• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Small-Scale Effect on the Static deflection of a Clamped Graphene Sheet

    2015-12-13 10:54:32XieWang2Zhang
    Computers Materials&Continua 2015年11期

    G.Q.Xie,J.P.Wang2,Q.L.Zhang

    Small-Scale Effect on the Static deflection of a Clamped Graphene Sheet

    G.Q.Xie1,J.P.Wang2,Q.L.Zhang1

    Small-scale effect on the static deflection of a clamped graphene sheet and influence of the helical angle of the clamped graphene sheet on its static deflection are investigated.Static equilibrium equations of the graphene sheet are formulated based on the concept of nonlocal elastic theory.Galerkin method is used to obtain the classical and the nonlocal static deflection from Static equilibrium equations,respectively.The numerical results show that the static deflection and small-scale effect of a clamped graphene sheet is affected by its small size and helical angle.Small-scale effect will decrease with increase of the length and width of the graphene sheet,and small-scale effect will disappear when the length and the width of graphene sheet are both larger than 200 um.

    Nonlocal theory;Graphene sheet;Small-scale effect;Static deflection;Helical angle.

    1 Introduction

    Since carbon nanotube was discovered by Iijima(1991),it has shown a broad application prospect in various fields because of its high mechanical strength,strong energy storage and catalytic effect etc.Due to the surface effect and the small-scale effect of nanomaterials,classical continuum mechanics will lead to an inaccurate result when it is used to solve the mechanics problem of nanomaterials.Fortunately,the nonlocal theory given by Eringen(1972)can remove the shortcoming of classical continuum mechanics.Based on the nonlocal theory,Zhang,Liu,and Wang,(2004)studied the buckling of multi-walled carbon nanotube.Xie,Han,and Long(2006,2006,2007)investigated the small scale effect and the vibration of carbon nanotube.Wang(2011)used a modified nonlocal beam model to study vibration and stability of nanotubes conveying fluid.Hybrid nonlocal beam model[Zhang,Wang,and Challamel(2009)]was employed to study bending,buckling,and vibration of micro/nanobeams.Reddy(2010)presented nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates.Fang,Zhen,and Zhang(2013)carried out nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory.Liang and Han(2014)gave prediction of the nonlocal scaling parameter for graphene sheet.Recently,Miandoab,Yousefi-Koma,and Pishkenari(2015)used nonlocal and strain gradient based model to study the electrostatically actuated silicon nano-beams.Zhao and Shi(2011)used an improved molecular structural mechanics model to study poisson ratios of single-walled carbon nanotubes.

    In this paper,a nonlocal model of nanoplate is developed for the static deflection of graphene sheet.Small-scale effect on the static deflection of a clamped graphene sheet is investigated.

    2 Formulation

    2.1 Nonlocal stress tensor

    In Eringen nonlocal elasticity model,Eringen(1983)considered that the physics of material bodies whose behavior at a material point is influenced by the state of all points in the body.This result is in accordance with atomic theory of lattice dynamics and experimental observations on phonon dispersion.The most general form of the nonlocal constitutive equation involves an integral over the entire regionof interest.

    For homogeneous and isotropic elastic solids,the nonlocal constitutive equation is

    Where symbols ‘:’is the double dot product,is the elastic modulus matrix of classical isotropic material,denotes the nonlocal stress tensor atandis the strain tensor at any pointin the body.The kernel functionis the nonlocal modulus,is the Euclidean distance,andwhereis a constant appropriate to each material,a is an internal characteristic size(e.g.length of C-C bond,lattice spacing,granular distance etc.)and l is an external characteristic size(e.g.crack size,wave length etc.).The volume integral in Eq.(1)is over the regionV occupied by the body.However,e0and l of graphene sheet have not been found in theoretical or experimental literature.

    Based on nonlocal elasticity model,we chose a representative element of graphene sheet shown as Fig.1.

    The stress of a reference point xxx in the representative element can be expressed as

    Figure 1:A representative element of graphene sheet.

    Figure 2:A helical graphene sheet.

    Taylor series

    To take the average of σij(x1,x2)over the representative element,in terms of the symmetry of the representative element,we have

    Where l is the length of C-C bond.

    Inversion of eq.(3)yields

    Whereσij(x1,x2)is the nonlocal stress tensor.

