• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and Numerical Investigations on Multicellular GFRP Bridge Deck Panels

    2015-12-13 10:54:36
    Computers Materials&Continua 2015年11期

    Experimental and Numerical Investigations on Multicellular GFRP Bridge Deck Panels

    M.P.Muthuraj1,2,K.Nithyapriya1

    The maintenance,upgrading and replacement of existing bridges have become urgent requirement and a challenging task for the construction sector. Bridge decks made of fibre reinforced polymers(FRP),have been widely adopted both in new construction and replacement of existing bridge decks.This paper reports the studies carried out hand lay-up multicellular glass fibre reinforced polymer.Multicellular bridge deck panels with various cross sectional pro files have been analysed using a general purpose finite element software ANSYS.A cross sectional pro file that satisfied the deflection criteria with minimum weight was selected for analysis and fabrication.Six multicellular GFRP composite bridge deck panel of size 1250mm×333mm×150mm(l×b×d)were fabricated by hand lay-up process using various materials.The responses have been compared with analytical and numerical solutions and found to be they are in good agreement with each other.

    Glass fibre,bridge deck, finite element analysis,analytical,static

    1 Introduction

    In the present scenario, road authorities manage a large population of ageing bridges,a large number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the increasing demands imposed by increased traffic intensity and higher axle loads. As a result, the maintenance,upgrading and replacement of existing bridges have become a very difficult task for the construction sector. Due to the non-corrosive properties, fibre reinforced polymer (FRP) bars are being used as the replacement of steel reinforcement in concrete bridge deck slabs, which is an alternative solution to improve the service life of bridges [El-Gamal, El-Salakawy and Benmokrane (2005)]. Due to low elastic modulus of GFRP materials, GFRP reinforced sections exhibit higher deforma-bility when compared to equivalent reinforced steel sections.Hence,the deflection criterion governs the design of intermediate and long spanning sections reinforcedwith GFRP bars [El-Salakawy, Benmokrane, El-Ragaby and Nadeau(2005);AASHTO(2000);ACI-440(2008);CAN/CSA-S6-00(2006)].Bridge decks made of fiber reinforced polymers(FRP)have been widely studied and found to be increasingly used in highway bridges,both in new construction and replacement of existing bridge decks.FRP composite materials in general have a number of advantages including,high specific stiffness and specific strength ratios,increased fatigue behavior,and corrosion resistance.But compared to traditional construction materials,such as steel,timber,and concrete,GFRP has different material properties and structures made of GFRP found to exhibit specific behaviors[Qiao,Davalos and Brown(2000)].Investigations on FRP bridge decks were conducted through laboratory tests on FRP deck components and field tests on FRP bridges[Shenton III and Chajes(1999);Turner,Harries,Petrou and Rizos(2004)].Furthermore,it is known that parametric studies on experiment of various types are time consuming and expensive.Numerical simulations based on advanced methods,such as the finite element method(FEM),are reliable and cost effective alternatives in structural analysis for the study of structural response and performance.Finite Element analysis was successfully employed in research studying the performance of FRP bridge decks or their components[Davalos,Qiao,Xu,Robinson and Barth(2001);He and Aref(2003);Wu,Mu and Warnemuende(2003)].

    Baolin et al.(2005)carried out numerical simulations for the GFRP bridge deck system and compared with the corresponding field response.The main parameters considered for the analysis include(i)developed FEM models(a)diaphragms,(b)girder stiffness,(c)girder spacing,(d)composite action and geometric and material nonlinearities.Alagusundaramoorthy and Reddy(2008)investigated the load-deflection behaviour of GFRP composite deck panels under static loading.Vovesny`and Rotter(2012)carried out analysis and design of new bridge deck panel made of glass fiber reinforced polymer(GFRP).Zheng,Fu,Lu and Pan(2013)presented a numerical study of the structural behaviour of concrete bridge deck slabs under static patch loads and dynamic traffic loads and an investigation of compressive membrane action(CMA)inside slabs.Zhu and Lopez(2014)presented results obtained from experimental and analytical study of a newly developed lightweight composite bridge deck system composed of pultruded trapezoidal GFRP tubes and outer wrap.Flexural stiffness was evaluated and compared for panels with different grout materials and grouting patterns.From the analytical model,it was found that shear deformation must be considered for the accurate prediction of GFRP panels.Li,Badjie,Chen and Chiu(2014)discussed the features of the pedestrian bridge,detailed designs,a new method of digitally archiving the pedestrian bridge,the oret-ical and FEM results.Mara,Haghani and Harryson(2014)examined the efficiency of GFRP system with traditional system and found that FRP decks contribute to potential cost savings over the life cycle of bridges and a reduced environmental impact.Ascione,Mancusi,Spadea,Lamberti,Lebon and Maurel-Pantel(2015)presented experimental results on the mechanical performance of composite beams obtained by bonding Glass Fibre Reinforced Polymer(GFRP)rectangular pultruded panels by means of an epoxy structural adhesive.No significant loss of performance in terms of failure load is observed but an increase of pre-failure stiffness was observed.Correia,Bai and Keller(2015)made a critical review on the fire performance of pultruded GFRP pro files.Review was made on several aspects such as fire performance of pultruded GFRP pro files,experimental and modelling studies about the fire resistance behaviour of different types of GFRP structural members and summary of the design guidance set out in the most relevant guidelines and codes applicable to pultruded GFRP structures.

