• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Constitutive Model for Ferromagnetic Shape Memory Alloy Particulate Composites

    2015-12-13 10:54:31LiGuoWenXiangZhang
    Computers Materials&Continua 2015年11期

    H.T.Li,3,Z.Y.Guo,J.Wen,H.G.Xiang,Y.X.Zhang

    A New Constitutive Model for Ferromagnetic Shape Memory Alloy Particulate Composites

    H.T.Li1,2,3,Z.Y.Guo1,2,J.Wen1,2,H.G.Xiang1,2,Y.X.Zhang1,2

    Ferromagnetic shape memory alloy particulate composites, which combine the advantages of large magnetic field induced deformation in ferromagnetic shape memory alloys(FSMAs)with high ductility in matrix,can be used for sensor and actuator applications.In this paper,a new constitutive model was proposed to predict the magneto-mechanical behaviors of FSMA particulate composites based on the description for FSMAs,incorporating Eshelby’s equivalent inclusion theory.The influencing factors,such as volume fraction of particles and elastic modulus,were analyzed.The magnetic field induced strain and other mechanical properties under different magnetic field intensity were also investigated.

    ferromagnetic shape memory alloy,particulate composite,Eshelby’s equivalent inclusion theory,constitutive model.

    1 Introduction

    Ferromagnetic shape memory alloys(FSMAs)are a class of intelligent materials with strong magnetic and mechanical coupling,which combine the thermoelastic shape memory effect controlled by temperature with the magnetic shape memory effect controlled by magnetic field.It was reported that the magnet-induced strain of FSMAs achieved can be as large as 10%[O’Handley,Murray,Marioni,Nembach,and Aleen(2000);Sozinov,Likhachev,Lanska,and Ullakko(2002)],and the maximum response frequency can reach 5000Hz[Ezer,Sozinov,and Kimmel(1999)].In comparison,the response frequency of strain induced by temperature in the traditional shape memory alloys is much lower(less than 1Hz).For FSMA particulate composites,the rigidity of the material and processing performance can be improved by the resin matrix,meanwhile the functionality of the materials canbe provided by ferromagnetic particles.Thus,FSMA particulate composites possess excellent magneto-mechanical properties and can be widely used in aerospace,automotive and many other fields[Wang and Zhang(2003)].

    Shape memory effect can be traced back to the rubber-like behavior,which was found in Au-Cu alloy in 1932.In 1965,Kelly and Davies(1965) firstly proposed the concept of metal matrix composites(MMCs),and then summarized the properties of MMCs.Ferromagnetic shape memory alloys,such as Ni-Mn-Ga[Webster,Ziebeck,and Town(1984)],Ni-Fe-Mn[Liu,Zhang,and Cui(2003)]and Ni-Al-Mn[Morito and Otsuka(1996)],have already aroused much concern.For example,Sato and Okazaki(2002);Zhang,Sato,and Lshida(2006)studied the properties of Co-Ni-Ga alloy.Chernenko,Cesari,and Kokrin(1995)investigated the phase transition temperature of FSMAs.Based on experimental data,Jin,Marioni,and Bono(2002)drew the relation curves of alloying component,martensite transformation temperature and saturation magnetization in Ni-Mn-Ga alloy.Hosoda,Takeuchi,and Inamura(2004)proposed a design procedure for these smart materials and analyzed their shape memory properties.Kainuma,Imano,and Ito(2006)studied the properties of Ni-Co-Mn-Sn Hessler polycrystalline alloys.Dong,Cai,and Gao(2008)investigated the effect of isothermal ageing on the mi-crostructure,martensitic transformation and mechanical properties.Feuchtwanger,Grif fin,Huang,Bono,O’Handley,and Allen(2004)studied the mechanical energy absorption in Ni-Mn-Ga polymer composites.

    Meanwhile,the constitutive theory for FSMAs was also developed since James’s research on magnetostriction of martensite[James and Wutting(1998)].The constitutive models for FSMAs can be divided into two types:macroscopic models and microscopic models.Macroscopic models can describe the magneto-mechanical properties of FSMAs,while microscopic models can analyze the relations among apparent behaviors and variants,twin crystal or martensite transformation.For example,O’Handley(1988);O’Handley,Murray,Marioni,Nembach,and Aleen(2000)proposed an analytical thermodynamic model for magnetic field induced strain under different anisotropic conditions,outstanding the importance of large magnetic anisotropy and low twin strain to twin boundary motion in FSMAs.Zhu,Chen,and Yu(2014)put forward a three-dimensional quasi-static isothermal incremental constitutive model that was suitable for finite element analysis to study the mechanical behaviors of martensitic variant reorientation.Hirsinger and Lexcellent(2003)developed a non-equilibrium thermodynamic model to express the thermodynamic phase transformation and capture the critical condition for thermodynamic driving of the reorientation in martensite.Based on a tensor description of thermodynamic continuum mechanics taking into account magnetomechanical coupling,Wang and Li(2010)proposed a kinetics model to describe macroscopic behavior of martensitic variants rearrangement in FSMAs.