    2.2 Geometric equations

    A helical graphene sheet shown as Fig.2,(x1,x2)is the local coordinate system,andis the global coordinate system.andare parallel to both sides of the graphene sheet,respectively.

    Geometric equations of the helical graphene sheet in the global coordinate are

    Where w is the static deflection of the graphene sheet,

    According to the transformation relationship of strains,we have

    Where

    2.3 Nonlocal constitutive equation

    Based on Eq.(4),the nonlocal constitutive equations of graphene are rewritten as

    Where E is the elastic modulus of graphene,and μ Poisson’s ratio.

    Eq.(9)can be approximately expressed as

    Substituting Eq.(6)into Eq.(10),we have

    2.4 Physic equations

    The normal and shear stresses can be collected into bending momentand torquerespectively.

    The bending equilibrium equation of the plate on which a distribution force q is applied

    Combination of Eqs.(11)-(14)yields

    3 Numerical examples and discussions

    A clamped rectangle graphene sheet is shown as Fig.3.

    Figure 3:A clamped rectangle graphene sheet.

    The boundary conditions of the clamped graphene sheet can be written as

    Where a and b are,respectively,the length and the width of the graphene sheet.

    The deflection expression of the graphene sheet in terms of Galerkin method is given by

    Eq.(18)are consistent with the clamped boundary conditions of the graphene sheet.

    Galerkin weak form of Eq.(15)is given by

    Where m=1,2,3,...

    The approximate solution of Eq.(19)is given as following

    Where

    Substituting of Eqs.(21)-(23)into Eq.(19)has

    C1,C2andC3can be obtained from the solution of Eq.(24).

    Classical static deflection of the graphene sheet can be obtained by substituting l=0 into Eq.(19).

    To illustrate the small-scale effect on the static deflections of the graphene sheet,the small-scale effect factor η is de fined as

    Where wcsand wnsare,respectively,the classical and nonlocal static deflections of the center point of the graphene sheet

    For all the subsequent numerical example,the length of C-C bond l=0.142×10-9m,in-plane stiffness Eh=360 J/m2(Sanchez-Portal,D,1999),Poisson’s ratioμ=0.26,the thickness of the graphene sheet h=0.34 nm.

    To investigate the effect of the small-scale on the static deflection of the graphene sheet,we calculated the small-scale effect factor η of the graphene sheets with the different helical angles and geometric sizes.

    Figure 4:Small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).

    Fig.4 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).It can be found From Fig.4 that the small-scale effect factor η is influence by the helical angle of the graphene sheet.The small-scale effect factor is far from 1,the small-scale effect is very obvious when the side length of the helical graphene sheet is smaller than 20 um.the small-scale effect will not always decrease with increase of the geometrical size of the helical graphene sheet.

    Fig.5 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).It can be seen from comparison of Fig.5 and Fig.4 that the small-scale effect factor η changes periodically with change of helical angle,the change cycle is π/4.

    Figure 5:Small-scale effect factor of the static deflection of the center point of graphene sheet with the different helical angles and geometric sizes(4 um≤a≤20 um,4 um≤b≤20 um).

    Fig.6 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(40 um≤a≤200 um,40 um≤b≤200 um).It can be seen from Fig.6 that the small-scale effect factor η is more and more close to 1 with increase of the side length of the graphene sheet no matter how much the helix angle is.When the length and the width of the helical graphene sheet are both larger than 200um,the small-scale effect of the static deflection of the graphene sheet almost disappears.

    Figure 6:Small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric dimensions(40 um≤a≤200 um,40 um≤b≤200 um).

    Figure 7:small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angles and geometric sizes(40 um≤a≤200 um,40 um≤b≤200 um).

    Fig.7 shows that small-scale effect factor of the static deflection of the center point of the graphene sheet with the different helical angle and geometric sizes(40 um≤a≤200 um,40 um≤b≤200 um).It can be seen from comparison of Fig.6 and Fig.7 that the small-scale effect factor η will change periodically with change of helical angle,the change cycle is π/4.

    Fig.8 shows that comparison of small-scale effect factor of the static deflection of the graphene sheet with the different helical angles(40 um≤a≤200 um,40 um≤b ≤ 200 um).It can also be found from Fig.8 that the small-scale effect factor η of the same geometrical dimension graphene sheet will increase when the helical angles change from β =0 to β =4π/16.In other words,the small-scale effect of the same geometrical dimension graphene sheet will decrease with increase of its helical angle from β =0 to β =4π/16.

