• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ceramic-salt based composites for thermal energy storage

    2017-07-12 18:19:37NAVARROMariaElenaPALACIOSAnabelHUGHESTomosCONNOLLYChloeUPPALHarkiranCONGLinLEIXianzhangQIAOGengLENGGuanghuiDINGYulong
    儲能科學與技術 2017年4期

    NAVARRO Maria Elena, PALACIOS Anabel, HUGHES Tomos, CONNOLLY Chloe, UPPAL Harkiran, CONG Lin, LEI Xianzhang, QIAO Geng,, LENG Guanghui, DING Yulong

    ?

    Ceramic-salt based composites for thermal energy storage

    NAVARRO Maria Elena1, PALACIOS Anabel1, HUGHES Tomos1, CONNOLLY Chloe1, UPPAL Harkiran1, CONG Lin1, LEI Xianzhang2, QIAO Geng1,2, LENG Guanghui1, DING Yulong1

    (1School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;2Global Energy Interconnection Research Institute Europe GmbH, Berlin 10117 , Germany)

    This paper reports a study on ceramic based phase change materials (PCM). Sodium nitrate (NaNO3) was used as the PCM, magnesium oxide (MgO) as the ceramic matrix, and different types of carbon materials as the thermal conductivity enhancers (TCE). The composites were fabricated by mixing, compaction, and sintering. The effect of carbon material addition was studied and the morphological and thermophysical properties of the composites were characterized. The results showed that the addition of the TCE could either hinder or enhance the thermal diffusivity of the composites, depending on the type of TCE used. It was found that the thermal energy storage density increased with increasing PCM concentration in the composite. All the composites manufactured were found to be thermally stable up to 500 ℃.

    thermal energy storage; phase change material; composites; thermal conductivity enhancer

    The global energy demand has been on the rise and is predicted to increase in many years to come. The international energy agency (IEA) projects an increase of ~50% by 2040[1]. Energy management will play a key role in the development of the modern world particularly in terms of sustainable production and use of energy[2]. Fig.1 illustrates energy use situations in the world and projections until 2040. One can see that renewable energy sources including solar, wind, geothermal and biomass only account for a small percentage of the world’s energy consumption in 2013, and the projected share for the renewables is set to increase to between 20%—30% in 2040. In the last decades, a huge effort has been made from bothscientific and industrial communities supported by governments [3] to increase the share of renewable energies in the worldwide energy mix. It is widely agreed that the use of renewable energy sources will eventually lead to enhancement of environment and energy efficiency, reduction of our dependence oncarbon based fossil fuels, and improvement of energy security.

    Energy storage refers to a process that stores energy for use in a controlled manner based on end use demand [2-5]. Thermal energy storage (TES) is one of many energy storage technologies and benefits of the technology have been gradually recognised in recent years, including reduction in energy consumption and cost; air quality improvement; operational flexibility; low capital and maintenance costs; compact footprint; and enhancement of process efficiency and lower emissions [2-6].

    TES can be classified into sensible thermal energy storage (STES), thermochemical energy storage (TCES) and latent heat thermal energy storage (LHTES) [7-8]. Thermochemical based methods store heat through the use of reversible endothermic/ exothermic reactions between at least two substances. Latent heat storage uses phase change materials (PCMs) particularly solid-liquid and solid-solid PCMs. Sensible heat storage is based on temperature difference of a substance. LHTES can be classified according to phase change temperature as low, medium and high temperature categories. Significant differences exist in the literature in terms of the range of the temperature categories: an example is: low temperature at£500 K (227 ℃), medium temperature between 500 K and 700 K (227—427 ℃), and high temperature3700 K (3427 ℃) [2].

    LHTES can be further classified according to the type of PCMs as organic and inorganic materials. Inorganic PCMs include various salts, salt hydrates, metal alloys and have the advantages of a high energy density and wide availability of phase change temperature; but there are concerns in terms of supercooling (mainly hydrates), phase separation (mainly hydrates), and corrosion (salts, hydrates metal alloys) [6-12]. Organic PCMs include fatty acids, sugars and paraffin waxes, which normally have a high phase change enthalpy but often suffer from high-volume change during phase transition, and low thermal conductivity [10-13].