    Although great development has been achieved in FSMAs,less progress can be found in the constitutive modeling of FSMA particulate composites.In this article,a constitutive description for FSMA particulate composites is proposed by combin-ing a simple phenomenological model for FSMA with a mean- field-homogenization approach based on Eshelby’s equivalent inclusion theory.The magneto-mechanical behavior of a FSMA particulate composite was also analyzed.

    2 Constitutive model

    2.1 Description for variants reorientation strain of FSMA

    In order to obtain the average strain of particulate composite which is subjected to external magnetic field and pressure,the description for reorientation strain εrof FSMA should be proposed firstly.If FSMA is in martensite state,a single variant(VM)induced by magnetic field can be obtained when sufficiently large external magnetic field is applied.When compressive stress perpendicular to magnetic field is also applied,twin boundary motion and variants reorientation will occur,and another variant(VS)can be induced by stress.The volume fraction ofVSwill increase with larger stress until the reorientation is finished.

    Assuming the maximum reorientation strain isand FSMA is initially composed entirely of VSorVM,the reorientation strain εrcan be expressed as[Guo,Li,Wan,Peng,and Wen(2014)]

    where ξHand ξσare volume fractions ofVMandVSrespectively,and ξH+ξσ=1.The volume fraction of variants is related to reorientation in martensite.There are some ways to describe the transition.In this work,a hyperbolic tangent function is selected to describe the process of reorientation,

    where VM→VSrepresents the reorientation from magnetic field induced variant to stress induced variant;σeis the equivalent stress;Ksand Kmare material constants related to variants reorientation and can be obtained by fitting the stress-strain curve during uniaxial loading;ˉσs(H)is the average value ofthe starting critical stress,andthe stress at the end point of the critical range,during the VM→VSprocess,that is

    Similarly,

    It is important to note that the average value of critical stress varies with the intensity of magnetic field.Considering the magnetic saturation,the critical stress is nonlinear with the magnetic field and has a saturation value.So the following expression is proposed,

    2.2 Constitutive model for FSMA particulate composite

    FSMA particulate composite is composed of inclusion phase and matrix phase.To build its constitutive model,the following assumptions are adopted:

    (1)The matrix and ferromagnetic particles are isotropic and elastic in the interested range of deformation,and FSMA is in martensite state during the loading process.

    (2)The ferromagnetic particles are of sphere with identical size and properties.

    (3)The ferromagnetic particles distribute randomly in matrix.

    (4)The particles and matrix are bonded perfectly during the deformation.

    (5)The magnetic field disturbance and the residual stress induced by the magnetization of particles can be ignored.

    If the material is homogeneous and composed of pure matrix,elastic strain ε0occurs as external stress is applied.In particulate composite,Mori-Tanaka’s theory reveals that disturbance strain εPwill be induced when particles are embedded in matrix[Mori and Tanaka(1973)].In this case,the average stress in matrix can be written as

    whereL0is the stiffness tensor of matrix.

    When external magnet field is applied perpendicularly to pressure,variants reorientation strain εrwill appear.According to Eshelby’s equivalent inclusion theory[Eshelby(1957)],the average stress in ferromagnetic particles can be expressed as

    where σ1andL1are average stress and stiffness tensor of particles respectively, ε0is the difference of mechanical strain in particles and matrix, ε?is the equivalent eigenstrain.Eshelby’s theory also shows

    whereSis the Eshelby tensor,which is related to the shape of particle.

    The average stress of particulate composite is

    where ξ0,ξ1are volume fractions of matrix and particles respectively, andξ0+ξ1=1.

    Disturbance strain εPcan be derived from equations(7)-(10),

    Equivalent eigenstrain ε?can also be obtained from equations(8),(9)and(11),

    where A=[ξ1(L1-L0)+L0](S-I)-L1S.

    3 Results and discussions

    In order to verify the validity of the proposed model,the mechanical behavior of FSMA under external magnetic field is investigated firstly and the prediction is compared with experiment carried out by Couch,Sirohi,and Chopra(2007).The stress-strain curve of FSMA under magnetic field of 6kOe is shown in Fig.1,where the specimen is subjected to uniaxial loading.The elastic modulus of FSMA is 850 MPa,-0.5 MPa,C0=0.4(kOe)-1,H0=4.2 kOe,andIt seems that the loading process can be divided into three stages.When compressive stress is applied,the behavior of FSMA is linearly elastic until the stress reaches a critical value,where the twin boundary motion will be induced.The reorientation from variant VMto variant VScontinues with the increase of compression until second critical stress is achieved.Then FSMA is composed of variantsVSand its behavior is also linearly elastic. The unloading process is similar. It can be seen that response of alloy is pseudoelastic and the prediction of the proposed model shows good agreement with experiment.

