• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Realization of UVB Lasing in High Quality Cubic ZnMgO Films

    2017-07-05 13:01:25ZHANGHanPEILeileiSUShichen
    發(fā)光學(xué)報 2017年7期
    關(guān)鍵詞:器件薄膜脈沖

    ZHANG Han, PEI Lei-lei, SU Shi-chen

    (Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China)

    Realization of UVB Lasing in High Quality Cubic ZnMgO Films

    ZHANG Han, PEI Lei-lei, SU Shi-chen*

    (Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China)

    The optical and structural properties of high-quality epitaxial Zn1-xMgxO films deposited by pulsed-laser deposition (PLD) were studied. Zn1-xMgxO films with ~45% Mg incorporation were measured by EDS (Energy dispersive spectroscopy). XRD (X-ray diffraction) measurement results show that Zn0.55Mg0.45O films have a cubic phase structure without phase separation and are epitaxial grown along thec-axis of Al2O3substrate. In the films, intense UVB optical pumped stimulated emission of this pure cubic-phase ZnMgO can be observed. The lasing threshold is about 22 kW/cm2. Lasing occurs at UVB wavelength of ~310 nm under optical pumping.

    ZnMgO; PLD; threshold

    1 Introduction

    Semiconductor oxide materials based on energy-gap engineering have garnered widespread interest in many aspects, for instance, in catalysts, sensors, electronic devices, UV detectors and solar cells, among others[1-11].Among these semiconductor oxide materials, ZnO as a direct wide band gap semiconductor material, because of its wide band gap energy (3.37 eV at room temperature), large exciton binding energy (60 meV), much higher than the room temperature heat ionization energy 26 meV, and high optical gain (300 cm-1). So that exciton-stimulated ultraviolet radiation at room temperature or higher can be achieved, which makes ZnO has attracted extensive studies in the preparation of UV light-emitting diodes and laser devices.

    However, the P-type doping of ZnO is still a significant difficulty[12]. In addition, another key problem in the application of ZnO materials is the regulation of the band. To utilize the optical and electrical properties of ZnO sufficiently, an excellent method is to dope proper transition elements, such as Co, Mn, Fe, Ni,etc.[13-14]. Since the radius of Mg2+(0.057 nm) is very close to the radius of Zn2+(0.060 nm), the lattice mismatch of Mg in the position of substitution of Zn is very small (only 0.1%), therefore, Mg is an appropriate element. By varying the Mg composition, the band gap can be tuned from 3.37 to 7.8 eV for wurtzite and cubic-structured MgxZn1-xO, extending the cutoff wavelength from UV-A (320-400 nm) to UV-B (280-320 nm) and UV-C (200-280 nm) regions[15-17]. Thus, ZnMgO has become a very suitable material for the preparation of ZnO/ZnMgO superlattices, quantum wells and UVB optoelectronic devices.

    Due to the high energy and short wavelength of the photon in the UVB band, the UVB laser source based on wide bandgap semiconductor has a broad prospect in high density data storage, laser precision machining, large screen display, biomedicine, food sterilization, water purification and so on, while the resulting economic and environmental benefits will be immeasurable.

    Because the lattice structure of MgO and ZnO is cubic rock salt and hexagonal wurtzite structure,when the molar fraction of Mg is in the range of 0.4-0.6, the phase separation phenomenon exists in the ZnMgO material. Despite the existence of phase separation, pulsed laser deposition(PLD)[18-20], molecular beam epitaxy(MBE)[21-23], RF reactive magnetron sputtering[24-25]and metal organic chemical vapor deposition(MOCVD)[26-27], such continuous improvement in epitaxial film deposition techniques has contributed the successful growth of wurtzite ZnMgO with a Mg content up to 0.37(4.28 eV) and cubic ZnMgO for more than 0.62(5.40 eV) Mg content.

    Band gap engineering and stimulated emissions of nanostructures with different Mg doping concentrations were demonstrated[28-30], however, the threshold for the ZnMgO nanowire is about 200 kW/cm2. It is noteworthy that few reports have been previously reported on the use of cubic ZnMgO thin films (low thresholds) in UVB lasers. It is widely accepted that high-quality film is fundamentally important for high performance optoelectronic devices. In this letter, we report the demonstration of ultraviolet (UV) laser action in Zn0.55Mg0.45O high quality films grown on sapphire substrates by PLD.