    This work aims to develop a composite thermal energy storage material for high temperature applications such as concentrated solar power (CSP) and industrial waste heat recovery (IWH) and to overcome the low thermal conductivity barrier. The literature review portrays an extensive list of materials for enhancing PCM thermal conductivity, aptly named as thermal conductivity enhancers (TCE). These include extended surfaces; metal foams, carbon-fibres, and other highly thermal conductive materials [13-14]. A widely used TCE is from carbon derivatives such as graphite and carbon nanotubes, which were used in this work. As different forms of graphite materials have different properties and we also investigated the effect of different types and amounts of graphite based thermal conductivity enhancers (TCE) on the properties of the composite PCMs including thermal diffusivity and latent heat.

    1 Materials and methodology

    1.1 Materials

    The composite PCMs were formulated by using sodium nitrate (NaNO3) as the PCM; magnesium oxide (MgO) as the structural material, and graphite and TCE. The NaNO3was supplied by ReAgent Chemical Services Ltd. The raw material for MgO was supplied by LKAB Minerals Ltd. It was in a raw form under the brand of UltraCarb. The UltraCarb product was calcined at a temperature as high as 600 ℃to obtain the final product containing mainly MgO. Graphite was supplied by Skyspring Nanomaterials Inc. (spherical form), Inoxia Ltd. (microsized graphite), and Nanocyl (carbon nanotubes).

    1.2 Methods

    The composites were produced by mixing sodium nitrate with the MgO and the three different types of carbon materials. Samples were made with three different mass percentages of 50%, 60% and 70% of NaNO3, five different mass percentages of 0, 0.5%, 1%, 1.5% and 2% of carbon materials, and MgO as the balance; see Table 1. A total of 39 samples in the form of tablets were made to study the formulations and their performance. The procedures for making the composite tablets are described as follows:

    (1) Step I: Mix the three materials fully to obtain a homogeneous mixture;

    (2) Step II: fill a mixture in a cold uni-axial compression die and subject the mixture to a pressure of 40 MPa using a die-plunge arrangement to produce a tablet with a diameter of 13 mm;

    (3) Sinter the tablets in an electrical furnace using the following heating procedure-room temperature to 300 ℃ at a rate of 5 ℃/min; 300 ℃ to 350 ℃ at 1 ℃/min; maintaining the furnace at 350 ℃ for 90 minutes; and then cooling the samples down to room temperature using the reverse process.

    A differential scanning calorimetry (DSC), DSC 2 STARe from Mettler Toledo, was used to measure the latent heat of fusion (kJ/kg) and the onset melting temperature (℃) of each of composites. The DSC measurements were conducted at a heating rate of 10 ℃/min up to 350 ℃, under a constant stream of nitrogen at the atmospheric pressure and a flow rate of 100 mL/min. The thermal diffusivity was measured using a laser flash apparatus (Netzsch LFA 427), for which the tablets were sanded down manually to a thickness of 2 mm to allow them to fit to the LFA measurement cell. The thermal diffusivity was measured at 50 ℃, 150 ℃, 250 ℃ and 350 ℃. A thermogravimetric analysis (TGA, Netzsch TG 209) was used to analyse the thermal stability of each of composite samples at a temperature up to 800 ℃ with a heating rate of 10 ℃/min and a nitrogen purge at 20 mL/min. A scanning electron microscope (SEM) was used to observe the morphology and structure of the composite PCMs.

    2 Results and discussions

    Table 1 shows the visual observations on the samples made from different formulations. Fig.2 shows the photos of eight sintered tablets. One can see PCM leakage from Tablets 2, 3 and 4, whereas the remaining tablets maintain their original shape.

    Table 1 clearly demonstrates that composites containing a greater mass percentage of PCM and a lower mass percentage of MgO were more likely to experience leakage than those with a lower content of of PCM and a high content of MgO, as expected. This suggests that the MgO matrix can only retain a certain amount of PCM in its structure and the amount also depends on the carbon material content. Composite PCMs containing a lower concentration of TCE are less susceptible to the PCM leakage. Composite PCMs containing micronsized graphite particles are less likely to experience PCM leakage compared with composite PCMs with either carbon nanospheres or nanotubes.

    Fig.3 shows the SEM micrographs of the sintered PCM composites. The addition of different types of carbon based TCE to the composite PCM changes the microstructure of the composites.