    Figure 1:The stress-strain curve of ferromagnetic shape memory alloy under magnetic field of 6kOe.

    Assuming the mechanical loading applied on composite is uniaxial and magnetic field is perpendicular to compressive force(see Fig.2),the magneto-mechanical behaviors of FSMA particulate composite were also analyzed using the proposed constitutive model.The material parameters for FSMA are same as above,meanwhile the elastic modulus and Poisson’s ratio for matrix are 6.1MPa and 0.49 respectively.

    Figure 2:Sketch for the loading on FSMA particulate composite.

    The FSMA particles are ferromagnetic,and they are embedded in matrix.If FSMA particulate composite is subjected to external magnetic field,the compressive stress will appear in particles because of the constraint of matrix.Fig.3 shows the curve of applied magnetic field versus stress in particles,where no external force is applied on the composites and the volume fractions of particles are different.It is found that the response of particles is nonlinear.The compressive stress will rise with the increase of magnetic field until a saturation value is achieved.It also shows that the saturation value decreases with the increase of volume fractions of particles.It implies that the constraint of matrix becomes weaker when more particles are embedded in matrix.It can be imagined that the stress will be zero if composite is composed of pure FSMA.

    Figure 3:The curve of stress in particles versus magnetic field for composites with different volume fractions of particles.

    Figure 4:The curve of magnetic field induced strain in particles versus magnetic field under different external pressure.

    The magnetic field induced strain in particles is related to the external force and magnetic field applied on composite.Assuming the composite which composed of 10%volume fraction of particles is subjected to pressure of 0 MPa,0.04 MPa and 0.08 MPa,respectively,the magnetic field induced strain in particles under different magnetic field is shown in Fig.4.It can be seen that strain increases with the magnetic field intensity and finally reaches a saturated value.On the other hand,the stronger of external force is applied on composite,the smaller of magnetic field induced strain is produced,except for the case of saturation.

    Figure 5:The curve of magnetic field induced strain in composite versus magnetic field with different volume fraction of particles.

    Fig.5 shows the magnetic field induced strain in composites with different volume fraction of particles.Obviously the strain in composites is nonlinear with magnetic field intensity.The magnetic field induced strain increases with field intensity until a saturated value is achieved.It is observed that the strain will be larger for the composite with more FSMA particles.It means that the volume fraction of particles is an important influence factor for the magneto-mechanical performance of composites.

    Figure 6:The curve of equivalent elastic modulus of composite versus volume fraction of particles under different magnetic field.

    Fig.6shows therelation betweenvolume fractionof particlesand equivalent elastic modulus of composite under different magnetic field intensity.It is found that the elastic modulus of composite increases with the volume fraction of particles.This agrees with the theory for particulate reinforced composite.Meanwhile the elastic modulus of the composite will increase with the magnetic field intensity due to the magneto-mechanical interaction among FSMA particles.

    Figure 7:The curve of magnetic field induced strain in composite versus volume fraction of particles.

    The volume fraction of particles will affect not only the elastic modulus,but also the magnetic field induced strain in composite,as is shown in Fig.7.It can be seen that the strain increases with the volume fraction of particles.When stronger magnetic field is applied,the stain will rise more sharply.

    4 Conclusions

    It is important to describe the behaviors of FSMA particulate composites,especially for the material design and application.In this paper,a new constitutive model,based on the description for variants reorientation in FSMA incorporating Eshelby equivalent inclusion theory,is proposed to analyze the magneto-mechanical performance of the composite.It is found that the stress and strain in particles will increase with the external magnetic field intensity until they reach saturated values.The magnetic field induced strain as well as elastic modulus of composite will also increase if there are more FSMA particles imbedded in matrix.

    Acknowledgement:The authors are grateful for financial support from the National Natural Science Foundation of China(Grant No.11332013 and 11002165),Chongqing Science and Technology Commission(cstc2014jcyjA50028)and Fundamental Research Funds for the Central Universities(Grant No.106112015CDJXY320001).

    Couch,R.N.;Sirohi,J.;Chopra,I.(2007):Development of a quasi-static model of NiMnGa Magnetic shape memory alloy.Journal of Intelligent Material Systems and Structures,vol.18,pp.611-622.

