walled carbon nanotube.Smart Mater.and Struct.,vol.15,no.4,pp.1143-1149.

    Xie,G.Q.;Han,X.;Long,S.Y.(2007):Long.The effect of the small-scale on dispersion characteristics of the carbon nanotube.Int.J.Solid.Struct.,vol.44,no.4,pp.1242-1255.

    Xie,G.Q.;Long,S.Y.(2006):Elastic vibration behaviors of carbon nanotubes based on micropolar mechanics.CMC:Computers,Materials&Continua,vol.4,no.2,pp.11-20.

    Zhang,Y.Q.;Liu,G.R.;Wang,J.S.(2004):Small scale effects on buckling of multi-walled carbon nanotubes under axial compression.Phys.rev.B,vol.70,no.20,pp.205430.

    Zhang,Y.Y.;Wang,C.M.;Challamel,N.(2009):Bending,buckling,and vibration of micro/nanobeams by hybrid nonlocal beam model.J.eng.Mech.,vol.136,no.5,pp.562-574.

    Zhao,P.;Shi,G.(2011):Study of Poisson Ratios of Single-Walled Carbon Nanotubes based on an Improved Molecular Structural Mechanics Model.CMC:Computers,Materials&Continua,vol.22,no.2,pp.147-168.

    1Civil Engineering college,Hunan University of Science and Technology,Xiangtan 411201,China

    2Mianyang Vocational and Technical College,Mianyang 621000,China Corresponding author.E-mail:1020095@hnust.edu.cn

    亚洲精品国产av蜜桃| 久久精品国产亚洲av涩爱| 精品一区二区三区视频在线| av卡一久久| 国产国拍精品亚洲av在线观看| 一本色道久久久久久精品综合| 国产精品成人在线| 日本黄大片高清| 色网站视频免费| 女性生殖器流出的白浆| 国产精品不卡视频一区二区| 免费黄网站久久成人精品| 一级黄片播放器| 91在线精品国自产拍蜜月| 国产高清国产精品国产三级| 人人澡人人妻人| 色吧在线观看| 久久久国产一区二区| 最近中文字幕高清免费大全6| 久久精品久久精品一区二区三区| 精品少妇内射三级| 丝袜脚勾引网站| 亚洲精品中文字幕在线视频| 三上悠亚av全集在线观看| 一边摸一边做爽爽视频免费| 欧美成人午夜免费资源| 在线观看一区二区三区激情| 亚洲欧美一区二区三区国产| 97在线视频观看| 母亲3免费完整高清在线观看 | 丝袜美足系列| 久久99蜜桃精品久久| 夜夜爽夜夜爽视频| 国产精品秋霞免费鲁丝片| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 久久精品久久久久久噜噜老黄| 久久久久久久久久成人| 另类精品久久| 在线观看美女被高潮喷水网站| 欧美bdsm另类| 国产av一区二区精品久久| 美女内射精品一级片tv| 亚洲国产av新网站| 三级国产精品欧美在线观看| 丁香六月天网| 中文乱码字字幕精品一区二区三区| 大码成人一级视频| 久久鲁丝午夜福利片| 国产黄色视频一区二区在线观看| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 三上悠亚av全集在线观看| 99热网站在线观看| 日韩在线高清观看一区二区三区| 国产日韩欧美视频二区| √禁漫天堂资源中文www| 国产黄频视频在线观看| 