    With zero addition of the TCE particles, a uniform morphology can be seen with very few large visible pores on the surface of the composite [Fig.3(a)]. The addition of TCE particles changes the morphology significantly; the structures are not homogenous anymore with large visible cracks and/or pores; see Fig.3(b), Fig.3(c) and Fig.3(d). Fig.3(b), Fig.3(c) and Fig.3(d) also indicate different morphologies and microstructures with the addition of different carbon materials. The addition of micro sized carbon particles appear to be denser than the samples with the other two carbon materials. The more loose structure due to the addition of carbon materials could also be associated with poor wettability of the salt on the carbon materials.

    Table 1 Composites composition and behavior after sintering heat treatment

    M – Micrometres; S – Spheres; N – Nanotubes

    (d)

    Fig.3 SEM micrographs of composites at 1000 x magnification (a) 60∶40∶0 mass ratio of NaNO3∶MgO∶TCE and (b), (c), (d) 60∶38.5∶1.5 mass ratio of NaNO3∶MgO∶TCE where the TCE type is (b) micrometres, (c) spheres and (d) nanotubes

    The DSC analyses show that the latent heat of fusion of NaNO3was 180.4 kJ/kg and the melting point was 304 ℃. Fig.4 shows the theoretical and experimental latent heat of fusion values for PCM composites containing 60% by mass of PCM and 1.5% by mass of different carbon materials. One can see that, compared with theoretical latent heat of pure N1NO3, the addition of the micro-sized carbon particles gave the smallest decrease in the latent heat; whereas that of nano-carbon spheres gave the largest decrease and the use of nano-carbon particles was in-between. The deviation of the latent heat is likely to be due to small amount of salt leakage.

    Fig.6 shows the thermal diffusivities of the PCM composites containing different carbon based TCE materials. For comparison purposes, the PCM and the TEC concentrations were fixed respectively as 60% and 1.5% by mass. It can be seen that the use of micronsized carbon materials as the TCE improved the thermal diffusivity of the sample, whereas the nanosized spherical carbon particles and the carbon nanotubes gave a reduction in thermal diffusivity. A plausible explanation of this is due to the co-existence of two competing processes. The addition of carbon materials leads to an increase the thermal conductivity on one hand, but also an increase in the porosity which in turn gives a lower thermal conductivity—The balance of the two effects that determines the experimental observations. This is consistent with the microstructural observations as shown in Fig.3.

    The thermal diffusivity data for the composite PCM with micron sized carbon particles are listed in Table 2. The increase in thermal diffusivity is between 2%—10%.

    The results of the TGA analyses are shown in Fig.7. It can be clearly seen that the PCM, the carbon materials and the composite PCM are all stable up to ~550℃. The curve for the MgO represents the pre-treatment of the raw MgO (UltraCarb) samples. Such a material experiences several decomposing steps between ~300 ℃ and ~450 ℃ and finally stabilises at around 600 ℃.

    Table 2 Thermal Diffusivity across the operating temperature for varying amounts of PCM and micrometers

    3 Conclusions

    Salt based ceramic composite PCMs were prepared and characterised. Different carbon materials were added to enhance thermal conductivity of the PCM composites. The PCM composites were fabricated by mixing of the three materials, uni-axial compression and sintering. The microstructure, latent heat, thermal diffusivity and thermal stability were studied. The following conclusions could be obtained:

    (1) The likelihood of PCM leakage during sintering increases with increasing PCM loading or increasing graphite content. PCM leakage was also found to be more likely to occur in composites containing high concentrations of spherical carbon nanoparticles.

    (2) There is a clear change in the microstructures of the composite PCMs due to the addition of carbon materials.

    (3) PCM composites containing micron sized carbon particles have a higher latent heat of fusion compared with these containing carbon nanoparticles.

    (4) The addition of micron sized carbon particles increases the thermal diffusivity of the PCM composites by ~10% at a TCE content of 1.5% by mass, whereas the addition of spherical carbon nanoparticles and carbon nanotubes decrease the thermal diffusivity of the PCM composites. Such observation is attributed to the two related competing processes—The addition of carbon increases the thermal diffusivity on one hand but also increases the porosity which leads to a decrease in the thermal diffusivity.

    [1] Energy Information Administration. International energy outlook 2016[R]. EIA, 2016.

    [2] AHMED S F. Recent progress in solar thermal energy storage using nanoparticles[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 450-460.

    [3] MYERS P D, GOSWAMI D Y. Thermal energy storage using chloride salts and their eutectics[J]. Applied Thermal Engineering, 2016, 109: 889-900.