    Chernenko,V.A.;Cesari,E.;Kokrin,V.V.(1995):The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system.Scripta Metallurgica et Materialia,vol.33,pp.1239-1244.

    Dong,G.F.;Cai,W.;Gao,Z.Y.(2008): Effect of isothermal ageing on microstructure,martensitic transformation and mechanical properties of Ni53Mn23.5Ga18.5Ti5 ferromagnetic shape memory alloy.Scripta Materialia,vol.58,pp.647-650.

    Ezer,Y.;Sozinov,A.;Kimmel,G.(1999):Magnetic shape memory(MSM)effect in textured polycrystalline Ni2Mn2Ga.Proceedings of SPIE,vol.3675.

    Eshelby,J.D.(1957):The determination of the elastic field of an ellipsoidal inclusion and related problems.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,vol.241,pp.376-396.

    Feuchtwanger,J.;Grif fin,K.;Huang,J.K.;Bono,D.;O’Handley,R.C.;Allen,S.M.(2004):Mechanical energy absorption in Ni-Mn-Ga polymer composites.Journal of Magnetism and Magnetic Materials,vol.272-276,pp.2038-2039.

    Guo,Z.Y.;Li,H.T.;Wan,Q.;Peng,X.H.;Wen,J.(2014):A Model to describe the magnetomechanical behavior of martensite in magnetic shape memory alloy.Advances in Condensed Matter Physics,pp.295436.

    Hosoda,H.;Takeuchi,S.;Inamura,T.(2004):Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles.Science and Technology of Advanced Materials,vol.5,pp.503-509.

    Hirsinger,L.;Lexcellent,C.(2003):Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga.Journal De Physique IV,vol.112,pp.977-980.

    Hirsinger,L.;Lexcellent,C.(2003):Modelling detwinning of martensite platelets under magnetic and(or)stress actions on NiMnGa alloys.Journal of Magnetism and Magnetic Materials,vol.254-255,pp.275-277.

    Jin,X.;Marioni,M.;Bono,D.(2002):Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration.Applied Physics Letters,vol.91,pp.8222-8224.

    James,R.D.;Wutting,M.(1998):Magnetostriction of martensite.Philosophical Magazine A.vol.77,pp.1273-1299.

    Kainuma,R.;Imano,Y.;Ito,W.(2006):Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy.Applied Physics Letters,vol.88,pp.192513.

    Kelly,A.;Davies,G.J.(1965):The principles of the fiber reinforcement of metals.International Materials Reviews,vol.10,pp.1-77.

    Liu,Z.H.;Zhang,M.;Cui,Y.T.(2003):Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa.Applied Physics Letters,vol.82,pp.424-426.

    Morito,S.;Otsuka,K.(1996):Electron microscopy of new martensites with long period stacking order structure in Ni50AlxMn50-x alloys.Materials Science and Engineering A,vol.208,pp.47-55.

    Mori,T.;Tanaka,K.(1973):Average stress in matrix and average elastic energy of materials with mis fitting inclusions.Acta Metallurgica,vol.21,pp.571-574.

    O’Handley,R.C.(1988):Model for strain and magnetization in magnetic shape memory alloys.Applied Physics Letters,vol.83,pp.3263-3270.

    O’Handley,R.C.;Murray,S.J.;Marioni,M.;Nembach,H.;Aleen,S.M.(2000):Phenomenology of giant magnetic- field-induced strain in ferromagnetic shape-memory materials.Journal of Applied Physics,vol.87,pp.4712-4717.

    Sato,M.;Okazaki,T.(2002):Development of New magnetostrictive materials in Heusler type CoNiGa system.Journal of the Japan Institute Metals,vol.66,pp.147-150.

    Sozinov,A.;Likhachev,A.A.;Lanska,N.;Ullakko,K.(2002):Giant magneticfield-induced strain in NiMnGa seven-layered martensitic phase.Applied Physics Letters,vol.80,pp.1746-1748.

    Wang,F.X.;Zhang,Q.X.(2003):Operation principle and application of magnetically controlled shape memory alloy actuators.Science Technology and Engineer,vol.3,pp.577-581.

    Wang,X.Z.;Li,F.(2010):A kinetics model for martensite variants rearrangement in ferromagnetic shape memory alloys.Journal of Applied Physics,vol.108,pp.113921.

    Webster,P.J.;Ziebeck,K.R.A.;Town,S.L.(1984):Magnetic order and phase transformation in Ni2MnGa.Philosophical Magazine B,vol.49,pp.295-310.

    Zhang,J.X.;Sato,M.;Lshida,A.(2006):Deformation mechanism of martensite in Ti-rich Ti-Ni shape memory alloy shin films.Acta Materialia,vol.4,pp.1185-1198.