    Further,it is observed that the research investigations carried out on hand lay-up FRP composite bridge decks under static and fatigue behaviour of prototype decks are scanty.The main scope of the present investigation is to study experimental,analytical and numerical behaviour of hand lay-up multicellular GFRP composite bridge deck panels under static loading.

    2 Materials and methods

    Epoxy resins(ER)and ISO are chosen as resin Woven roving(WR)and Chopped strand mat(CSM)are chosen as matrix for the present study.Table 1 presents the various properties obtained for E-Glass fibre,ER and ISO.The properties include Modulus of elasticity,Volume fraction and Poisson’s ratio.

    Table 1:Properties of E-Glass Fibre,ISO and ER

    The properties of GFRP composites depend on the properties of material constituents(i.e.,reinforcing fibre,matrix)and the corresponding volume fractions.Table 2 shows the material properties of the composite based on the properties of its constituents.

    Preliminary analysis was carried out on various models created using general purpose finite element software ANSYS by applying Indian Road Congress(IRC)class A loading to optimize the cross sectional pro file that can be used for the fabrication of the experimental models.To obtain the maximum bending moment and shear force,the maximum wheel load was placed as shown in Figure 1.The ground contact area for the maximum axle load of 114 kN as specified in IRC 6-2000 is 500 mm perpendicular to the direction of motion and 250 mm parallel to the direction of motion.The minimum clearance was ensured between the outer edge of the wheel and the inner face of the kerb is 150 mm for all carriage way widths.The width of a single lane carriage way is 3.75 m and that of two lane carriage way is 7.5 m as per IRC 5-1998.The ground contact area for the maximum axle load and the distances between the wheels in both directions is indicated in Figure 1.

    Table 2:Material Properties of the E-Glass-Epoxy Composite

    Figure 1:IRC Class A loading and ground contact area(All dimensions are in mm)

    Various cross sectional pro files of multicellular bridge deck panels available in the literature were selected and analyzed for IRC Class A wheel load using ANSYS.The cross sections considered for FE analysis are shown in Figure 2.The overall dimensions are arrived at based on the Indian Roads Congress codes.The overall length of multicellular bridge deck panels were kept equal to the carriage way width of single lane,3750 mm.and the width considered was 1000 mm.

    SOLID45brick elements were employed to model the bridge deck panel.SOLID45 element is defined by eight nodes having three degrees of freedom (translations in x,y and z-directions)at each node with orthotropic material properties.Orthotropic material directions correspond to the element coordinate directions.The bridge deck panel was assumed to be simply supported over two opposite edges.

    The GFRP material is considered to have a linearly elastic behavior till failure.The Hooke’s law constitutive relations for orthotropic GFRP material used in the FEA are given in Eq.(1).Material properties provided in Table 1 and Table 2 for an orthotropic material were used in FEA.The parts were connected using a continuous mesh with shared common nodes and therefore a continuous stress is experienced between parts.Boundary conditions follow a simple support condition:a vertical displacement(in the y direction)and transverse displacement(x direction)restrain on the nodes of both ends;a z direction constraint at one of the ends.

    where

    In Eqs.(1)and(2),subscripts x,y and z correspond,respectively,to the transverse,the vertical,and the longitudinal directions of the GFRP girder.The initial ε stands for normal strain;γ stands for shear strain;σ is the normal stress;τ is the shear stress;E is the Young’s Modulus;G is the shear modulus and ν is the Poisson’s ratio.

    Figure 2:Cross sectional pro files considered for optimization

    The depth and skin thickness of the cross section of bridge deck panels were varied by trial and error basis.IRC class A loading was imposed in the form of rectangular patch loads and the maximum deflection at the center of each panel under the factored load was obtained.The deflection values obtained for all the models is shown in Table 3.A cross sectional pro file of the fourth model is satisfied the deflection criteria with minimum weight and is considered for further study.The analysis made on the cross sectional pro file of the fourth model with varying thicknesses of flanges,webs and stiffeners is shown in Figure 3.

    Table 3:deflection(mm)values for various models

    FEA was performed for models 5,6 and 7 and the deflection values obtained for these models are presented in Table 3.From Table 3,it can be noted that the lesser deflection is achieved for the geometry of model 7 and it is considered as model with optimum dimensions.The line diagram of optimised cross section is shown in Figure 4.