    [4] Energy Gov, “Energy Storage,” 2016[EB/OL]. [2016-10-25]. http://energystorage.org/energy-storage/energy-storage- technologies.

    [5] IBRAHIM H, ILINCA A, PERRON J. Energy storage systems—Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2007, 12: 1221-1250.

    [6] SHARMA A, TYAGI V, CHEN C, BUDDHI D. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13: 318-345.

    [7] ZALBA B, MARIN J, CABEZA L F, MEHLING H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23: 251-283.

    [8] DINCER I, ROSEN M A. Energetic, environmental and economic aspects of thermal energy storage systems for cooling capacity[J]. Applied Thermal Engineering, 2001, 21: 1105-1117.

    [9] ALVA G L. Thermal energy storage materials and systems for solar energy applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 693-706.

    [10] GE Z, LI Y, LI D, et al. Thermal energy storage: Challenges and the role of particle technology[J]. Particuology, 2014, 15: 2-8.

    [11] GOMEZ J. High-temperature phase change materials (PCM) candidates for thermal energy storage (TES) applications[M]. National Renewable Energy Laboratory, 2011.

    [12] ANEKE M, WANG M. Energy storage technologies and real life applications—A state of the art review[J]. Applied Energy, 2016, 179: 350-377.

    [13] JEGADHEESWARAN S, POHEKAR S D. Performance enhancement in latent heat thermal storage system: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244.

    [14] FAN L, KHODADADI J. Thermal conductivity enhancement of phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24-46.

    [15] LIDE D R. CRC handbook of chemistry and physics[M]. 90 Ed. Boca Raton, Florida: CRC Press, 2009.

    10.12028/j.issn.2095-4239.2017.0079

    TK 02

    A

    2095-4239(2017)04-688-08

    2017-05-29; Revise date:2017-06-21.

    Fundation: Global Energy Interconnetion Research Institute Europe GmbH (SGRI-DL-71-16-018), The National Natural Scierce Fund (21406243).

    The first author and corresponding author: NAVARRO M E(1979—), female, research fellow, research in thermal energy storage, E-mail: h.navarro@bham.ac.uk.