    2 Experiments

    Using pulsed laser deposition (PLD-450) to grow thec-plane sapphire ZnMgO films with thickness of 300 nm. In order to conduct systematic studies and obtain conclusive results, films are grown with substrate temperatures (Tsub=600 ℃) and oxygen pressures (P(O2)=0.5 Pa). The substrate was continuously rinsed in acetone, ethanol and distilled water and dried by nitrogen gas and then loaded into a growth chamber. In order to ensure uniform ablation without damage, the target is continuously rotated throughout the deposition process.The target used in the present study was made of Mg-doped high purity ZnO powder(99.999%, Kurt J. Lesker Co.) to achieve Mg incorporation of 45%(mole fraction) in ZnO. The background pressure for the growth is 10-4Pa.The 248 nm laser pulse from the Coherent COMPexPro 102 excimer laser with a pulse energy of 300 mJ and a repetition rate of 2 Hz was used for the PLD growth. After the end of the growth and natural cooling to room temperature, remove the sample.

    3 Results and Discussion

    Fig.1 shows XRD patterns of Zn0.55Mg0.45O film. As shown inθ-2θangular scan in the XRD patterns, only two strong peaks at 36.67° and 41.68° can be observed. The peak at 41.68° is from thec-plane sapphire substrate(006), the appearance of (111) peak at 36.67° indicates that Zn0.55Mg0.45O film is highlyc-axis preferred orientation with pure cubic phase. Obviously, the XRD of MgO (111) peak and ZnO (002) peak are at 2θ=37°and 34.4°, respectively. High-quality cubic ZnMgO(111) without phase separation was prepared in this figure and the diffraction angle is 36.67°. It is clear that the optical band gap increases with increasing Mg doping concentration. In addition, the lattice constantsaandcaxis of ZnMgO films decrease slightly with the increase of Mg content, which is indicated by the lattice geometric equation:

    (1)

    As a result, XRD results showed that (111)c-axis-preferred orientation peak has a slight shift toward the direction of angle increases with increasing Mg concentration. The above results are consistent with the reasoning by the Bragg’s law:

    2dsinθ=nλ.

    (2)

    Thefullwidthathalfmaximum(FWHM)ofthe(111)diffractionpeakofZnMgOthinfilmasshownininsertofFig.1.TheFWHMisabout0.16°.TheaboveresultsalsoprovethattheZnMgOfilmsarehigh-qualitycubicstructure.

    Fig.1XRDθ-2θangular scan of the Zn0.55Mg0.45O films deposited onc-plane sapphire substrates, the insert is theω-rocking curve of the (111) of Zn0.55Mg0.45O film.

    A typical transmission spectrum of the ZnMgO films is shown in Fig.2. The films show a high transmission of over 80% in the ultraviolet spectrum region, while they have a very sharp absorption edge at around 310 nm (4 eV). Therefore, ZnMgO thin film material for the preparation of UVB optoelectronic devices has important significance. The typical feature of phase separation is the appearance of multiphase absorption edges. For this sample, no multiphase absorption edge was observed, which confirms that in our case does not occur in phase separation which is often observed in ZnMgO alloys with high Mg content. Thus, the absence of phase separation largely improves the performance of the devices can be obtained on our films. Similarly, this reveals that this cubic ZnMgO film has a very high crystalline quality.

    Fig.2 Transmission spectrum of the cubic ZnMgO films in the UV spectrum

    The bright-field transmission electron microscope(TEM)micrograph in cross section from a Zn0.55Mg0.45O sample is shown in Fig.3, with the corresponding diffraction pattern from the ZnMgO film. As shown in Fig.3(a), the Zn0.55Mg0.45O/Al2O3structure clearly appears smooth cross-section, which is a typical image of a single crystalline material. In addition, the Zn0.55Mg0.45O films were found to cohere well to the sapphire substrate and displayed a uniform thickness on a microscopic scale. The diffraction crystal lattice pattern in Fig.3(b) shows the films are crack free, homogeneous, well covered with granular deposits and without any evidence of lattice defects. As a consequence, the micrograph and diffraction patterns clearly show the structure of single cubic phase ZnMgO (111), there is no evidence of any phase separation, which is consistent with previous results.