    Figure 8:Comparison of small-scale effect factor of the static deflection of the graphene sheet with the different helical angles.

    Fig.10 shows that comparison of the static deflection of the center point of the

    Figure 9:Comparison of small-scale effect factor of the static deflection of the graphene sheet with the different helical angles.

    Figure 10:Comparison of the static deflection of the center point of the graphene sheet with the different helical angles and geometrical dimensions.

    graphene sheet with the different helical angles.It can be seen from Fig.10 that the static deflection of the center point of the graphene sheet will increase when the helical angle of the same length and width graphene sheet increases from β=0 to β =4π/16 or the length and width of the same helical angle graphene sheet increases.

    Figure 11:Comparison of the static deflections of the center point of the graphene sheet with the different helical angles and geometrical dimensions.

    Fig.11 shows that comparison of the static deflection of the center point of the graphene sheet with the different helical angles.It can be seen from Fig.11 that the static deflection of the center point of the graphene sheet will increase when the helical angle of the same length and width graphene sheet decreases from β =8π/16 to β =4π/16 or when the length and width of the same helical angle graphene sheet increases.The static deflection of the same geometrical dimension helical graphene sheet has a periodic change of β = π/4 with the change of the helical angle.

    4 Conclusion

    Taking the typical hexagonal element of the graphene sheet as the research object,based on the concept of nonlocal theory,the stress tensor of any point within the typical element is expanded into Taylor series,the nonlocal constitutive equations of the graphene sheet was established.Galerkin weak form is used to solve the equilibrium equation of the graphene sheet.The classical and the nonlocal static deflections of the graphene sheet were obtained from solution of the equilibrium equation.To illustrate the small-scale effect on the static deflections of the graphene sheet,the small-scale effect factor is de fined as the ratio of the static deflections of the center point of the classical plate to that of the nonlocal plate.Numerical results show that

    1.When the length and width of the graphene sheet are less than 20 um,the small-scale effect factor of the static deflection of the graphene sheet will be very large,the small-scale effect is very obvious,and the small-scale effect will not always decrease with increase of the geometrical dimensions of the helical graphene sheet,the small-scale effect factor η is influence by the helical angle of the graphene sheet

    2.For 40 um≤a≤200 um,40 um≤b≤200 um,small-scale effect factor of the static deflection of the graphene sheet is more and more close to 1with the increase of the length and width of the graphene sheet,the small-scale effect will disappear when the length and the width of the plate are both larger than 200um.When the helical angle of the graphene sheet changes from 0 to π/4,The small-scale effect will decrease.

    3.For the same geometrical dimension graphene sheet,the small-scale effect factor has a periodic change of β = π/4 with the change of the helical angle.

    4.The static deflection of the center point of the graphene sheet will increase when the helical angle of the same length and width graphene sheet reduces from β =0 to β =4π/16 or when the length and width of the same helical angle graphene sheet increases.The static deflection has a periodic change of β = π/4 with the change of the helical angle.

    Acknowledgement:This work is supported by National Natural Science Foundation of China under the Grant Number 11372109

    Eringen,A.C.(1983):On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.Journal of Applied Physics.vol.54,no.9,pp.4703-4710.

    Eringen,A.C.;Edelen,D.G.B.(1972):On nonlocal elasticity.Int.J.Enging,no.10,pp.233-248.

    Fang,B.;Zhen,Y.X.;Zhang,C.P.(2013):Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory.Appl.Math.Modeling,vol.37,no.3,pp.1096-1107.

    Iijima,S.(1991):Helical microtubes of graphitic carbon.Nature.vol.354,pp.56-58.

    Liang,Y.;Han,Q.(2014):Prediction of the nonlocal scaling parameter for graphene sheet.European Journal of Mechanics-A/Solids,vol.45,pp.153-160.

    Miandoab,E.M.;Youse fi-Koma,A.;Pishkenari,H.N.(2015):Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams.Microsystem Technologies,vol.21,no.2,pp.457-464.

    Reddy,J.N.(2010):Nonlocal nonlinear formulations for bending of classicalal and shear deformation theories of beams and plates.Int.J.Eng.Sci.,vol.48,no.11,pp.1507-1518.