    Figure 3:Cross sectional pro files with flange,web and stiffener thicknesses

    The optimized cross section consists of a 3-cell section with additional stiffeners connecting the web to the top flange.The thickness of the top flange,bottom flange and the exterior webs are kept as 60 mm.The thickness of additional stiffeners is kept as 45 mm.The experimental models used in this investigation are a 1:3 scale model of a 3.75m bridge superstructure.The dimensions of the prototype and one-third scaled model of the bridge deck panel are given in Table 4.

    Figure 4:Cross sectional pro file of one-third scaled model

    Table 4:GFRP Bridge Deck Panel Dimensions

    The GFRP bridge deck panel with the dimensions mentioned in Table 4 was analyzed by assigning the orthotropic material properties for the composites composed of the following materials.

    ·E-Glass fibres in the form of CSM and ISO

    ·E-Glass fibres in the form of WR and ISO

    ·E-Glass fibres in the form of WR and ER

    The followings are notations for the six multi-cellular GFRP composite bridge considered for analysis.

    1.CSIS1A-CSM and ISO under flexural loading condition

    2.CSIS2A-CSM and ISO under shear loading condition

    3.WRIS1A-WR and ISO under flexural loading condition

    4.WRIS2A-WR and ISO under shear loading condition

    5.WRER1A-WR and ER under flexural loading condition

    6.WRER2A-WR and ER under Shear loading condition

    The static analysis of multicellular GFRP composite bridge deck panel of size 1250 mm×333.33 mm×150 mm was carried out using ANSYS.Analysis is carried out for long edges simply supported and short edges simply supported as shown in Figure 5.The load was uniformly distributed over two rectangular patch areas of 166.67 mm×83.33 mm up-to ultimate load on bridge deck panel in the form of equivalent nodal forces.Figure 5 shows the GFRP bridge deck FE model.

    Figure 5:Finite element model with patch loads

    The deflected shape of the deck panel under the load is shown in Figure 6 and the deflection contour of the bridge deck panel is shown in Figure 7 for WRIS2A and WRIS1A.Figure 8 shows the deflection contour of GFRP bridge deck panel made out of WRER2A and WRER1A in the case of two long edges and two short edges of simply supported condition.

    The maximum deflection and ultimate load carrying capacity of three different models under flexure(short span hinged)and shear(long span hinged)conditions are presented in Table 5.From Table 5,it can be noted that the values of the maximum bending stress are found to be lower against maximum deflection.

    Figure 6:deflected shape of the GFRP bridge deck panel(WRIS2A and WRIS1A)

    Figure 7:deflection contour of the GFRP bridge deck panel(WRIS2A and WRIS1A)

    Figure 8:deflection contour of the GFRP bridge deck panel(WRER2A and WRER1A)

    3 Experimental investigations

    Three different combinations of materials were employed in the fabrication of the GFRP bridge deck panels as listed below.

    Table 5:Ultimate Load and Maximum deflection

    ·ISO and CSM made of E-glass.

    ·ISO and WR Mat 610 GSM made of E-glass

    ·ER and WR Mat(WRM)610 GSM made of E-glass

    Six multi-cellular GFRP composite bridge deck panels of size 1250 mm×333 mm×150 mm(l×b×d)were fabricated by hand lay-up process using the following combination of materials.

    ·E-Glass fibres in the form of CSM and ISO-2 Numbers

    ·E-Glass fibres in the form of WR and ISO-2 Numbers

    ·E-Glass fibres in the form of WR and ER-2 Numbers

    Figure 9 shows typical bridge deck panel.

    The loading frames were connected to the strong test floor.A Hydraulic jack was used for applying load.Proving ring of 300kN capacity was used for loading.Two points loading was applied on the model.The span length(1250 mm)of the bridge deck panel was kept parallel to the primary beam of the loading frame.The simply supported boundary conditions were simulated using the line supports as shown in Figure 9.The deflections were measured at the mid-span of the GFRP Deck panel and at the middle,inner and outer edges of the steel plates using the LVDT.The static testing of GFRP composite bridge deck panel was carried out under the simulated wheel load of IRC Class A wheeled vehicle.The dynamic allowance factor was taken as 30%of the live load of the wheeled vehicle.The static tests were conducted till failure.

    Figure 9:Typical bridge deck panel

    While testing the bridge deck panel,no load shedding was observed even though the resin started cracking.A very little cracking sound was heard due to fracture of mat fabric inside the cells and also a loud cracking sound was heard as soon as the applied load reached the ultimate capacity of bridge deck panel and the specimen load shedding suddenly.The fracture of specimens proved its brittle nature.The rupture of fabric was found at the junctions of the triangular stiffeners(as shown in Figure 10)in all the three cells.

    Figure 10:Failure pattern at the junctions of the triangular stiffeners

    Table 6 presents the ultimate load and corresponding deflection obtained for all the GFRP bridge deck panels.

    Table 6:Experimental ultimate load and deflection

    From Tables 5 and 6,it can be noted that the computed ultimate load and corresponding deflections are in very good agreement with the corresponding experimental values.The developed FE models are found to be robust and reliable,which can be used for further parametric studies.