    Fig.3 Cross-sectional TEM and transmission lattice micrographs of a Zn0.55Mg0.45O film

    Lasing characteristics of ZnMgO film were investigated by aQ-switch Nd∶YAG laser (266 nm) under pulsed operation (6 ns, 30 Hz). Fig.4 shows the evolution of the emission spectrum as the average pump power (hereinafter referred to as pump power) increases. Comparative analysis of the three color lines in the figure, the central wavelength of the stimulated emission does not change with the pump power, which is always in the UVB about 310 nm. In the pump power from low to high changes in the process, showing a different stimulated emission spectrum, at low excitation intensity, the spectrum consisted of a single wide spontaneous emission peak. When the pump power is increased, the emission peak became narrower due to the preferential amplification at the frequency close to the maximum value of the gain spectrum. When the pump power increases further, more sharp peaks appear, and the line-width of peak drops sharply. When the pump power density is increased above the threshold, the emission intensity of the narrower feature becomes dominant. The narrow and strong emission exhibits a superlinear increase, accompanied by a slight redshift, Which indicates the appearance of stimulated emission. The stimulated emission may be attributed to the stimulated recombination of exciton-exciton scattering[26-27].

    Fig.4 Stimulated emission spectra of the Zn0.55Mg0.45O films at different average pump powers ranging from 0.18 mW (a), 1.5 mW (b), 1.8 mW (c), respectively.

    Discrete red dots in Fig.5 show FWHM as the non-linearity reduction function of the excitation density, the FWHM narrowed much more rapidly with the excitation density at the threshold. Another set of blue dots in the figure indicates the excitation density as a non-linear increasing function of the emission intensity. On the blue dot-fitted line, it is observed that the emission intensity increased much more rapidly with the excitation density above the excitation density of multiple sharp peaks emerged in the emission spectrum, which is the threshold behavior. This increased process is superlinear, which the threshold value is 22 kW/cm2. This proves that spontaneous radiation is transformed into stimulated radiation.

    Fig.5 FWHM and emission intensity of the Zn0.55Mg0.45O films as a non-linear function of the excitation density

    These results indicate that laser action has occurred in the Zn0.55Mg0.45O films. Compared with other literatures, this result of threshold power was lower than several orders of magnitude. This is a momentous progress to improve the work performance of laser devices.

    The optical cavity formed by repeated scattering has a different loss. When the pump power increases, the gain first achieves low loss cavity loss. After that, laser oscillation occurs in these cavities, and the laser frequency is determined by the cavity resonance. Laser emission from these resonators results in a small amount of discrete emission spectra narrow peaks. When the pump power is further increased, the gain increases and exceeds the loss in the lossier cavities. Due to the laser oscillations in these cavities, the emission spectrum adds more discrete peaks. These theories are consistent with the experimental data in this paper.

    4 Conclusion

    In conclusion, pure cubic MgxZn1-xO thin films with Mg content of 45% have been prepared by PLD. High crystalline quality non-phase separation of the Zn0.55Mg0.45O films was observed in the results of XRD and TEM. Under optical pumping, excitation occurs in the UVB wavelength of ~310 nm. As the excitation density increased, the peak intensity increased superlinear, and the linewidth of peak decreased dramatically. The high-quality Zn0.55Mg0.45O alloys films with a thresholds of 22 kW/cm2that we prepared have potential applications in various optoelectronic devices.

    [1] LIU Y, YU L, HU Y,etal.. A magnetically separable photocatalyst based on nest-like γ-Fe-O-/ZnO double-shelled hollow structures with enhanced photocatalytic activity [J].Nanoscale, 2012, 4(1):183-187.

    [2] ETACHERI V, ROSHAN R, KUMAR V. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis [J].AcsAppl.Mater.Interf., 2012, 4(5):2717-2725.

    [3] WANG X, LIAO M Y, ZHONG Y T,etal.. ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors [J].Adv.Mater., 2012, 24(25):3421-3425.

    [4] LIU D, LI C C, ZHOU F,etal.. Rapid synthesis of monodisperse au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement [J].Sci.Rep., 2015, 5:7686-7686.

    [5] LEE C T, LIN H Y, TSENG C Y. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors [J].Sci.Rep., 2015, 5:13705.

    [6] WANG L K, JU Z G, ZHANG J Y,etal.. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J].Appl.Phys.Lett., 2009, 95(13):131113-1-3.