    Sanchez-Portal,D.;Emilio A.(1999):A study based on ab initio structural,elastic,and vibrational properties of carbon nanotubes,Phys.Rev.B,vol.59,no.18,pp.12678-12688.

    Wang,L.(2011):A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid.Phys.E.,vol.44,no.1,pp.25-28.

    Xie,G.Q.;Han,X.;Long,S.Y.(2006):Effect of small-scale scale on the radial Buckling pressure of a clamped multi-walled carbon nanotube.Smart Mater.and Struct.,vol.15,no.4,pp.1143-1149.

    Xie,G.Q.;Han,X.;Long,S.Y.(2007):Long.The effect of the small-scale on dispersion characteristics of the carbon nanotube.Int.J.Solid.Struct.,vol.44,no.4,pp.1242-1255.

    Xie,G.Q.;Long,S.Y.(2006):Elastic vibration behaviors of carbon nanotubes based on micropolar mechanics.CMC:Computers,Materials&Continua,vol.4,no.2,pp.11-20.

    Zhang,Y.Q.;Liu,G.R.;Wang,J.S.(2004):Small scale effects on buckling of multi-walled carbon nanotubes under axial compression.Phys.rev.B,vol.70,no.20,pp.205430.

    Zhang,Y.Y.;Wang,C.M.;Challamel,N.(2009):Bending,buckling,and vibration of micro/nanobeams by hybrid nonlocal beam model.J.eng.Mech.,vol.136,no.5,pp.562-574.

    Zhao,P.;Shi,G.(2011):Study of Poisson Ratios of Single-Walled Carbon Nanotubes based on an Improved Molecular Structural Mechanics Model.CMC:Computers,Materials&Continua,vol.22,no.2,pp.147-168.

    1Civil Engineering college,Hunan University of Science and Technology,Xiangtan 411201,China

    2Mianyang Vocational and Technical College,Mianyang 621000,China Corresponding author.E-mail:1020095@hnust.edu.cn