    久久精品国产综合久久久 | videosex国产| 久久国内精品自在自线图片| 高清不卡的av网站| 久久久久精品久久久久真实原创| 成年人免费黄色播放视频| 少妇精品久久久久久久| 性色av一级| 国产精品久久久久久av不卡| xxx大片免费视频| 亚洲欧美精品自产自拍| 国产不卡av网站在线观看| 91成人精品电影| 天堂俺去俺来也www色官网| 国产精品久久久久久av不卡| 亚洲精品色激情综合| 最近最新中文字幕大全免费视频 | 97人妻天天添夜夜摸| 国产精品一区二区在线不卡| 免费播放大片免费观看视频在线观看| 22中文网久久字幕| 久久久久久久久久人人人人人人| 亚洲在久久综合| 涩涩av久久男人的天堂| 国产亚洲一区二区精品| 99久久精品国产国产毛片| 在线观看美女被高潮喷水网站| 伦理电影免费视频| 九色成人免费人妻av| 男人操女人黄网站| 国产极品天堂在线| 精品酒店卫生间| 亚洲久久久国产精品| 精品视频人人做人人爽| 久久人人97超碰香蕉20202| 秋霞在线观看毛片| 大香蕉97超碰在线| 91精品伊人久久大香线蕉| 制服人妻中文乱码| 男女高潮啪啪啪动态图| 亚洲综合色惰| 草草在线视频免费看| 国产精品无大码| 成人毛片a级毛片在线播放| 黄色配什么色好看| 日韩一区二区视频免费看| 妹子高潮喷水视频| 女性被躁到高潮视频| 亚洲四区av| 美女内射精品一级片tv| 久久久久人妻精品一区果冻| 久久久久久人人人人人| av电影中文网址| 国产免费视频播放在线视频| 黄色毛片三级朝国网站| 国产精品女同一区二区软件| 国产精品欧美亚洲77777| 边亲边吃奶的免费视频| 午夜福利在线观看免费完整高清在| 欧美日韩综合久久久久久| 免费av不卡在线播放| 成人亚洲精品一区在线观看| 欧美激情极品国产一区二区三区 | 色吧在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲国产日韩| 男人操女人黄网站| av播播在线观看一区| 午夜日本视频在线| 亚洲精品久久久久久婷婷小说| 波野结衣二区三区在线| 久久鲁丝午夜福利片| 国产不卡av网站在线观看| 久久精品熟女亚洲av麻豆精品| 精品亚洲成国产av| 99久久人妻综合| 国产欧美日韩一区二区三区在线| 一边摸一边做爽爽视频免费| 大香蕉97超碰在线| 日本欧美国产在线视频| 亚洲欧美清纯卡通| 亚洲高清免费不卡视频| 91精品伊人久久大香线蕉| 成人无遮挡网站| 午夜福利影视在线免费观看| av国产久精品久网站免费入址| 18禁在线无遮挡免费观看视频| 91精品国产国语对白视频| 亚洲色图综合在线观看| 久久午夜福利片| 91精品国产国语对白视频| 好男人视频免费观看在线| 日韩欧美精品免费久久| 亚洲,一卡二卡三卡| av国产精品久久久久影院| 校园人妻丝袜中文字幕| 久久99热这里只频精品6学生| 午夜免费鲁丝| 在线观看美女被高潮喷水网站| 中文字幕最新亚洲高清| 亚洲精品国产色婷婷电影| 校园人妻丝袜中文字幕| 在线观看免费高清a一片| 久久韩国三级中文字幕| 纵有疾风起免费观看全集完整版| 亚洲精品aⅴ在线观看| 日韩av不卡免费在线播放| 日产精品乱码卡一卡2卡三| 婷婷色麻豆天堂久久| 最新的欧美精品一区二区| 欧美日韩视频精品一区| 日本wwww免费看| av又黄又爽大尺度在线免费看| 一级毛片电影观看| av天堂久久9| 亚洲欧洲精品一区二区精品久久久 | 免费在线观看完整版高清| 国产精品麻豆人妻色哟哟久久| 亚洲国产毛片av蜜桃av| 夜夜爽夜夜爽视频| 亚洲精品久久成人aⅴ小说| 18+在线观看网站| 十八禁网站网址无遮挡| 90打野战视频偷拍视频| 99视频精品全部免费 在线| 永久网站在线| 国产永久视频网站| 久久99蜜桃精品久久| 精品一区二区三区四区五区乱码 | 亚洲国产精品999| 蜜桃在线观看..| 日韩,欧美,国产一区二区三区| av.在线天堂| 亚洲av中文av极速乱| 午夜av观看不卡| 91午夜精品亚洲一区二区三区| 免费人妻精品一区二区三区视频| 日韩精品有码人妻一区| 免费不卡的大黄色大毛片视频在线观看| 一级a做视频免费观看| 午夜免费鲁丝| 成人无遮挡网站| 日韩 亚洲 欧美在线| 在线亚洲精品国产二区图片欧美| 最近手机中文字幕大全| 久久韩国三级中文字幕| 最近手机中文字幕大全| 香蕉精品网在线| h视频一区二区三区| 精品人妻在线不人妻| 亚洲欧美成人精品一区二区| 国产精品一区二区在线观看99| 欧美精品一区二区大全| 少妇被粗大猛烈的视频| 欧美精品国产亚洲| 久久午夜综合久久蜜桃| 欧美日韩国产mv在线观看视频| 少妇熟女欧美另类| 极品少妇高潮喷水抽搐| av视频免费观看在线观看| 