亚洲精华国产精华液的使用体验| 狠狠精品人妻久久久久久综合| 国产亚洲最大av| 亚洲国产av新网站| 在线看a的网站| 日韩欧美一区视频在线观看| 女的被弄到高潮叫床怎么办| 欧美日韩国产mv在线观看视频| 国产成人精品婷婷| 日韩伦理黄色片| 一级毛片黄色毛片免费观看视频| 精品亚洲成a人片在线观看| 日韩一区二区三区影片| 久久97久久精品| 亚洲av男天堂| 大香蕉久久成人网| 久久精品人人爽人人爽视色| 午夜影院在线不卡| 一本大道久久a久久精品| √禁漫天堂资源中文www| 国产午夜精品久久久久久一区二区三区| 女人久久www免费人成看片| 久久精品国产鲁丝片午夜精品| 亚洲国产精品成人久久小说| √禁漫天堂资源中文www| 大香蕉久久成人网| av.在线天堂| 精品一区二区三卡| 麻豆精品久久久久久蜜桃| 美女xxoo啪啪120秒动态图| 只有这里有精品99| 国产一区二区三区综合在线观看 | 亚洲成人一二三区av| 最近中文字幕高清免费大全6| 亚洲婷婷狠狠爱综合网| av在线老鸭窝| av在线观看视频网站免费| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| 99国产综合亚洲精品| 国产精品国产三级国产av玫瑰| 热99国产精品久久久久久7| 免费少妇av软件| 两个人的视频大全免费| 青青草视频在线视频观看| 中文字幕制服av| 成人亚洲精品一区在线观看| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 色网站视频免费| 精品久久蜜臀av无| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 成人午夜精彩视频在线观看| 国产国语露脸激情在线看| av国产久精品久网站免费入址| 国产成人精品一,二区| 两个人的视频大全免费| 91在线精品国自产拍蜜月| av线在线观看网站| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 欧美3d第一页| 九九在线视频观看精品| 久久午夜综合久久蜜桃| 免费黄网站久久成人精品| 日本免费在线观看一区| 18禁在线播放成人免费| 少妇熟女欧美另类| 伦精品一区二区三区| 欧美日本中文国产一区发布| 人妻制服诱惑在线中文字幕| 日本与韩国留学比较| 一级毛片电影观看| 99热6这里只有精品| 国产精品不卡视频一区二区| 高清黄色对白视频在线免费看| 日韩三级伦理在线观看| 美女cb高潮喷水在线观看| 97在线人人人人妻| 最近中文字幕2019免费版| 免费播放大片免费观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 久久99热6这里只有精品| 久久久久久久久久久丰满| 久久久久久久久久成人| 久久99蜜桃精品久久| 男女国产视频网站| 精品久久久精品久久久| 中文字幕制服av| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 久久久久视频综合| 美女福利国产在线| 超碰97精品在线观看| 80岁老熟妇乱子伦牲交| 成人毛片60女人毛片免费| 成人国产av品久久久| 日韩中字成人| 18禁在线播放成人免费| 99热这里只有是精品在线观看| 精品亚洲乱码少妇综合久久| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 日本爱情动作片www.在线观看| 在线观看www视频免费| 在线播放无遮挡| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 欧美三级亚洲精品| 一区二区三区四区激情视频| 久热这里只有精品99| 欧美精品一区二区免费开放| 在现免费观看毛片| 在线精品无人区一区二区三| 黑人高潮一二区| 亚洲国产精品国产精品| 最后的刺客免费高清国语| 久久人人爽av亚洲精品天堂| 一级a做视频免费观看| 水蜜桃什么品种好| 久久亚洲国产成人精品v| 婷婷色麻豆天堂久久| 91久久精品国产一区二区三区| 热99国产精品久久久久久7| 精品99又大又爽又粗少妇毛片| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区| 99久久精品国产国产毛片| 国产高清三级在线| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 