    Zhu,Y.P.;Chen,T.;Yu,K.(2014):Magneto-Mechanical Finite Element Analysis of Single Crystalline Ni2MnGa Ferromagnetic Shape Memory Alloy.CMC:Computers,Materials&Continua,vol.43,pp.97-108.

    1College of Aerospace Engineering,Chongqing University,Chongqing,400044,China

    2Chongqing Key Laboratory of Heterogeneous Material Mechanics,Chongqing University,Chongqing,400044,China

    3Corresponding author E-mail:htli@cqu.edu.cn.

    亚洲av.av天堂| videos熟女内射| 国产黄片视频在线免费观看| 久久久久久伊人网av| 国产亚洲5aaaaa淫片| 亚洲欧美精品自产自拍| 波多野结衣巨乳人妻| 久久久久免费精品人妻一区二区| 精品一区二区三区人妻视频| 欧美bdsm另类| 日日摸夜夜添夜夜爱| 水蜜桃什么品种好| 中文字幕久久专区| 国产av码专区亚洲av| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 一夜夜www| 国产在视频线精品| 国产一区有黄有色的免费视频 | 久久久久久久久久人人人人人人| 亚洲精品自拍成人| 亚洲美女视频黄频| 国产高清有码在线观看视频| 国产精品国产三级国产专区5o| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 2022亚洲国产成人精品| 欧美另类一区| 日韩强制内射视频| 成人漫画全彩无遮挡| 夜夜爽夜夜爽视频| 欧美成人午夜免费资源| 国产精品伦人一区二区| 一级av片app| 又爽又黄无遮挡网站| 免费黄频网站在线观看国产| 久久久久久久久中文| 特级一级黄色大片| www.av在线官网国产| 亚洲色图av天堂| 两个人的视频大全免费| 精品人妻偷拍中文字幕| 不卡视频在线观看欧美| 国产 一区 欧美 日韩| 精品99又大又爽又粗少妇毛片| 国产精品美女特级片免费视频播放器| 2021少妇久久久久久久久久久| 亚洲精品影视一区二区三区av| 国国产精品蜜臀av免费| 天堂√8在线中文| 精品久久久久久久久av| 七月丁香在线播放| 精品国产三级普通话版| 搡女人真爽免费视频火全软件| 最新中文字幕久久久久| 九九久久精品国产亚洲av麻豆| 欧美性猛交╳xxx乱大交人| 国产在视频线精品| 欧美高清性xxxxhd video| 九草在线视频观看| 婷婷色综合大香蕉| 欧美日韩视频高清一区二区三区二| 99热6这里只有精品| 国产一区有黄有色的免费视频 | 亚洲精品日韩在线中文字幕| 国产亚洲午夜精品一区二区久久 | 精品久久久久久成人av| 高清视频免费观看一区二区 | 日韩亚洲欧美综合| 国产日韩欧美在线精品| 国产成人精品久久久久久| 91av网一区二区| 视频中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 日韩电影二区| 欧美精品一区二区大全| 国产成人精品婷婷| 国产精品一区www在线观看| 国产乱人偷精品视频| 老司机影院毛片| 国产不卡一卡二| 女人十人毛片免费观看3o分钟| 一级黄片播放器| 黄色欧美视频在线观看| 国产亚洲av嫩草精品影院| 晚上一个人看的免费电影| 97超碰精品成人国产| 国产精品国产三级专区第一集| 免费电影在线观看免费观看| 亚洲精品国产av成人精品| 成人美女网站在线观看视频| 国产一级毛片七仙女欲春2| 国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 91av网一区二区| 精品午夜福利在线看| 精品国产三级普通话版| 成人av在线播放网站| 99九九线精品视频在线观看视频| 在线观看一区二区三区| 免费播放大片免费观看视频在线观看| 国产一区二区在线观看日韩| 91aial.com中文字幕在线观看| 日韩伦理黄色片| 久久精品久久久久久噜噜老黄| 国产精品一区二区三区四区久久| 男女边吃奶边做爰视频| 最近中文字幕高清免费大全6| 男插女下体视频免费在线播放| av线在线观看网站| 最近中文字幕2019免费版| 久久这里只有精品中国| 国产老妇伦熟女老妇高清| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 搡老乐熟女国产| 成人二区视频| 肉色欧美久久久久久久蜜桃 | 成人特级av手机在线观看| 日本一二三区视频观看| 日日摸夜夜添夜夜添av毛片| 亚洲自拍偷在线| 午夜福利视频精品| 国产一区有黄有色的免费视频 | 精品久久久久久久末码| 久久精品熟女亚洲av麻豆精品 | 