精品国产一区二区三区久久久樱花| 亚洲精品日韩在线中文字幕| 精品一区二区三区四区五区乱码 | 亚洲精品aⅴ在线观看| 91aial.com中文字幕在线观看| 美女脱内裤让男人舔精品视频| 制服丝袜香蕉在线| 成年人免费黄色播放视频| 国产av码专区亚洲av| 超色免费av| 爱豆传媒免费全集在线观看| 美女xxoo啪啪120秒动态图| av不卡在线播放| 水蜜桃什么品种好| 亚洲国产精品国产精品| 国产av一区二区精品久久| 国产成人精品在线电影| 亚洲精品视频女| 精品久久久久久电影网| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 久久人人爽人人片av| 亚洲精品国产av蜜桃| av在线老鸭窝| 免费看光身美女| 久久久久久久久久人人人人人人| 91午夜精品亚洲一区二区三区| 亚洲av日韩在线播放| 汤姆久久久久久久影院中文字幕| 久久久久久人人人人人| 黄色 视频免费看| 纯流量卡能插随身wifi吗| 女人被躁到高潮嗷嗷叫费观| 纯流量卡能插随身wifi吗| 999精品在线视频| 中文字幕免费在线视频6| 丰满饥渴人妻一区二区三| 热re99久久精品国产66热6| 建设人人有责人人尽责人人享有的| 成年av动漫网址| 赤兔流量卡办理| 午夜福利,免费看| 午夜福利,免费看| 伦精品一区二区三区| 久久av网站| 亚洲在久久综合| 久久鲁丝午夜福利片| 免费av不卡在线播放| 狠狠婷婷综合久久久久久88av| 一级毛片黄色毛片免费观看视频| 精品国产一区二区三区久久久樱花| 90打野战视频偷拍视频| 满18在线观看网站| 国产极品天堂在线| 两性夫妻黄色片 | 久久精品久久精品一区二区三区| 看免费av毛片| 视频中文字幕在线观看| 卡戴珊不雅视频在线播放| 91精品国产国语对白视频| 国产1区2区3区精品| 男男h啪啪无遮挡| 夜夜骑夜夜射夜夜干| 51国产日韩欧美| 亚洲av综合色区一区| 在线亚洲精品国产二区图片欧美| 久久久久久久国产电影| 男女午夜视频在线观看 | 精品少妇黑人巨大在线播放| 少妇的逼水好多| 久热这里只有精品99| 国产精品不卡视频一区二区| 亚洲成av片中文字幕在线观看 | 国产亚洲欧美精品永久| 国产 一区精品| 久久99精品国语久久久| 久久精品国产自在天天线| 99热网站在线观看| 国产精品国产三级国产av玫瑰| 日韩中文字幕视频在线看片| √禁漫天堂资源中文www| 久久午夜综合久久蜜桃| 一二三四中文在线观看免费高清| 免费久久久久久久精品成人欧美视频 | 欧美日韩av久久| 在线免费观看不下载黄p国产| 久久精品久久久久久久性| 国产成人欧美| 内地一区二区视频在线| 国产又爽黄色视频| 国产色婷婷99| 少妇的逼水好多| 亚洲精品美女久久久久99蜜臀 | 国产精品女同一区二区软件| 国产综合精华液| 久久99热这里只频精品6学生| 一本久久精品| 国内精品宾馆在线| 51国产日韩欧美| 晚上一个人看的免费电影| 亚洲av在线观看美女高潮| 久久久国产欧美日韩av| 尾随美女入室| 国产成人精品在线电影| 亚洲精品乱码久久久久久按摩| 国产一区二区三区av在线| 亚洲综合色惰| 亚洲欧洲日产国产| 久久热在线av| 日本vs欧美在线观看视频| 一本色道久久久久久精品综合| 日本猛色少妇xxxxx猛交久久| 美女国产视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 欧美国产精品一级二级三级| 国产综合精华液| 精品少妇久久久久久888优播| 亚洲高清免费不卡视频| 色婷婷久久久亚洲欧美| 少妇熟女欧美另类| 三上悠亚av全集在线观看| 少妇精品久久久久久久| 秋霞伦理黄片| 久久av网站| 国产av精品麻豆| 久久人妻熟女aⅴ| 纵有疾风起免费观看全集完整版| 人成视频在线观看免费观看| 亚洲性久久影院| 国产一区二区激情短视频 | 久久久久久久精品精品| 一本色道久久久久久精品综合| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品国产亚洲| 在线观看美女被高潮喷水网站| 啦啦啦视频在线资源免费观看| 男男h啪啪无遮挡| 热99国产精品久久久久久7| 欧美人与性动交α欧美精品济南到 | 亚洲av男天堂| 最新中文字幕久久久久| 搡女人真爽免费视频火全软件| xxx大片免费视频| 青春草亚洲视频在线观看| 亚洲欧美日韩卡通动漫| 一级毛片我不卡| 黄色视频在线播放观看不卡| 国产1区2区3区精品| 免费av中文字幕在线| 久久97久久精品| 日韩免费高清中文字幕av| 人妻少妇偷人精品九色| 自线自在国产av| 久久国产精品男人的天堂亚洲 | 