    av天堂中文字幕网| h日本视频在线播放| 日韩制服骚丝袜av| 色5月婷婷丁香| 亚洲七黄色美女视频| 热99在线观看视频| 亚洲精华国产精华液的使用体验 | 国产成人freesex在线| 色播亚洲综合网| 日韩中字成人| 亚洲最大成人中文| 国模一区二区三区四区视频| 精品人妻偷拍中文字幕| 午夜爱爱视频在线播放| 国产精品av视频在线免费观看| 嘟嘟电影网在线观看| 亚洲欧美日韩无卡精品| 国产91av在线免费观看| 久久久久久国产a免费观看| 三级男女做爰猛烈吃奶摸视频| 久久精品久久久久久久性| 亚洲av成人av| 三级男女做爰猛烈吃奶摸视频| 亚洲av不卡在线观看| 国产黄色小视频在线观看| 97人妻精品一区二区三区麻豆| 免费无遮挡裸体视频| 联通29元200g的流量卡| 最近的中文字幕免费完整| 久久综合国产亚洲精品| 日韩一本色道免费dvd| 亚洲丝袜综合中文字幕| 久久99热6这里只有精品| 免费大片18禁| 两个人的视频大全免费| 欧美最黄视频在线播放免费| 精品欧美国产一区二区三| 精品久久国产蜜桃| 婷婷精品国产亚洲av| 色尼玛亚洲综合影院| 亚洲最大成人av| 我的老师免费观看完整版| 直男gayav资源| 我要搜黄色片| 亚洲精品自拍成人| 国产激情偷乱视频一区二区| 麻豆国产av国片精品| 日本成人三级电影网站| 国产欧美日韩精品一区二区| 日韩 亚洲 欧美在线| 国产精品国产三级国产av玫瑰| 一个人看的www免费观看视频| 国产精品伦人一区二区| 噜噜噜噜噜久久久久久91| 日本成人三级电影网站| 99热这里只有是精品50| 夜夜爽天天搞| 日韩制服骚丝袜av| 久久精品人妻少妇| 国产免费男女视频| 国产亚洲av片在线观看秒播厂 | 亚洲无线观看免费| 国产精品久久电影中文字幕| 亚洲av免费高清在线观看| 婷婷六月久久综合丁香| 黄色一级大片看看| 中文字幕精品亚洲无线码一区| 国产精品久久久久久亚洲av鲁大| 亚洲精品乱码久久久v下载方式| 岛国在线免费视频观看| 搡女人真爽免费视频火全软件| 欧美三级亚洲精品| 久久这里有精品视频免费| 亚洲国产色片| 免费一级毛片在线播放高清视频| 精品人妻熟女av久视频| 国产成人福利小说| 91午夜精品亚洲一区二区三区| 麻豆一二三区av精品| 国产单亲对白刺激| 日韩高清综合在线| 亚洲无线在线观看| 成人毛片60女人毛片免费| 精品人妻一区二区三区麻豆| 亚洲国产精品成人综合色| 精品人妻视频免费看| 久久久久久九九精品二区国产| 国产伦精品一区二区三区四那| 日本在线视频免费播放| 午夜福利视频1000在线观看| or卡值多少钱| 亚洲av男天堂| 久久精品91蜜桃| 亚洲国产日韩欧美精品在线观看| 人妻久久中文字幕网| 美女 人体艺术 gogo| 91在线精品国自产拍蜜月| 国产三级在线视频| 美女脱内裤让男人舔精品视频 | 亚洲精品国产av成人精品| 黑人高潮一二区| 91久久精品电影网| 99热这里只有是精品50| 亚洲婷婷狠狠爱综合网| 91麻豆精品激情在线观看国产| 免费av不卡在线播放| 国产av一区在线观看免费| 亚洲国产欧美人成| 国产高清不卡午夜福利| 亚洲国产精品久久男人天堂| 亚洲欧美日韩卡通动漫| 一区福利在线观看| 国产精品综合久久久久久久免费| 天堂av国产一区二区熟女人妻| 精品久久久久久成人av| 99在线视频只有这里精品首页| 天美传媒精品一区二区| 精品午夜福利在线看| 精华霜和精华液先用哪个| 免费无遮挡裸体视频| 亚洲图色成人| 夜夜爽天天搞| 国产黄色小视频在线观看| 色综合亚洲欧美另类图片| av福利片在线观看| 男女那种视频在线观看| 99热全是精品| 在现免费观看毛片| 欧美激情在线99| 欧美精品国产亚洲| 日韩中字成人| 成人毛片60女人毛片免费| 国产成人freesex在线| 人人妻人人看人人澡| 极品教师在线视频| 亚洲成人久久爱视频| 国产一区二区三区在线臀色熟女| 国产不卡一卡二| 色哟哟哟哟哟哟| 午夜视频国产福利| 国产色爽女视频免费观看| 秋霞在线观看毛片| 给我免费播放毛片高清在线观看| 欧美性感艳星| 菩萨蛮人人尽说江南好唐韦庄 | 男人的好看免费观看在线视频| av视频在线观看入口| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片60女人毛片免费| 国语自产精品视频在线第100页| 午夜精品一区二区三区免费看| 能在线免费看毛片的网站| 变态另类丝袜制服| 天堂√8在线中文| 黄片无遮挡物在线观看| 久久久久久九九精品二区国产| 国产高清不卡午夜福利| 免费看光身美女| 国产探花在线观看一区二区| 少妇人妻精品综合一区二区 | 天美传媒精品一区二区| 