    4 Analytical studies

    Analytical studies were carried out by using well known Euler Bernoulli beam theory(EBT)and Timeshenko Beam theory(TBT)to verify the experimental as well as FEA results.Table 7 presents the results of analytical studies.

    Table 7:Analytical studies

    From Table 7,it can be noted that the deflections are in very good agreement with the corresponding FEA and experimental values.

    5Summary

    Experimental,numerical and analytical studies were carried out on hand lay-up prototype multicellular GFRP composite bridge deck panels.Linear static analysis has been carried out on various cross section pro files of GFRP bridge deck panel by using general purpose finite element software,ANSYS.Ultimate load and corresponding deflections were obtained for all the cases.Based on the weight and minimum deflection, final con figuration is arrived at.Bridge deck panels were fabricated by hand lay-up process and tested up to failure.Ultimate load and corresponding deflections were noted for each case.deflections were also computed by Euler bending theory and Timoshenko beam theory.From the overall study it is observed that the deflections obtained by FEA,experiment and analytical are in very good agreement with each other.The developed FE model and analytical models are found to be robust and reliable.

    AASHTO(2000): American Association of State Highway and Transportation Of ficials.Standard specifications for design of highway bridges,Washington,DC,USA.

    ACI-440(2008): Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures.American Concrete Institute(ACI),Committee 440,Michigan,USA.

    Alagusundaramoorthy,P.;Reddy,R.V.S.(2008): Testing and evaluation of gfrp composite deck panels.Ocean Engineering,vol.35,no.3,pp.287-293.

    Ascione,F.;Mancusi,G.;Spadea,S.;Lamberti,M.;Lebon,F.;Maurel-Pantel,A.(2015): On the flexural behaviour of gfrp beams obtained by bonding simple panels:An experimental investigation.Composite Structures,vol.131,pp.55-65.

    CAN/CSA-S6-00(2006): Canadian highway bridge design code.Canadian Standards Association,Mississauga,ON,Canada.

    Correia,J.R.;Bai,Y.;Keller,T.(2015): A review of the fire behaviour of pultruded gfrp structural pro files for civil engineering applications. Composite Structures,vol.127,pp.267-287.

    Davalos,J.F.;Qiao,P.;Xu,X.F.;Robinson,J.;Barth,K.E.(2001):Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications.Composite structures,vol.52,no.3,pp.441-452.

    El-Gamal,S.;El-Salakawy,E.;Benmokrane,B.(2005):Behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer bars under concentrated loads.ACI Structural Journal,vol.102,no.5,pp.727.

    El-Salakawy,E.;Benmokrane,B.;El-Ragaby,A.;Nadeau,D.(2005):Field investigation on the first bridge deck slab reinforced with glass frp bars constructed in canada.Journal of composites for construction,vol.9,no.6,pp.470-479.

    He,Y.;Aref,A.J.(2003):An optimization design procedure for fiber reinforced polymer web-core sandwich bridge deck systems.Composite Structures,vol.60,no.2,pp.183-195.

    Li,Y.-F.;Badjie,S.;Chen,W.W.;Chiu,Y.-T.(2014): Case study of first allgfrp pedestrian bridge in taiwan.Case Studies in Construction Materials,vol.1,pp.83-95.

    Mara,V.;Haghani,R.;Harryson,P.(2014): Bridge decks of fibre reinforced polymer(frp):a sustainable solution.Construction and Building Materials,vol.50,pp.190-199.

    Qiao,P.;Davalos,J.F.;Brown,B.(2000):A systematic analysis and design approach for single-span frp deck/stringer bridges.Composites Part B:Engineering,vol.31,no.6,pp.593-609.

    Shenton III,H.W.;Chajes,M.J.(1999): Long-term health monitoring of an advanced polymer composite bridge.In 1999 Symposium on Smart Structures and Materials,pp.143-151.International Society for Optics and Photonics.

    Turner,M.K.;Harries,K.A.;Petrou,M.F.;Rizos,D.(2004):In situ structural evaluation of a gfrp bridge deck system.Composite Structures,vol.65,no.2,pp.157-165.

    Vovesn`y,M.;Rotter,T.(2012):Gfrp bridge deck panel.Procedia Engineering,vol.40,pp.492-497.

    Wu,H.-C.;Mu,B.;Warnemuende,K.(2003):Failure analysis of frp sandwich bus panels by finite element method.Composites Part B:Engineering,vol.34,no.1,pp.51-58.

    Zheng,Y.;Fu,X.;Lu,Z.;Pan,Y.(2013):Investigation of structural behaviour of gfrp reinforced concrete deck slabs through nlfea.Construction and Building Materials,vol.45,pp.60-77.

    Zhu,J.;Lopez,M.M.(2014): Performance of a lightweight gfrp composite bridge deck in positive and negative bending regions.Composite Structures,vol.113,pp.108-117.