丁香六月天网| 国产精品 国内视频| 久久综合国产亚洲精品| videos熟女内射| 日本免费在线观看一区| 一级a做视频免费观看| 久久久精品区二区三区| 精品国产一区二区三区久久久樱花| 亚洲av福利一区| 免费黄色在线免费观看| 成年人免费黄色播放视频| 色婷婷av一区二区三区视频| 狂野欧美激情性bbbbbb| 中国美白少妇内射xxxbb| 国产极品粉嫩免费观看在线 | 欧美日韩一区二区视频在线观看视频在线| 搡老乐熟女国产| 三上悠亚av全集在线观看| 国产高清不卡午夜福利| av天堂久久9| 99久久人妻综合| 男女免费视频国产| 久久精品久久精品一区二区三区| 男人添女人高潮全过程视频| 久久精品国产自在天天线| 夜夜骑夜夜射夜夜干| 80岁老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| 另类亚洲欧美激情| av免费在线看不卡| 成人二区视频| 永久免费av网站大全| 美女xxoo啪啪120秒动态图| 黑人巨大精品欧美一区二区蜜桃 | 18禁在线无遮挡免费观看视频| 亚洲天堂av无毛| 人人妻人人澡人人看| av免费在线看不卡| 日韩精品有码人妻一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 多毛熟女@视频| 久久久午夜欧美精品| 蜜桃在线观看..| 亚洲av不卡在线观看| 色哟哟·www| 日本wwww免费看| 国产成人精品福利久久| 久久久国产欧美日韩av| 国产精品熟女久久久久浪| 精品久久国产蜜桃| 我的女老师完整版在线观看| 一区二区av电影网| 国产国语露脸激情在线看| 国产一区二区在线观看日韩| 免费观看a级毛片全部| 3wmmmm亚洲av在线观看| 国产精品国产三级专区第一集| 亚洲欧洲日产国产| 九九爱精品视频在线观看| 99视频精品全部免费 在线| 成人影院久久| 欧美一级a爱片免费观看看| 国产精品成人在线| 国产精品熟女久久久久浪| 成年人免费黄色播放视频| 国产成人精品久久久久久| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| 一级,二级,三级黄色视频| 9色porny在线观看| 一区二区日韩欧美中文字幕 | 亚洲综合色惰| 如何舔出高潮| 欧美亚洲 丝袜 人妻 在线| 99久久精品国产国产毛片| 成年人免费黄色播放视频| 一级毛片电影观看| 欧美一级a爱片免费观看看| 免费播放大片免费观看视频在线观看| 韩国高清视频一区二区三区| 久久久久久久久久久久大奶| 99久久精品国产国产毛片| 黄色配什么色好看| 欧美性感艳星| 午夜视频国产福利| 亚洲综合色网址| 内地一区二区视频在线| 69精品国产乱码久久久| 青春草国产在线视频| 欧美xxⅹ黑人| 丰满少妇做爰视频| 成人免费观看视频高清| 在线观看美女被高潮喷水网站| 久久国产精品男人的天堂亚洲 | 久久韩国三级中文字幕| 久久这里有精品视频免费| 精品一区二区免费观看| 亚洲国产成人一精品久久久| 91国产中文字幕| 中文字幕精品免费在线观看视频 | 久久久久久久国产电影| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说| 女性生殖器流出的白浆| av在线播放精品| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| 日韩电影二区| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 男的添女的下面高潮视频| 最近手机中文字幕大全| 波野结衣二区三区在线| 久久 成人 亚洲| 日韩成人伦理影院| av一本久久久久| 亚洲欧美色中文字幕在线| 久久久久精品久久久久真实原创| 亚洲精品成人av观看孕妇| 日本-黄色视频高清免费观看| 免费观看性生交大片5| 午夜免费观看性视频| 成人国产av品久久久| 蜜臀久久99精品久久宅男| 日韩欧美精品免费久久| 国产精品一区二区在线观看99| 国国产精品蜜臀av免费| 日韩视频在线欧美| 黑人高潮一二区| 黑人巨大精品欧美一区二区蜜桃 | 高清不卡的av网站| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 十八禁高潮呻吟视频| 成人国产麻豆网| 亚洲av综合色区一区| 