    [7] CHEN Y Y, WANG C H, CHEN G S,etal.. Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect [J].NanoEnergy, 2015, 11:533-539.

    [8] ZENG H, CAI W P, HU J L,etal.. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation [J].Appl.Phys.Lett., 2006, 88(17):171910-1-3.

    [9] ZHENG Q, HUANG F, DING K,etal.. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J].Appl.Phys.Lett., 2011, 98(22):221112-1-3.

    [10] KUMAR M H, YANTARA N, DHARANI S,etal.. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells [J].Chem.Commun., 2013, 49(94):11089-11091.

    [11] LIANG Z Q, ZHANG Q F, WIRANWETCHAYAN O,etal.. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells [J].Adv.Funct.Mater., 2012, 22(10):2194-2201.

    [12] TANG K, GU S L, YE J D,etal.. High-quality ZnO growth, doping, and polarization effect [J].J.Semicond., 2016, 37(3):031001.

    [13] TIAN F B, DUAN D F, LI D,etal.. Miscibility and ordered structures of MgO-ZnO alloys under high pressure [J].Sci.Rep., 2014, 4:5759-5759.

    [14] SARD A. Sol-gel derived Li-Mg co-doped ZnO films: preparation and characterizationviaXRD, XPS, FESEM [J].J.AlloysCompds., 2012, 512(1):171-178.

    [15] TENG C W, MUTH J F, ?ZGüR ü, etal.. Refractive indices and absorption coefficients of MgxZn1-xO alloys [J].Appl.Phys.Lett., 2000, 76(8):979-981.

    [16] OHTOMO A, KAWASAKI M, KOIDA T,etal.. MgxZn1-xO as a Ⅱ-Ⅳ widegap semiconductor alloy [J].Appl.Phys.Lett., 1998, 72(19):2466-2468.

    [17] TIAN Y, MA X Y , LI D S,etal.. Electrically pumped ultraviolet random lasing from heterostructures formed by bilayered MgZnO films on silicon [J].Appl.Phys.Lett., 2010, 97(6):061111-1-3.

    [18] PARK W I, YI G C, JANG H M. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-x-MgxO(0≤x≤0.49) thin films [J].Appl.Phys.Lett., 2001, 79(13):2022-2024.

    [19] SHARMA A K, NARAYAN J, MUTH J F,etal.. Optical and structural properties of epitaxial MgxZn1-xO alloys [J].Appl.Phys.Lett., 1999, 75(21):3327-3329.

    [20] CHOOPUN S, VISPUTE R D, YANG W,etal.. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J].Appl.Phys.Lett., 2002, 80(9):1529-1531.

    [21] TANAKA H, FUJITA S, FUJITA S. Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy [J].Appl.Phys.Lett., 2005, 86(19):192911-1-3.

    [22] YANG W, HULLAVARAD S S, NAGARAJ B,etal.. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors [J].Appl.Phys.Lett., 2003, 82(20):3424-3426.

    [23] CHEN H X, DING J J, MA S Y. Structural and optical properties of ZnO∶Mg thin films grown under different oxygen partial pressures [J].PhysicaE, 2010, 42(5):1487-1491.

    [24] TIAN C, JIANG D Y, TAN Z D,etal.. Effects of thermal treatment on the MgxZn1-xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors [J].Mater.Res.Bull., 2014, 60:46-50.

    [25] JU Z G, SHAN C X, YANG C L,etal.. Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method [J].Appl.Phys.Lett., 2009, 94(10):101902-1-3.

    [26] WANG L K, JU Z G, ZHANG J Y,etal.. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J].Appl.Phys.Lett., 2009, 95(13):131113-1-3.

    [27] HSU H C, WU C Y, CHENG H M,etal.. Band gap engineering and stimulated emission of ZnMgO nanowires [J].Appl.Phys.Lett., 2006, 89(1):013101-1-3.

    [28] MUHAMMAD M M, MOHAMMAD S L, ZHENG Z,etal.. Ultraviolet random lasing from asymmetrically contacted MgZnO metal-semiconductor-metal device [J].Appl.Phys.Lett., 2014,105(21):211107-1-3.

    [29] BAGNALL D M, CHEN Y F, ZHU Z,etal.. Optically pumped lasing of ZnO at room temperature [J].Appl.Phys.Lett., 1997, 70(17):2230-2232.