    1Assistant Professor in Civil Engineering,Coimbatore Institute of Technology,Coimbatore,India-641 014

    2Corresponding author.E-mail:m_p_muthuraj@rediffmail.com.

    在线免费十八禁| 少妇人妻一区二区三区视频| 国产亚洲精品av在线| 久久久国产成人免费| 变态另类丝袜制服| 日本免费一区二区三区高清不卡| 亚洲不卡免费看| 亚洲综合精品二区| 久久亚洲精品不卡| 免费av不卡在线播放| 又爽又黄a免费视频| 日韩亚洲欧美综合| 狂野欧美激情性xxxx在线观看| 汤姆久久久久久久影院中文字幕 | 99久久中文字幕三级久久日本| 日本黄色视频三级网站网址| 久久久久久久亚洲中文字幕| 国产精品久久视频播放| 日韩大片免费观看网站 | 成人国产麻豆网| 亚洲中文字幕日韩| 美女被艹到高潮喷水动态| 三级国产精品片| 一区二区三区四区激情视频| 美女国产视频在线观看| 少妇熟女aⅴ在线视频| 午夜激情福利司机影院| 日本五十路高清| 国产探花极品一区二区| 亚洲美女搞黄在线观看| 禁无遮挡网站| 精品欧美国产一区二区三| 国产黄色视频一区二区在线观看 | 欧美97在线视频| 久久久精品大字幕| 欧美日韩国产亚洲二区| 人人妻人人澡人人爽人人夜夜 | 成人特级av手机在线观看| 日韩欧美精品v在线| 大香蕉久久网| 亚洲在线观看片| 免费在线观看成人毛片| 亚洲aⅴ乱码一区二区在线播放| 爱豆传媒免费全集在线观看| 又粗又爽又猛毛片免费看| 99久久九九国产精品国产免费| 黄色欧美视频在线观看| 人妻系列 视频| 天天躁日日操中文字幕| av又黄又爽大尺度在线免费看 | 久久久久久大精品| 永久网站在线| 91狼人影院| 亚洲美女搞黄在线观看| 99久国产av精品国产电影| 色综合站精品国产| 美女大奶头视频| 久久精品91蜜桃| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久v下载方式| 国产精品熟女久久久久浪| 国产精品精品国产色婷婷| 草草在线视频免费看| 中文天堂在线官网| 老司机影院毛片| 亚洲av中文字字幕乱码综合| 18禁动态无遮挡网站| 亚洲四区av| 99九九线精品视频在线观看视频| 亚洲国产精品sss在线观看| 亚洲第一区二区三区不卡| 日韩成人伦理影院| 九九爱精品视频在线观看| 成人性生交大片免费视频hd| av在线播放精品| 又粗又硬又长又爽又黄的视频| 91aial.com中文字幕在线观看| 精品国产露脸久久av麻豆 | 亚洲人与动物交配视频| 99久久无色码亚洲精品果冻| 精品久久国产蜜桃| 久久99热这里只有精品18| 国产乱人视频| 亚洲经典国产精华液单| 亚洲人成网站在线观看播放| 高清在线视频一区二区三区 | 天堂网av新在线| 国产一级毛片在线| 能在线免费观看的黄片| 色播亚洲综合网| 精品久久国产蜜桃| 日日撸夜夜添| 欧美日韩在线观看h| 国产一级毛片七仙女欲春2| 久久精品国产亚洲av涩爱| 午夜精品一区二区三区免费看| 亚洲人成网站在线播| 国产精品一区www在线观看| 久久韩国三级中文字幕| av在线天堂中文字幕| 国产男人的电影天堂91| 3wmmmm亚洲av在线观看| 男的添女的下面高潮视频| 亚洲成人av在线免费| 国产伦一二天堂av在线观看| 亚洲人成网站高清观看| 欧美极品一区二区三区四区| 少妇人妻精品综合一区二区| 亚洲精品国产av成人精品| 午夜亚洲福利在线播放| 国产成人福利小说| 精品一区二区免费观看| 人人妻人人澡欧美一区二区| 午夜福利网站1000一区二区三区| 亚洲色图av天堂| 尾随美女入室| 精品国内亚洲2022精品成人| 欧美成人午夜免费资源| 人妻系列 视频| 国产精品久久久久久精品电影小说 | av在线蜜桃| 人体艺术视频欧美日本| 日本熟妇午夜| 国产在线男女| 99热这里只有是精品50| 久久久久久久久久久丰满| 干丝袜人妻中文字幕| 亚洲国产色片| 插阴视频在线观看视频| 久久6这里有精品| 免费观看人在逋| 久久久久久久午夜电影| 国产精品国产三级国产av玫瑰| 欧美日韩精品成人综合77777| 日产精品乱码卡一卡2卡三| 欧美一区二区精品小视频在线| 精品国产一区二区三区久久久樱花 | 一级毛片电影观看 | 国内精品美女久久久久久| 日韩在线高清观看一区二区三区| 国产又黄又爽又无遮挡在线| 一卡2卡三卡四卡精品乱码亚洲| 国产乱来视频区| 国产精品一区www在线观看| 亚洲四区av| 99久久精品国产国产毛片| 亚洲高清免费不卡视频| 岛国在线免费视频观看| 青春草亚洲视频在线观看| 国产精品三级大全| 亚洲内射少妇av| 免费不卡的大黄色大毛片视频在线观看 | 