日韩三级伦理在线观看| 欧美bdsm另类| 国产精品福利在线免费观看| 成年版毛片免费区| 大又大粗又爽又黄少妇毛片口| 中文字幕精品亚洲无线码一区| 午夜亚洲福利在线播放| 久久久久久久久久黄片| 人人妻人人澡欧美一区二区| 亚洲国产精品合色在线| 黄色欧美视频在线观看| 性欧美人与动物交配| 国产精品嫩草影院av在线观看| 国产精品精品国产色婷婷| 久久久久久久久大av| 久久久午夜欧美精品| 国产伦精品一区二区三区四那| 女的被弄到高潮叫床怎么办| 日韩高清综合在线| or卡值多少钱| 久久婷婷人人爽人人干人人爱| 日韩欧美 国产精品| 欧美日本视频| 老师上课跳d突然被开到最大视频| 成人鲁丝片一二三区免费| 国产精品美女特级片免费视频播放器| 午夜福利视频1000在线观看| 久久久久九九精品影院| 国产视频首页在线观看| 国产精品免费一区二区三区在线| 22中文网久久字幕| 1000部很黄的大片| 国产精品久久久久久久电影| 伊人久久精品亚洲午夜| 黄色欧美视频在线观看| 日本在线视频免费播放| 色视频www国产| 插阴视频在线观看视频| 国产视频首页在线观看| 欧美一区二区国产精品久久精品| 欧美一区二区国产精品久久精品| 97在线视频观看| 男女做爰动态图高潮gif福利片| 午夜福利在线在线| 人体艺术视频欧美日本| 黄色配什么色好看| 日本一本二区三区精品| 国产v大片淫在线免费观看| 美女高潮的动态| 亚洲人与动物交配视频| 一本久久精品| 校园人妻丝袜中文字幕| 亚洲无线在线观看| 亚洲内射少妇av| 国产精品爽爽va在线观看网站| 搡女人真爽免费视频火全软件| 2021天堂中文幕一二区在线观| 日日摸夜夜添夜夜添av毛片| 直男gayav资源| 亚洲精品456在线播放app| 精品欧美国产一区二区三| 精品久久久久久久末码| 淫秽高清视频在线观看| 国产一区亚洲一区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 神马国产精品三级电影在线观看| 日本-黄色视频高清免费观看| 精品少妇黑人巨大在线播放 | 给我免费播放毛片高清在线观看| 日韩成人av中文字幕在线观看| 天堂√8在线中文| 丰满人妻一区二区三区视频av| 色吧在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久午夜福利片| 中国美女看黄片| 亚洲aⅴ乱码一区二区在线播放| 两个人视频免费观看高清| 狠狠狠狠99中文字幕| 免费人成视频x8x8入口观看| 国产成人a∨麻豆精品| 丝袜美腿在线中文| 女人十人毛片免费观看3o分钟| 亚洲高清免费不卡视频| 一级毛片久久久久久久久女| a级毛片免费高清观看在线播放| 男人舔奶头视频| 亚洲成人av在线免费| 婷婷亚洲欧美| av福利片在线观看| 三级经典国产精品| 人人妻人人澡人人爽人人夜夜 | 女的被弄到高潮叫床怎么办| 久久人妻av系列| 97超碰精品成人国产| 一级毛片aaaaaa免费看小| 久久久精品大字幕| 青春草视频在线免费观看| 免费av观看视频| 日韩大尺度精品在线看网址| 欧美极品一区二区三区四区| 啦啦啦啦在线视频资源| 久久久久性生活片| 国产精品一二三区在线看| 国产片特级美女逼逼视频| 久久久精品欧美日韩精品| 九九热线精品视视频播放| av在线天堂中文字幕| 欧美成人a在线观看| 日韩高清综合在线| 日韩高清综合在线| 成人午夜精彩视频在线观看| 亚洲丝袜综合中文字幕| 99精品在免费线老司机午夜| 日韩,欧美,国产一区二区三区 | a级毛片a级免费在线| 综合色av麻豆| 国产高清有码在线观看视频| 夜夜爽天天搞| 69av精品久久久久久| 超碰av人人做人人爽久久| or卡值多少钱| 99久久精品热视频| 九九在线视频观看精品| 在线观看66精品国产| av福利片在线观看| 九九在线视频观看精品| 99视频精品全部免费 在线| 99视频精品全部免费 在线| 插逼视频在线观看| .国产精品久久| 免费无遮挡裸体视频| 国产精品一区二区在线观看99 | 成人性生交大片免费视频hd| 亚洲国产欧洲综合997久久,| 我的女老师完整版在线观看| 国产精品国产三级国产av玫瑰| 一夜夜www| 国模一区二区三区四区视频| 国模一区二区三区四区视频| 给我免费播放毛片高清在线观看| 国产精品久久视频播放| 亚洲va在线va天堂va国产| 久久精品综合一区二区三区| 精品免费久久久久久久清纯| 精品久久久久久久末码| 国产精品一区www在线观看| 色视频www国产| 日韩欧美国产在线观看| 一本精品99久久精品77| 日本一本二区三区精品| 尾随美女入室| 青春草视频在线免费观看| 国产精品一二三区在线看| a级毛色黄片| 