亚洲激情五月婷婷啪啪| 一边摸一边做爽爽视频免费| 亚洲精品aⅴ在线观看| av不卡在线播放| 久久久久久久久久久免费av| 国产免费视频播放在线视频| 五月开心婷婷网| 久久久久视频综合| av在线app专区| 又大又黄又爽视频免费| 如何舔出高潮| 少妇人妻 视频| 丝袜在线中文字幕| 91国产中文字幕| 三级国产精品片| 免费观看在线日韩| 日韩免费高清中文字幕av| 最近中文字幕2019免费版| 国产av国产精品国产| 日本黄色日本黄色录像| av国产精品久久久久影院| 伊人久久精品亚洲午夜| a级毛片免费高清观看在线播放| 精品亚洲成国产av| 女人精品久久久久毛片| 中文字幕亚洲精品专区| 3wmmmm亚洲av在线观看| 国产深夜福利视频在线观看| 九九久久精品国产亚洲av麻豆| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 最近的中文字幕免费完整| 狠狠婷婷综合久久久久久88av| 精品卡一卡二卡四卡免费| 伊人久久精品亚洲午夜| 美女福利国产在线| 老司机影院毛片| 国产精品久久久久久av不卡| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 欧美人与善性xxx| 成人国语在线视频| 美女cb高潮喷水在线观看| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 亚洲情色 制服丝袜| 成人综合一区亚洲| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 国产成人精品在线电影| 各种免费的搞黄视频| 久久精品久久久久久久性| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 精品国产国语对白av| 青春草视频在线免费观看| 欧美日韩在线观看h| 久久国内精品自在自线图片| 色5月婷婷丁香| 日本vs欧美在线观看视频| 亚洲综合精品二区| 国产精品不卡视频一区二区| 亚洲综合色惰| 91精品国产九色| 人成视频在线观看免费观看| 高清不卡的av网站| 国产又色又爽无遮挡免| 国产成人免费观看mmmm| 三级国产精品片| 大话2 男鬼变身卡| 国精品久久久久久国模美| 国产精品人妻久久久久久| 成人国语在线视频| 在线亚洲精品国产二区图片欧美 | 大香蕉97超碰在线| www.av在线官网国产| 亚洲欧洲日产国产| 91精品国产九色| 久久免费观看电影| 国产免费视频播放在线视频| 又黄又爽又刺激的免费视频.| 久久久久久久久久久久大奶| 免费观看无遮挡的男女| 精品人妻一区二区三区麻豆| 制服诱惑二区| 51国产日韩欧美| 久久久久久久久久人人人人人人| 久久午夜综合久久蜜桃| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 日本黄色片子视频| 亚洲av日韩在线播放| 18禁在线无遮挡免费观看视频| 久久久久久久久久成人| 精品久久国产蜜桃| 日本91视频免费播放| 美女主播在线视频| 最近2019中文字幕mv第一页| av.在线天堂| 99九九线精品视频在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 视频中文字幕在线观看| 秋霞伦理黄片| 久久人人爽人人爽人人片va| 国产深夜福利视频在线观看| 日本av免费视频播放| 老司机亚洲免费影院| 国产高清不卡午夜福利| 啦啦啦视频在线资源免费观看| 尾随美女入室| 桃花免费在线播放| 在线观看www视频免费| av网站免费在线观看视频| videossex国产| 九草在线视频观看| 激情五月婷婷亚洲| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 国产精品国产三级专区第一集| 久久久久精品性色| 国产精品久久久久久久电影| 久久精品久久精品一区二区三区| 国产伦理片在线播放av一区| 国产男女内射视频| 国产高清三级在线| 99热网站在线观看| 中文字幕亚洲精品专区| 少妇人妻精品综合一区二区| 全区人妻精品视频| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| 亚洲五月色婷婷综合| 欧美日韩在线观看h| 久久精品国产鲁丝片午夜精品| 