久久这里有精品视频免费| 国产色爽女视频免费观看| 国产乱人偷精品视频| av线在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 99久国产av精品| 亚洲人与动物交配视频| 99在线视频只有这里精品首页| 男插女下体视频免费在线播放| 丰满少妇做爰视频| 成人无遮挡网站| 久久午夜福利片| 嫩草影院入口| 午夜福利在线观看吧| 欧美成人a在线观看| 69av精品久久久久久| 国产黄片视频在线免费观看| 久久99热这里只频精品6学生 | 久久久国产成人免费| 国产真实乱freesex| 国产人妻一区二区三区在| 成人性生交大片免费视频hd| 国产真实乱freesex| 水蜜桃什么品种好| 午夜激情福利司机影院| 精品无人区乱码1区二区| 中文字幕精品亚洲无线码一区| 在现免费观看毛片| 简卡轻食公司| 狂野欧美白嫩少妇大欣赏| 国产在视频线精品| 成人午夜高清在线视频| 一区二区三区四区激情视频| 久久99热这里只频精品6学生 | 国产中年淑女户外野战色| 国产乱来视频区| 免费看av在线观看网站| 如何舔出高潮| 高清毛片免费看| 99久久人妻综合| av线在线观看网站| 观看免费一级毛片| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区四那| 国产午夜精品一二区理论片| 国产又色又爽无遮挡免| 人人妻人人看人人澡| 中国美白少妇内射xxxbb| 久久精品国产亚洲av涩爱| 国产精品一区二区三区四区免费观看| 国产精品国产高清国产av| 亚洲成人av在线免费| 永久网站在线| 亚洲精品自拍成人| 91aial.com中文字幕在线观看| 少妇被粗大猛烈的视频| 亚洲欧洲国产日韩| 久久久久久伊人网av| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 综合色av麻豆| 中文字幕熟女人妻在线| 久久99热这里只频精品6学生 | 国产单亲对白刺激| 中文字幕亚洲精品专区| 尤物成人国产欧美一区二区三区| 日韩成人伦理影院| 国产免费又黄又爽又色| 日韩欧美在线乱码| 内射极品少妇av片p| 精品酒店卫生间| 成年女人看的毛片在线观看| 国产乱人视频| 又爽又黄无遮挡网站| 成人av在线播放网站| 日本黄色片子视频| 纵有疾风起免费观看全集完整版 | 久热久热在线精品观看| 中文字幕免费在线视频6| 国产在视频线在精品| 麻豆成人av视频| 久久久久久久久久久免费av| 日本-黄色视频高清免费观看| 午夜福利高清视频| 一区二区三区高清视频在线| 九九在线视频观看精品| 老司机影院毛片| 午夜福利高清视频| 精华霜和精华液先用哪个| 菩萨蛮人人尽说江南好唐韦庄 | 少妇猛男粗大的猛烈进出视频 | 亚洲色图av天堂| 大话2 男鬼变身卡| 亚洲精品,欧美精品| 亚洲怡红院男人天堂| 中文精品一卡2卡3卡4更新| 欧美性感艳星| 国产精品久久久久久av不卡| 国产精品嫩草影院av在线观看| 青春草国产在线视频| 欧美成人午夜免费资源| 日韩视频在线欧美| 日韩在线高清观看一区二区三区| 久久精品国产亚洲av涩爱| 亚洲中文字幕日韩| 午夜福利在线在线| 亚洲伊人久久精品综合 | 亚洲精品国产av成人精品| 99热6这里只有精品| 欧美另类亚洲清纯唯美| 免费观看精品视频网站| 久久精品国产亚洲av涩爱| av.在线天堂| 蜜臀久久99精品久久宅男| 亚洲av男天堂| 国产高清视频在线观看网站| 国产精品女同一区二区软件| 亚洲欧美清纯卡通| 人妻系列 视频| 精品人妻一区二区三区麻豆| 欧美变态另类bdsm刘玥| 99久久九九国产精品国产免费| 国产三级中文精品| 亚洲国产精品sss在线观看| 国产一区亚洲一区在线观看| 免费看美女性在线毛片视频| 男插女下体视频免费在线播放| 99热这里只有是精品在线观看| 又爽又黄a免费视频| 日日摸夜夜添夜夜添av毛片| 在线天堂最新版资源| 亚洲自拍偷在线| 日韩欧美三级三区| 偷拍熟女少妇极品色| 亚洲四区av| 国产91av在线免费观看| 国产伦精品一区二区三区四那| 久久鲁丝午夜福利片| 日本免费一区二区三区高清不卡| 精华霜和精华液先用哪个| 欧美精品国产亚洲| av在线播放精品| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 国产伦理片在线播放av一区| 成年女人看的毛片在线观看| 97人妻精品一区二区三区麻豆| av免费在线看不卡| 91久久精品国产一区二区三区| 嫩草影院入口| 国产69精品久久久久777片| 夜夜爽夜夜爽视频| 白带黄色成豆腐渣| 国产精品国产三级专区第一集| 高清日韩中文字幕在线| 综合色丁香网| 熟女人妻精品中文字幕| 日本三级黄在线观看| 高清视频免费观看一区二区 | 亚洲色图av天堂| 国产亚洲5aaaaa淫片| 