桃色一区二区三区在线观看| 日本三级黄在线观看| 午夜视频国产福利| 尾随美女入室| 黄色配什么色好看| 人妻夜夜爽99麻豆av| 天天躁夜夜躁狠狠久久av| 亚洲激情五月婷婷啪啪| 欧美一区二区精品小视频在线| 91午夜精品亚洲一区二区三区| 亚洲成人精品中文字幕电影| 亚洲欧美成人综合另类久久久 | 亚洲精品国产av成人精品| 狂野欧美白嫩少妇大欣赏| 九九爱精品视频在线观看| 国产在线男女| 亚洲久久久久久中文字幕| 国产美女午夜福利| 美女高潮的动态| 亚洲欧美精品综合久久99| 国产久久久一区二区三区| 国产91av在线免费观看| 久久久久久久久久久丰满| 最近最新中文字幕大全电影3| 六月丁香七月| 免费搜索国产男女视频| 欧美性猛交黑人性爽| 亚洲欧洲国产日韩| 欧美一区二区国产精品久久精品| 欧美xxxx性猛交bbbb| 国产精品久久视频播放| 亚洲国产色片| 国产精品伦人一区二区| 日本三级黄在线观看| 国产又黄又爽又无遮挡在线| 午夜精品国产一区二区电影 | 高清在线视频一区二区三区 | 五月伊人婷婷丁香| 国产精品国产三级国产av玫瑰| 男女边吃奶边做爰视频| 国产精品精品国产色婷婷| 一个人观看的视频www高清免费观看| 日韩欧美精品免费久久| 1024手机看黄色片| 国内精品宾馆在线| 色视频www国产| 亚洲第一电影网av| 成人欧美大片| 熟妇人妻久久中文字幕3abv| 国产高清不卡午夜福利| 22中文网久久字幕| 18禁黄网站禁片免费观看直播| 九九久久精品国产亚洲av麻豆| 国产精品一区二区三区四区久久| 嫩草影院精品99| 18禁在线无遮挡免费观看视频| 麻豆成人午夜福利视频| 亚洲成a人片在线一区二区| 中文字幕免费在线视频6| 成人综合一区亚洲| 久久精品国产亚洲av涩爱 | 色综合亚洲欧美另类图片| 久久精品影院6| 嫩草影院新地址| 日本欧美国产在线视频| 久久99热6这里只有精品| 日本三级黄在线观看| 亚洲av中文字字幕乱码综合| 特级一级黄色大片| 日本成人三级电影网站| 此物有八面人人有两片| 2022亚洲国产成人精品| 男女做爰动态图高潮gif福利片| 国产视频首页在线观看| 一本一本综合久久| 中出人妻视频一区二区| 免费人成在线观看视频色| 在线观看66精品国产| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| av卡一久久| 国产91av在线免费观看| 国产在线男女| 99视频精品全部免费 在线| 久久99蜜桃精品久久| 长腿黑丝高跟| 男插女下体视频免费在线播放| 黄色欧美视频在线观看| 久久99精品国语久久久| 国产高清有码在线观看视频| 欧美xxxx性猛交bbbb| 伦精品一区二区三区| 久久久久久久久大av| 精品人妻熟女av久视频| 国产伦在线观看视频一区| 五月伊人婷婷丁香| 亚洲精品粉嫩美女一区| 99久久精品国产国产毛片| 晚上一个人看的免费电影| 可以在线观看毛片的网站| 精品久久久噜噜| 伦理电影大哥的女人| 2022亚洲国产成人精品| 国产精品,欧美在线| 欧美一区二区亚洲| 亚洲av免费高清在线观看| 成熟少妇高潮喷水视频| 波多野结衣巨乳人妻| 在线a可以看的网站| 高清午夜精品一区二区三区 | 国产一区二区亚洲精品在线观看| av视频在线观看入口| 在线免费观看不下载黄p国产| 一本精品99久久精品77| 不卡视频在线观看欧美| 一区二区三区高清视频在线| 成人毛片60女人毛片免费| 亚洲av男天堂| 在线免费十八禁| 嘟嘟电影网在线观看| 午夜视频国产福利| 成人毛片a级毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲无线观看免费| 日本五十路高清| 中文字幕熟女人妻在线| a级毛色黄片| 日日摸夜夜添夜夜添av毛片| 少妇高潮的动态图| 国产精品福利在线免费观看| 亚洲欧洲日产国产| 亚洲一区高清亚洲精品| 老司机福利观看| 久久久久国产网址| .国产精品久久| 91av网一区二区| 九九热线精品视视频播放| 精品一区二区三区视频在线| 丝袜喷水一区| 看十八女毛片水多多多| 久久99蜜桃精品久久| 九色成人免费人妻av| 高清毛片免费观看视频网站| 尤物成人国产欧美一区二区三区| 变态另类成人亚洲欧美熟女| 在线观看一区二区三区| 美女xxoo啪啪120秒动态图| 午夜激情福利司机影院| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av| 最新中文字幕久久久久| 欧美一区二区亚洲| 韩国av在线不卡| 99热精品在线国产| 久久久久久久久中文| 久久久久久九九精品二区国产| 国产一区亚洲一区在线观看| 