国产男人的电影天堂91| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 全区人妻精品视频| 麻豆乱淫一区二区| 日韩不卡一区二区三区视频在线| 亚洲少妇的诱惑av| 亚洲综合色网址| 人妻一区二区av| 卡戴珊不雅视频在线播放| 中文字幕人妻丝袜制服| 97精品久久久久久久久久精品| 国产精品一国产av| 国产日韩欧美亚洲二区| 成人影院久久| 欧美最新免费一区二区三区| 91精品伊人久久大香线蕉| 成年人免费黄色播放视频| 精品久久久久久久久亚洲| 久久ye,这里只有精品| 在线观看人妻少妇| 日本色播在线视频| 少妇 在线观看| 欧美精品一区二区大全| 色婷婷久久久亚洲欧美| 午夜福利网站1000一区二区三区| 午夜老司机福利剧场| 亚洲精品美女久久av网站| 国产视频首页在线观看| 久久久a久久爽久久v久久| 一区二区av电影网| 蜜桃久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 夜夜骑夜夜射夜夜干| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看| 国产精品三级大全| 久久这里有精品视频免费| 高清av免费在线| 在线观看一区二区三区激情| 3wmmmm亚洲av在线观看| 飞空精品影院首页| 亚洲色图 男人天堂 中文字幕 | 激情五月婷婷亚洲| 成人午夜精彩视频在线观看| 亚洲av男天堂| 少妇的逼水好多| av卡一久久| 欧美精品一区二区大全| 精品99又大又爽又粗少妇毛片| 国产亚洲欧美精品永久| 欧美激情极品国产一区二区三区 | 成人午夜精彩视频在线观看| 国产成人a∨麻豆精品| 两个人的视频大全免费| 纯流量卡能插随身wifi吗| 五月玫瑰六月丁香| 亚洲国产日韩一区二区| 精品一区二区三区视频在线| 少妇被粗大猛烈的视频| 精品一区二区三卡| 日本爱情动作片www.在线观看| 全区人妻精品视频| 婷婷色av中文字幕| 777米奇影视久久| 伦精品一区二区三区| 久久国内精品自在自线图片| 亚洲精品日韩av片在线观看| 美女中出高潮动态图| 国精品久久久久久国模美| 91久久精品电影网| 午夜精品国产一区二区电影| 又粗又硬又长又爽又黄的视频| 成年人免费黄色播放视频| 美女国产高潮福利片在线看| 免费观看a级毛片全部| 欧美97在线视频| 久久久久久久精品精品| 边亲边吃奶的免费视频| 内地一区二区视频在线| 国产视频首页在线观看| 国产av码专区亚洲av| 热re99久久精品国产66热6| 十分钟在线观看高清视频www| 亚洲性久久影院| 亚洲av免费高清在线观看| 美女主播在线视频| 80岁老熟妇乱子伦牲交| 午夜老司机福利剧场| 成人手机av| 国产高清三级在线| 亚洲色图综合在线观看| 欧美精品一区二区大全| 亚洲精品乱码久久久v下载方式| 欧美国产精品一级二级三级| 人人妻人人澡人人爽人人夜夜| 水蜜桃什么品种好| 亚洲综合色惰| 99re6热这里在线精品视频| 国内精品宾馆在线| 最新中文字幕久久久久| kizo精华| 亚洲av免费高清在线观看| 日韩伦理黄色片| 午夜免费男女啪啪视频观看| 国产免费一区二区三区四区乱码| 国产精品偷伦视频观看了| 精品久久久噜噜| 卡戴珊不雅视频在线播放| 最新的欧美精品一区二区| 精品亚洲成a人片在线观看| 在线观看美女被高潮喷水网站| 国产成人精品无人区| 午夜精品国产一区二区电影| 国产视频首页在线观看| 精品熟女少妇av免费看| 久久久久久久国产电影| av天堂久久9| 国产免费福利视频在线观看| 内地一区二区视频在线| 99九九线精品视频在线观看视频| 亚洲av日韩在线播放| 丝瓜视频免费看黄片| 黑人欧美特级aaaaaa片| 人成视频在线观看免费观看| 高清在线视频一区二区三区| 日韩成人av中文字幕在线观看| 满18在线观看网站| 在线观看www视频免费| 日本vs欧美在线观看视频| 成年女人在线观看亚洲视频| 久久久国产一区二区| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| 王馨瑶露胸无遮挡在线观看| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 视频区图区小说| 亚洲欧美色中文字幕在线| 国产精品一区二区在线不卡| av有码第一页| 亚洲国产精品成人久久小说| 欧美bdsm另类| 美女中出高潮动态图| 亚洲,一卡二卡三卡| 中文字幕人妻丝袜制服|