    [30] CHEN Y F, TUAN N T, SEGAWA Y,etal.. Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers [J].Appl.Phys.Lett., 2001, 78(11):1469-1471.

    張晗(1991-),女,山東濟(jì)寧人,碩士研究生,2015年于曲阜師范大學(xué)獲得學(xué)士學(xué)位,主要從事半導(dǎo)體光電子材料與器件的研究。

    E-mail: 15625138017@163.com

    宿世臣(1979-), 男, 黑龍江佳木斯人,博士,副研究員,2009年于中科院長春光機(jī)所獲得博士學(xué)位,主要從事寬禁帶半導(dǎo)體的研究。

    E-mail: shichensu@126.com

    2017-03-07;

    2017-04-17

    國家自然科學(xué)基金(61574063); 廣東省科技計劃(2016A040403106); 廣州市科技計劃(2016201604030047)資助項(xiàng)目 Supported by National Natural Science Foundation of China(61574063); Science and Technology Program of Guangdong Province(2016A040403106); Science and Technology Project of Guangzhou City(2016201604030047)

    高質(zhì)量立方相ZnMgO的制備與紫外受激發(fā)射特性研究

    張 晗, 裴磊磊, 宿世臣*

    (廣東省光電功能材料與器件重點(diǎn)實(shí)驗(yàn)室, 華南師范大學(xué) 光電材料與技術(shù)研究所, 廣東 廣州 510631)

    利用脈沖激光沉積(PLD)設(shè)備在藍(lán)寶石襯底上制備了高質(zhì)量Zn1-xMgxO單晶薄膜,并對其結(jié)構(gòu)和光學(xué)特性進(jìn)行了深入細(xì)致的研究。通過能量衍射譜(EDS)確認(rèn)Zn1-xMgxO薄膜的Mg組分為45%。在Zn0.55Mg0.45O薄膜的X射線衍射譜(XRD)中觀測到了明顯的位于36.67°的衍射峰,對應(yīng)的是(111)晶向的立方相ZnMgO。從透射光譜中可以看出,Zn0.55Mg0.45O具有陡峭的吸收邊,沒有發(fā)生相分離,在透射電鏡圖譜中也得到了證實(shí)。該ZnMgO薄膜還表現(xiàn)出了優(yōu)異的光學(xué)特性,在Zn0.55Mg0.45O材料體系中實(shí)現(xiàn)了峰位位于310 nm的紫外光泵浦受激發(fā)射,其激光發(fā)射的閾值僅為22 kW/cm2。