一本一本综合久久| 中国美白少妇内射xxxbb| 五月伊人婷婷丁香| 国模一区二区三区四区视频| 18+在线观看网站| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 国产探花在线观看一区二区| 久久热精品热| 日日干狠狠操夜夜爽| av黄色大香蕉| 只有这里有精品99| 69人妻影院| 国产在视频线在精品| av福利片在线观看| 淫秽高清视频在线观看| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 街头女战士在线观看网站| 欧美另类一区| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 成人亚洲精品一区在线观看 | 免费观看精品视频网站| 久久久久久九九精品二区国产| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 国产亚洲精品av在线| 最新中文字幕久久久久| 免费观看的影片在线观看| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 国产精品一区二区三区四区久久| 国产v大片淫在线免费观看| 免费大片黄手机在线观看| 高清日韩中文字幕在线| 亚洲精品日本国产第一区| 国产伦在线观看视频一区| 国产亚洲5aaaaa淫片| 69人妻影院| 欧美 日韩 精品 国产| 精品国产露脸久久av麻豆 | 免费在线观看成人毛片| 久久精品国产亚洲av涩爱| 亚洲国产精品专区欧美| 麻豆成人午夜福利视频| 久久这里有精品视频免费| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 丝瓜视频免费看黄片| av福利片在线观看| 在线观看美女被高潮喷水网站| 成人二区视频| 成年版毛片免费区| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| videos熟女内射| 91精品一卡2卡3卡4卡| 99久久九九国产精品国产免费| 汤姆久久久久久久影院中文字幕 | 欧美日韩精品成人综合77777| av一本久久久久| 人妻系列 视频| 国产一区有黄有色的免费视频 | av在线蜜桃| 国产精品福利在线免费观看| 国产精品久久久久久av不卡| av在线老鸭窝| 深夜a级毛片| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 免费看日本二区| www.av在线官网国产| 一级片'在线观看视频| 午夜精品在线福利| 国产在线男女| 美女黄网站色视频| 麻豆精品久久久久久蜜桃| 三级男女做爰猛烈吃奶摸视频| 亚洲一级一片aⅴ在线观看| 五月天丁香电影| 熟妇人妻久久中文字幕3abv| 色吧在线观看| 美女cb高潮喷水在线观看| 久久久久久久久久成人| 日韩大片免费观看网站| 亚洲国产成人一精品久久久| 肉色欧美久久久久久久蜜桃 | 欧美一区二区亚洲| 国产老妇伦熟女老妇高清| 日韩欧美精品v在线| eeuss影院久久| 搡老乐熟女国产| av卡一久久| 久久久午夜欧美精品| 午夜福利在线在线| 久久精品人妻少妇| 国产爱豆传媒在线观看| 免费播放大片免费观看视频在线观看| 免费电影在线观看免费观看| 777米奇影视久久| 午夜激情欧美在线| 看黄色毛片网站| 欧美最新免费一区二区三区| 国产 一区精品| 美女xxoo啪啪120秒动态图| 国产黄色视频一区二区在线观看| 免费人成在线观看视频色| 插逼视频在线观看| 国产不卡一卡二| 综合色丁香网| a级毛色黄片| 成人午夜精彩视频在线观看| 人体艺术视频欧美日本| 我的女老师完整版在线观看| 欧美日韩国产mv在线观看视频 | 2021天堂中文幕一二区在线观| 激情 狠狠 欧美| 亚洲精品国产av成人精品| 国产色婷婷99| 午夜福利网站1000一区二区三区| 国产成人福利小说| 精品欧美国产一区二区三| 在线观看人妻少妇| 成人亚洲欧美一区二区av| 日韩不卡一区二区三区视频在线| 欧美另类一区| 国产亚洲精品久久久com| 精品久久久久久成人av| 久久鲁丝午夜福利片| freevideosex欧美| 色哟哟·www| 亚洲va在线va天堂va国产| 久久久久久久亚洲中文字幕| 天天一区二区日本电影三级| 亚洲精品视频女| 亚洲国产欧美人成| 亚洲国产精品成人久久小说| 免费黄频网站在线观看国产| 国产成人精品福利久久| 欧美日韩精品成人综合77777| 大片免费播放器 马上看| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 日本爱情动作片www.