亚洲18禁久久av| 欧美激情在线99| 麻豆精品久久久久久蜜桃| 99热这里只有是精品50| 女人久久www免费人成看片 | 亚洲最大成人手机在线| 晚上一个人看的免费电影| 欧美潮喷喷水| 精品不卡国产一区二区三区| 精品人妻视频免费看| 国产精品日韩av在线免费观看| av国产久精品久网站免费入址| 久久精品久久久久久久性| 免费人成在线观看视频色| 精品不卡国产一区二区三区| 91av网一区二区| 亚洲av福利一区| 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 欧美日本视频| 纵有疾风起免费观看全集完整版 | 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件| 欧美性猛交╳xxx乱大交人| 成人av在线播放网站| 男女那种视频在线观看| 国语自产精品视频在线第100页| 国产精品无大码| 噜噜噜噜噜久久久久久91| 国产精品嫩草影院av在线观看| 级片在线观看| 色综合色国产| av免费观看日本| 天美传媒精品一区二区| 午夜激情福利司机影院| 国产探花在线观看一区二区| 在线天堂最新版资源| 亚洲av成人精品一二三区| 观看美女的网站| 国产视频内射| 久久这里有精品视频免费| 精品一区二区三区人妻视频| 国产精品一及| 欧美成人一区二区免费高清观看| 欧美极品一区二区三区四区| 亚洲在久久综合| 中文欧美无线码| av在线天堂中文字幕| 少妇熟女欧美另类| 波多野结衣巨乳人妻| 久久热精品热| 男女边吃奶边做爰视频| 成人性生交大片免费视频hd| 精品久久久噜噜| 日本-黄色视频高清免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆av噜噜一区二区三区| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 色哟哟·www| 男人和女人高潮做爰伦理| 老师上课跳d突然被开到最大视频| 黄色日韩在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av熟女| 欧美成人精品欧美一级黄| 伊人久久精品亚洲午夜| 成人三级黄色视频| 九九热线精品视视频播放| 乱系列少妇在线播放| 欧美一级a爱片免费观看看| 永久网站在线| 99在线人妻在线中文字幕| 国产精品嫩草影院av在线观看| 真实男女啪啪啪动态图| 日本免费在线观看一区| 免费不卡的大黄色大毛片视频在线观看 | 只有这里有精品99| 免费大片18禁| 久久精品国产99精品国产亚洲性色| 欧美人与善性xxx| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站| 青春草国产在线视频| 高清视频免费观看一区二区 | 男人舔奶头视频| 国产精品精品国产色婷婷| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点| 成人三级黄色视频| 亚洲欧美日韩卡通动漫| 九九爱精品视频在线观看| 国产高清不卡午夜福利| 最近最新中文字幕免费大全7| 亚洲最大成人手机在线| 国产探花在线观看一区二区| 在线观看av片永久免费下载| 一级毛片电影观看 | 日韩视频在线欧美| 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| 中文字幕精品亚洲无线码一区| 在线播放无遮挡| 日本色播在线视频| 日本av手机在线免费观看| 国产精品久久电影中文字幕| 成人亚洲欧美一区二区av| 黑人高潮一二区| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看| 婷婷色麻豆天堂久久 | 中文在线观看免费www的网站| 国产av码专区亚洲av| 亚洲国产欧美在线一区| 最近的中文字幕免费完整| 亚洲成av人片在线播放无| 亚洲精品成人久久久久久| 成人无遮挡网站| 国产日韩欧美在线精品| 又粗又爽又猛毛片免费看| 青春草亚洲视频在线观看| 亚洲精品456在线播放app| 日本熟妇午夜| www.