嫩草影院入口| 婷婷色av中文字幕| 天天一区二区日本电影三级| 免费观看a级毛片全部| 丝袜美腿在线中文| 校园春色视频在线观看| 99久久人妻综合| 亚洲av二区三区四区| av免费在线看不卡| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲av天美| 亚洲在久久综合| av国产免费在线观看| 深爱激情五月婷婷| 免费看日本二区| 国产午夜精品论理片| 日本黄大片高清| 国产精品国产三级国产av玫瑰| 欧美成人一区二区免费高清观看| 别揉我奶头 嗯啊视频| 亚洲av二区三区四区| 91av网一区二区| 国产一区二区三区在线臀色熟女| 一区二区三区免费毛片| 亚洲精品乱码久久久v下载方式| 国产精品一区二区三区四区免费观看| 日本色播在线视频| 亚洲av.av天堂| 有码 亚洲区| 免费在线观看成人毛片| 一个人看视频在线观看www免费| 国产蜜桃级精品一区二区三区| 亚洲av免费高清在线观看| 色尼玛亚洲综合影院| 国产熟女欧美一区二区| 国产精品久久久久久精品电影| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看| 一区福利在线观看| 亚洲精品影视一区二区三区av| 一进一出抽搐动态| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 在线观看一区二区三区| 久久6这里有精品| 99热这里只有精品一区| 色综合色国产| 国产精品国产三级国产av玫瑰| 成人性生交大片免费视频hd| 国产伦理片在线播放av一区 | 免费黄网站久久成人精品| 小说图片视频综合网站| 精品久久国产蜜桃| 麻豆乱淫一区二区| 级片在线观看| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 99在线视频只有这里精品首页| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| 国产精品日韩av在线免费观看| 少妇猛男粗大的猛烈进出视频 | 免费看日本二区| 91狼人影院| 悠悠久久av| 在线观看一区二区三区| 亚洲精品影视一区二区三区av| 女人被狂操c到高潮| 一个人看视频在线观看www免费| 免费av毛片视频| 岛国在线免费视频观看| 久久久久久久久久久丰满| 身体一侧抽搐| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 丝袜喷水一区| 日日啪夜夜撸| 一级二级三级毛片免费看| a级毛色黄片| 久久久久久久久久久免费av| 丰满人妻一区二区三区视频av| 午夜精品在线福利| 六月丁香七月| 午夜福利成人在线免费观看| 亚洲激情五月婷婷啪啪| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在 | 国产成人福利小说| 久久久久久久亚洲中文字幕| 日韩欧美一区二区三区在线观看| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 国产中年淑女户外野战色| ponron亚洲| 国产片特级美女逼逼视频| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 色综合色国产| 亚洲av熟女| 亚洲国产精品合色在线| 日本av手机在线免费观看| 在线国产一区二区在线| 一级毛片电影观看 | 午夜免费激情av| 美女脱内裤让男人舔精品视频 | 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 久久精品久久久久久久性| av天堂在线播放| 秋霞在线观看毛片| 男人舔奶头视频| 51国产日韩欧美| 日韩一本色道免费dvd| 人妻少妇偷人精品九色| 91久久精品电影网| 亚洲国产色片| 国产精品综合久久久久久久免费| 老司机影院成人| 精品一区二区三区人妻视频| 午夜精品在线福利| av.在线天堂| 午夜免费激情av| 成年女人看的毛片在线观看| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看 | 亚洲五月天丁香| 欧美日韩综合久久久久久| 国产精品久久视频播放| 欧美区成人在线视频| 禁无遮挡网站| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| av在线观看视频网站免费| 国产单亲对白刺激| 国产不卡一卡二| 又爽又黄a免费视频| 久久久久久久久久黄片| 免费观看精品视频网站| 亚洲无线在线观看| 亚洲,欧美,日韩| 欧美激情在线99|