在线观看| 一级黄片播放器| 免费看光身美女| 国内揄拍国产精品人妻在线| av在线播放精品| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜 | 成人特级av手机在线观看| 午夜精品在线福利| 一级爰片在线观看| 国产高潮美女av| 亚洲av福利一区| 国产精品美女特级片免费视频播放器| 国产激情偷乱视频一区二区| 在线观看av片永久免费下载| 国产精品人妻久久久影院| 午夜福利视频1000在线观看| av女优亚洲男人天堂| 国产综合懂色| 免费看光身美女| 国产黄频视频在线观看| 舔av片在线| av黄色大香蕉| 色网站视频免费| 少妇丰满av| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 91久久精品电影网| 高清日韩中文字幕在线| 老司机影院成人| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| videossex国产| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 亚洲精品久久午夜乱码| 久久久久久久大尺度免费视频| 一个人看的www免费观看视频| 爱豆传媒免费全集在线观看| 在线免费十八禁| 中文资源天堂在线| 亚洲国产精品sss在线观看| 亚洲高清免费不卡视频| 老师上课跳d突然被开到最大视频| 熟女电影av网| 国产av不卡久久| 建设人人有责人人尽责人人享有的 | 欧美性感艳星| 国产大屁股一区二区在线视频| 99久久九九国产精品国产免费| 亚洲欧美成人综合另类久久久| 六月丁香七月| 午夜视频国产福利| 国产精品1区2区在线观看.| 免费高清在线观看视频在线观看| 中国国产av一级| 亚洲久久久久久中文字幕| 亚洲电影在线观看av| 亚洲熟女精品中文字幕| 亚洲av一区综合| 99热这里只有精品一区| 成人高潮视频无遮挡免费网站| 深夜a级毛片| 一区二区三区四区激情视频| 晚上一个人看的免费电影| 高清午夜精品一区二区三区| 国产男人的电影天堂91| 狂野欧美白嫩少妇大欣赏| kizo精华| 成人国产麻豆网| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 男的添女的下面高潮视频| 久久久精品94久久精品| 婷婷色av中文字幕| 国产毛片a区久久久久| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 午夜精品一区二区三区免费看| 国产黄色免费在线视频| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 亚洲av日韩在线播放| 成人午夜高清在线视频| 亚洲av在线观看美女高潮| 国产老妇女一区| 欧美另类一区| 国产 一区 欧美 日韩| 男的添女的下面高潮视频| 国产综合精华液| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 免费观看性生交大片5| 高清毛片免费看| 汤姆久久久久久久影院中文字幕 | a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 精品国内亚洲2022精品成人| 午夜日本视频在线| 99九九线精品视频在线观看视频| 高清毛片免费看| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 好男人在线观看高清免费视频| 在线播放无遮挡| 九九久久精品国产亚洲av麻豆| 精品久久久精品久久久| 欧美+日韩+精品| 亚洲18禁久久av| 国产黄色视频一区二区在线观看| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 最近的中文字幕免费完整| 亚洲欧美日韩东京热| 七月丁香在线播放| 极品教师在线视频| 亚洲电影在线观看av| 激情五月婷婷亚洲| 精品人妻一区二区三区麻豆| 在线观看av片永久免费下载| 久久6这里有精品| av黄色大香蕉| 亚洲欧美精品专区久久| 91久久精品国产一区二区成人| 可以在线观看毛片的网站| 黄片无遮挡物在线观看| 欧美xxxx黑人xx丫x性爽| 真实男女啪啪啪动态图| 精品酒店卫生间| 午夜激情久久久久久久| 日本黄色片子视频| 国产精品久久久久久久电影| 精品一区在线观看国产| 熟妇人妻不卡中文字幕| av在线蜜桃| 一区二区三区四区激情视频| 久久精品熟女亚洲av麻豆精品 | 老女人水多毛片| 91久久精品电影网| 日日摸夜夜添夜夜爱| 亚洲av中文字字幕乱码综合| 国产欧美另类精品又又久久亚洲欧美| 日韩一区二区三区影片| 大话2 男鬼变身卡| 午夜福利在线观看吧| 免费看不卡的av| 97超视频在线观看视频| 日本黄色片子视频| 精品国产一区二区三区久久久樱花 | 欧美日韩一区二区视频在线观看视频在线 | 天堂中文最新版在线下载 | 直男gayav资源| 十八禁网站网址无遮挡 | 美女内射精品一级片tv| 免费av不卡在线播放| 毛片一级片免费看久久久久| 在线天堂最新版资源| 欧美xxxx黑人xx丫x性爽| 精品熟女少妇av免费看| 99久国产av精品国产电影| 毛片一级片免费看久久久久| 看免费成人av毛片| 少妇的逼好多水| 亚洲国产日韩欧美精品在线观看| 国产精品三级大全| 人妻一区二区av| av在线天堂中文字幕| 