色视频.com| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 亚洲成人精品中文字幕电影| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | 老女人水多毛片| 久久热精品热| 日本av手机在线免费观看| 国产av一区在线观看免费| 1000部很黄的大片| 深爱激情五月婷婷| av线在线观看网站| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 免费黄网站久久成人精品| 九九在线视频观看精品| 亚洲欧洲日产国产| 嘟嘟电影网在线观看| 小说图片视频综合网站| 久久久久久国产a免费观看| 久久久国产成人精品二区| 亚洲五月天丁香| 免费黄网站久久成人精品| 身体一侧抽搐| 免费看美女性在线毛片视频| 色尼玛亚洲综合影院| 欧美一区二区精品小视频在线| 18禁在线播放成人免费| 在线播放国产精品三级| 1000部很黄的大片| 天美传媒精品一区二区| 老女人水多毛片| av播播在线观看一区| 亚洲婷婷狠狠爱综合网| 国产探花在线观看一区二区| 亚洲自拍偷在线| 春色校园在线视频观看| 亚洲欧美成人精品一区二区| 精品久久久久久电影网 | 免费av不卡在线播放| 国产亚洲午夜精品一区二区久久 | av播播在线观看一区| 日韩高清综合在线| 欧美变态另类bdsm刘玥| 热99在线观看视频| 国产黄色视频一区二区在线观看 | 偷拍熟女少妇极品色| 乱码一卡2卡4卡精品| 人人妻人人澡欧美一区二区| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 久久久久久伊人网av| 久久精品国产亚洲网站| 最近中文字幕2019免费版| 国产一区二区亚洲精品在线观看| 免费黄网站久久成人精品| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 国产精品电影一区二区三区| 国产不卡一卡二| 久99久视频精品免费| 99久久九九国产精品国产免费| 日本猛色少妇xxxxx猛交久久| 天堂√8在线中文| 最近中文字幕高清免费大全6| 久久久a久久爽久久v久久| 91aial.com中文字幕在线观看| 一本久久精品| 伦理电影大哥的女人| 亚洲精品国产成人久久av| 高清在线视频一区二区三区 | 我的女老师完整版在线观看| 少妇熟女欧美另类| 亚洲中文字幕日韩| 校园人妻丝袜中文字幕| 欧美潮喷喷水| www.色视频.com| 麻豆av噜噜一区二区三区| 亚洲第一区二区三区不卡| 岛国在线免费视频观看| 小蜜桃在线观看免费完整版高清| 亚洲美女视频黄频| 桃色一区二区三区在线观看| 国产成人精品久久久久久| 99国产精品一区二区蜜桃av| 看黄色毛片网站| 亚州av有码| 国产精品久久电影中文字幕| 2022亚洲国产成人精品| 精品欧美国产一区二区三| 三级经典国产精品| 免费大片18禁| 国产伦精品一区二区三区四那| 久久久久久久久大av| 国产v大片淫在线免费观看| 日韩av在线免费看完整版不卡| 国产在视频线精品| 岛国毛片在线播放| 九九热线精品视视频播放| 亚洲av成人精品一区久久| 国产 一区精品| 99热6这里只有精品| 日本黄大片高清| 色播亚洲综合网| 欧美日本视频| 精品久久久久久久久av| 99久久人妻综合| 亚洲成人中文字幕在线播放| 水蜜桃什么品种好| 欧美三级亚洲精品| 少妇猛男粗大的猛烈进出视频 | 色综合站精品国产| 国产日韩欧美在线精品| 久久婷婷人人爽人人干人人爱| 国产视频内射| 国产乱人视频| 好男人在线观看高清免费视频| 黄色日韩在线| 久久6这里有精品| 伦精品一区二区三区| 九九热线精品视视频播放| 一级爰片在线观看| 国产精品一及| 久久精品国产亚洲av天美| 五月伊人婷婷丁香| 女人被狂操c到高潮| 亚洲精品久久久久久婷婷小说 | av黄色大香蕉| 草草在线视频免费看| 中文字幕制服av| 成人三级黄色视频| 成年免费大片在线观看| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 亚洲电影在线观看av| 日韩欧美精品免费久久| 成人高潮视频无遮挡免费网站| 舔av片在线| 国产午夜精品一二区理论片| 麻豆国产97在线/欧美| 亚洲av成人精品一区久久| 最近最新中文字幕免费大全7| 九九爱精品视频在线观看| 91av网一区二区| 女人被狂操c到高潮| 亚洲精品久久久久久婷婷小说 | 国产成人精品婷婷| 日本三级黄在线观看| 男女下面进入的视频免费午夜| 国产精品久久久久久久久免| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 精品人妻偷拍中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲中文字幕日韩| 禁无遮挡网站| 永久网站在线| 国产老妇伦熟女老妇高清| 寂寞人妻少妇视频99o| 日韩亚洲欧美综合| 1000部很黄的大片| 日韩亚洲欧美综合| 永久免费av网站大全| 简卡轻食公司| 又粗又爽又猛毛片免费看| 国产麻豆成人av免费视频| 午夜日本视频在线| a级毛色黄片| 国产精品无大码| 国产精品久久久久久久久免| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 久久婷婷人人爽人人干人人爱| av线在线观看网站| 久久久久久久久久黄片| 夜夜爽夜夜爽视频|