一本大道久久a久久精品| 亚洲国产色片| 亚洲精品国产av蜜桃| 在线观看一区二区三区激情| 日韩电影二区| 考比视频在线观看| 两个人免费观看高清视频| 国产欧美亚洲国产| 免费女性裸体啪啪无遮挡网站| 国产黄色免费在线视频| 最新中文字幕久久久久| 99视频精品全部免费 在线| 精品少妇黑人巨大在线播放| 久久久欧美国产精品| 久久鲁丝午夜福利片| 在线天堂中文资源库| 寂寞人妻少妇视频99o| 中文字幕人妻丝袜制服| 亚洲精品,欧美精品| 一级毛片 在线播放| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 精品一品国产午夜福利视频| 国产探花极品一区二区| 亚洲av男天堂| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 免费在线观看完整版高清| av福利片在线| 激情视频va一区二区三区| 五月开心婷婷网| 国产成人精品婷婷| 成人综合一区亚洲| 婷婷色综合大香蕉| 天美传媒精品一区二区| 精品人妻一区二区三区麻豆| 国产免费现黄频在线看| 有码 亚洲区| 免费黄网站久久成人精品| 十八禁网站网址无遮挡| 啦啦啦在线观看免费高清www| 亚洲欧美色中文字幕在线| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 色网站视频免费| 青春草亚洲视频在线观看| 免费看不卡的av| 一区二区av电影网| 午夜激情av网站| 伊人亚洲综合成人网| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 七月丁香在线播放| 飞空精品影院首页| 美女主播在线视频| 一级黄片播放器| 国产精品.久久久| 观看美女的网站| 又黄又爽又刺激的免费视频.| 欧美精品一区二区大全| 日韩免费高清中文字幕av| 97超碰精品成人国产| 国产精品一区二区在线不卡| 丝袜喷水一区| 欧美精品一区二区免费开放| 18禁动态无遮挡网站| 母亲3免费完整高清在线观看 | 国产成人精品无人区| 亚洲精品国产色婷婷电影| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 亚洲成色77777| 搡老乐熟女国产| 国产精品人妻久久久久久| 桃花免费在线播放| 在线免费观看不下载黄p国产| 视频在线观看一区二区三区| 免费日韩欧美在线观看| 九九在线视频观看精品| 欧美性感艳星| 免费大片黄手机在线观看| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 九草在线视频观看| 国产亚洲最大av| 久久久久久久国产电影| 亚洲成人av在线免费| 国产精品欧美亚洲77777| 欧美成人午夜免费资源| 久久这里只有精品19| 久久99热6这里只有精品| 国产欧美亚洲国产| 精品国产国语对白av| 久久久欧美国产精品| 丰满迷人的少妇在线观看| 日本欧美视频一区| 69精品国产乱码久久久| 欧美成人午夜免费资源| 免费观看a级毛片全部| 天天躁夜夜躁狠狠躁躁| 超色免费av| 亚洲精品456在线播放app| 国产精品 国内视频| 免费观看性生交大片5| 成年人免费黄色播放视频| 国产精品免费大片| 久久久精品免费免费高清| 日韩大片免费观看网站| 久久99热6这里只有精品| 国产成人精品无人区| 啦啦啦中文免费视频观看日本| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 成人综合一区亚洲| 十分钟在线观看高清视频www| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 日本欧美视频一区| 国产一区二区在线观看av| 丁香六月天网| 99热网站在线观看| 精品一区二区三卡| 亚洲成国产人片在线观看| 久久99热6这里只有精品| 男女免费视频国产| 国产精品人妻久久久影院| 美女中出高潮动态图| 精品一区二区三区四区五区乱码 | 熟女电影av网| 人人妻人人添人人爽欧美一区卜| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| 99re6热这里在线精品视频| 国产精品人妻久久久影院| 考比视频在线观看| 免费久久久久久久精品成人欧美视频 | 深夜精品福利| 两个人免费观看高清视频| av播播在线观看一区| 水蜜桃什么品种好| videosex国产| 少妇人妻久久综合中文| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美在线精品| av天堂久久9| 少妇精品久久久久久久| 