免费看光身美女| 国产黄色小视频在线观看| 国产黄片美女视频| 色播亚洲综合网| 免费观看av网站的网址| 国模一区二区三区四区视频| av网站免费在线观看视频 | 欧美丝袜亚洲另类| av福利片在线观看| 成人午夜高清在线视频| 女人久久www免费人成看片| 一本久久精品| 波野结衣二区三区在线| 国产人妻一区二区三区在| 1000部很黄的大片| 国产单亲对白刺激| 哪个播放器可以免费观看大片| 精品人妻一区二区三区麻豆| 国产成人免费观看mmmm| 人人妻人人看人人澡| 国产亚洲最大av| 日韩欧美国产在线观看| 2022亚洲国产成人精品| 免费观看的影片在线观看| 亚洲欧美日韩卡通动漫| 日韩欧美国产在线观看| 免费看a级黄色片| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 男的添女的下面高潮视频| 午夜激情欧美在线| 汤姆久久久久久久影院中文字幕 | 最近最新中文字幕大全电影3| 七月丁香在线播放| 亚洲精华国产精华液的使用体验| 综合色av麻豆| 波野结衣二区三区在线| 丰满少妇做爰视频| 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| 纵有疾风起免费观看全集完整版 | 欧美高清成人免费视频www| 色哟哟·www| 少妇熟女aⅴ在线视频| 久久97久久精品| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线 | 91午夜精品亚洲一区二区三区| 三级国产精品片| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 国产伦一二天堂av在线观看| 久久6这里有精品| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| 五月伊人婷婷丁香| 欧美日韩亚洲高清精品| 热99在线观看视频| 欧美潮喷喷水| 在线观看美女被高潮喷水网站| 国产男女超爽视频在线观看| 婷婷色综合www| 久久久午夜欧美精品| 国产精品久久久久久久久免| 在线观看一区二区三区| 精品久久久久久久久久久久久| 男女边吃奶边做爰视频| 亚洲在久久综合| 99久国产av精品国产电影| 久久久久久九九精品二区国产| 亚洲国产成人一精品久久久| 亚洲欧洲国产日韩| 亚洲丝袜综合中文字幕| 97在线视频观看| 看免费成人av毛片| 日韩欧美精品免费久久| 蜜臀久久99精品久久宅男| 99久国产av精品| 天堂√8在线中文| 中文字幕av在线有码专区| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区黑人 | 欧美三级亚洲精品| 麻豆成人午夜福利视频| 国产不卡一卡二| 午夜久久久久精精品| av在线天堂中文字幕| 岛国毛片在线播放| 国产美女午夜福利| 日韩欧美精品v在线| 真实男女啪啪啪动态图| 夫妻午夜视频| 国产男女超爽视频在线观看| 在线 av 中文字幕| 亚洲成人中文字幕在线播放| 亚洲图色成人| 激情 狠狠 欧美| 黄色配什么色好看| 亚洲欧美一区二区三区国产| 国产av在哪里看| 丝袜喷水一区| 国产精品三级大全| 久久久久久久久久人人人人人人| 在线 av 中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 老女人水多毛片| 激情 狠狠 欧美| 国产黄片美女视频| 好男人在线观看高清免费视频| 蜜臀久久99精品久久宅男| 久久久久性生活片| 亚洲怡红院男人天堂| 国产亚洲精品av在线| 日日摸夜夜添夜夜爱| 男女边摸边吃奶| 在线免费十八禁| 亚洲怡红院男人天堂| 如何舔出高潮| 亚洲熟妇中文字幕五十中出| 天堂av国产一区二区熟女人妻| 成人午夜高清在线视频| 伦理电影大哥的女人| 亚洲四区av| 亚洲国产精品sss在线观看| 伊人久久国产一区二区| 久久久久久久午夜电影| 久久久久久久久久成人| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 精品久久久噜噜| 一边亲一边摸免费视频| 黄色日韩在线| 在线观看免费高清a一片| 久久久久久九九精品二区国产| 国产单亲对白刺激| 国产精品人妻久久久影院| 日韩,欧美,国产一区二区三区| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 亚洲美女搞黄在线观看| 久久久久久久午夜电影| 黄色一级大片看看| 亚洲精品第二区| av免费观看日本| 中文字幕av在线有码专区| 97热精品久久久久久| 日日啪夜夜撸| 久久久久久久亚洲中文字幕| 国产精品精品国产色婷婷| 国产精品1区2区在线观看.| 久久午夜福利片| 两个人的视频大全免费| 直男gayav资源| 日韩欧美三级三区| 亚洲色图av天堂| 美女高潮的动态| 天堂√8在线中文| 久久鲁丝午夜福利片| 精品人妻熟女av久视频| 美女国产视频在线观看| 熟妇人妻久久中文字幕3abv| 在线免费十八禁| 日韩大片免费观看网站|