草草在线视频免费看| tube8黄色片| 极品人妻少妇av视频| 纯流量卡能插随身wifi吗| 日本wwww免费看| 丰满饥渴人妻一区二区三| 亚洲av欧美aⅴ国产| 99久久精品国产国产毛片| 成人免费观看视频高清| 精品少妇久久久久久888优播| 久久久国产精品麻豆| 久久精品久久精品一区二区三区| 久久精品aⅴ一区二区三区四区 | 成人亚洲精品一区在线观看| 制服人妻中文乱码| 久久狼人影院| 中国国产av一级| 国产淫语在线视频| 十分钟在线观看高清视频www| 久久精品aⅴ一区二区三区四区 | 成人免费观看视频高清| 一本大道久久a久久精品| 老司机影院毛片| 黄色怎么调成土黄色| 久久av网站| 我的女老师完整版在线观看| 黄色 视频免费看| 视频区图区小说| 久久人人97超碰香蕉20202| 国产精品偷伦视频观看了| 日韩制服丝袜自拍偷拍| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 国产精品一国产av| 欧美丝袜亚洲另类| 亚洲美女黄色视频免费看| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 侵犯人妻中文字幕一二三四区| 国产有黄有色有爽视频| 美女内射精品一级片tv| 性高湖久久久久久久久免费观看| 精品少妇久久久久久888优播| 熟女电影av网| 精品久久久精品久久久| 99国产综合亚洲精品| 一二三四在线观看免费中文在 | 日韩中文字幕视频在线看片| videos熟女内射| 777米奇影视久久| 一个人免费看片子| 亚洲精品色激情综合| 晚上一个人看的免费电影| 五月玫瑰六月丁香| 精品国产一区二区三区四区第35| 亚洲av.av天堂| 女的被弄到高潮叫床怎么办| 又大又黄又爽视频免费| 蜜桃国产av成人99| 日日撸夜夜添| 国产在线一区二区三区精| 久久99蜜桃精品久久| 新久久久久国产一级毛片| 日日撸夜夜添| 9热在线视频观看99| 亚洲色图 男人天堂 中文字幕 | 国产日韩欧美在线精品| 一区二区av电影网| 国产av一区二区精品久久| 久久久国产一区二区| av在线app专区| 久久午夜综合久久蜜桃| 国产不卡av网站在线观看| xxx大片免费视频| 成人综合一区亚洲| 女人精品久久久久毛片| 中文字幕免费在线视频6| 有码 亚洲区| 考比视频在线观看| 大片免费播放器 马上看| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 这个男人来自地球电影免费观看 | 1024视频免费在线观看| 欧美成人午夜免费资源| 99热网站在线观看| 精品亚洲成a人片在线观看| 青春草亚洲视频在线观看| 蜜桃在线观看..| 亚洲欧洲精品一区二区精品久久久 | 在线免费观看不下载黄p国产| 五月开心婷婷网| 久久久久精品性色| 欧美精品人与动牲交sv欧美| 一本久久精品| 亚洲熟女精品中文字幕| 久热久热在线精品观看| 婷婷色综合大香蕉| 日韩制服丝袜自拍偷拍| 草草在线视频免费看| 成年动漫av网址| av一本久久久久| 成年女人在线观看亚洲视频| 91精品国产国语对白视频| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看| 免费日韩欧美在线观看| 亚洲精品自拍成人| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜制服| 免费看av在线观看网站| av免费观看日本| 久久精品aⅴ一区二区三区四区 | 一级毛片 在线播放| 中国美白少妇内射xxxbb| 天堂8中文在线网| 高清黄色对白视频在线免费看| 在线 av 中文字幕| 最黄视频免费看| 亚洲精品久久成人aⅴ小说| av天堂久久9| 亚洲第一区二区三区不卡| 黄色视频在线播放观看不卡| 日本vs欧美在线观看视频| 久久精品国产鲁丝片午夜精品| 搡老乐熟女国产| 日本免费在线观看一区| 久久久久精品性色| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲 | 美女中出高潮动态图| 一二三四中文在线观看免费高清| 亚洲精品美女久久av网站| 狂野欧美激情性bbbbbb| 日本黄大片高清| 久热久热在线精品观看| 国产精品不卡视频一区二区| 欧美少妇被猛烈插入视频| 国产日韩欧美在线精品| 亚洲av男天堂| 日韩精品免费视频一区二区三区 | 精品久久国产蜜桃| 人人妻人人爽人人添夜夜欢视频| 2018国产大陆天天弄谢| 国产淫语在线视频| 中国三级夫妇交换| 日日啪夜夜爽| 又大又黄又爽视频免费| 亚洲国产欧美日韩在线播放| 国产一区二区三区av在线| 久久人人爽人人片av|