    氧化鋅鎂; 脈沖激光沉積; 閾值

    1000-7032(2017)07-0905-06

    O484.4 Document code: A

    10.3788/fgxb20173807.0905

    *Corresponding Author, E-mail: shichensu@126.com

    猜你喜歡
    器件薄膜脈沖
    他們使阿秒光脈沖成為可能
    復(fù)合土工薄膜在防滲中的應(yīng)用
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    β-Ga2O3薄膜的生長與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    CIGS薄膜太陽電池柔性化
    面向高速應(yīng)用的GaN基HEMT器件
    一種加載集總器件的可調(diào)三維周期結(jié)構(gòu)
    亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 成年av动漫网址| 国产欧美日韩精品一区二区| 欧美不卡视频在线免费观看| 婷婷精品国产亚洲av在线| 精品一区二区免费观看| 欧美zozozo另类| 午夜爱爱视频在线播放| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 自拍偷自拍亚洲精品老妇| 国产一区二区在线av高清观看| 亚洲高清免费不卡视频| 欧美丝袜亚洲另类| 国产亚洲精品av在线| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 中国美女看黄片| 99久国产av精品| 日韩在线高清观看一区二区三区| 国产男靠女视频免费网站| 久久人人爽人人爽人人片va| 老司机影院成人| 秋霞在线观看毛片| 欧美xxxx黑人xx丫x性爽| 美女大奶头视频| 午夜福利高清视频| 亚洲欧美日韩无卡精品| 在线观看av片永久免费下载| 一区福利在线观看| 在线免费观看的www视频| 成年女人永久免费观看视频| 一级毛片电影观看 | 精品人妻偷拍中文字幕| 自拍偷自拍亚洲精品老妇| 国产一区二区在线观看日韩| 少妇的逼好多水| 天美传媒精品一区二区| 成人无遮挡网站| 热99re8久久精品国产| 麻豆精品久久久久久蜜桃| 韩国av在线不卡| 啦啦啦啦在线视频资源| 成年av动漫网址| 国产精品电影一区二区三区| 午夜精品一区二区三区免费看| 亚洲欧美日韩高清专用| 18+在线观看网站| 欧美3d第一页| 亚洲国产精品成人久久小说 | 久久久久精品国产欧美久久久| 亚洲av电影不卡..在线观看| 亚洲av中文字字幕乱码综合| 欧美日韩国产亚洲二区| 欧美不卡视频在线免费观看| 国产精品综合久久久久久久免费| 人妻夜夜爽99麻豆av| 亚洲国产高清在线一区二区三| 99久久九九国产精品国产免费| 国语自产精品视频在线第100页| 国产精品一区二区性色av| 久久精品人妻少妇| 黄片wwwwww| 我的女老师完整版在线观看| 国产一区二区激情短视频| 我要搜黄色片| 97热精品久久久久久| 美女 人体艺术 gogo| 成人二区视频| 三级经典国产精品| 久久中文看片网| 亚洲va在线va天堂va国产| 中文在线观看免费www的网站| 亚洲专区国产一区二区| 在线免费观看的www视频| 亚洲最大成人手机在线| 波多野结衣巨乳人妻| 免费在线观看影片大全网站| 日韩强制内射视频| 久久草成人影院| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 日本a在线网址| 国产亚洲av嫩草精品影院| 97超级碰碰碰精品色视频在线观看| 免费黄网站久久成人精品| 国产又黄又爽又无遮挡在线| 亚洲丝袜综合中文字幕| 久久鲁丝午夜福利片| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 最近视频中文字幕2019在线8| 午夜爱爱视频在线播放| 国产综合懂色| 麻豆一二三区av精品| 国产亚洲精品综合一区在线观看| av福利片在线观看| 美女免费视频网站| 五月玫瑰六月丁香| 乱人视频在线观看| 国产真实乱freesex| 亚洲精品456在线播放app| 亚洲国产精品久久男人天堂| 欧美日韩国产亚洲二区| 不卡一级毛片| 日韩中字成人| 精品一区二区免费观看| 午夜老司机福利剧场| 午夜激情福利司机影院| 直男gayav资源| 欧美国产日韩亚洲一区| 国产探花极品一区二区| 成人精品一区二区免费| 亚洲av一区综合| 深夜精品福利| 91狼人影院| 久久久久久久久大av| 成人三级黄色视频| 婷婷亚洲欧美| 亚洲精品国产av成人精品 | 亚洲av电影不卡..在线观看| 欧美一级a爱片免费观看看| 观看免费一级毛片| 国产伦在线观看视频一区| 亚洲精品一卡2卡三卡4卡5卡| 一级毛片aaaaaa免费看小| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 亚洲精品亚洲一区二区| 91av网一区二区| 国产一区二区亚洲精品在线观看| 久久久久国内视频| 51国产日韩欧美| 成人鲁丝片一二三区免费| 日本一本二区三区精品| 日韩欧美在线乱码| 看免费成人av毛片| 你懂的网址亚洲精品在线观看 | 在线国产一区二区在线| 欧美日韩国产亚洲二区| 国产精品久久久久久亚洲av鲁大| 免费av毛片视频| 一个人免费在线观看电影| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 极品教师在线视频| 精品久久久久久久人妻蜜臀av| 高清午夜精品一区二区三区 | 变态另类成人亚洲欧美熟女| 国产精品久久久久久av不卡| 国产成人a∨麻豆精品| 亚洲精品国产av成人精品 | 97超碰精品成人国产| 三级经典国产精品| 日韩精品青青久久久久久| 搡老岳熟女国产| 亚洲国产欧美人成| 午夜免费激情av| 欧美高清性xxxxhd video| 日韩在线高清观看一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲成人精品中文字幕电影| 听说在线观看完整版免费高清| 国产精品一二三区在线看| 淫妇啪啪啪对白视频| 三级经典国产精品| 此物有八面人人有两片| 99在线人妻在线中文字幕| 一个人免费在线观看电影| 亚洲欧美清纯卡通| 韩国av在线不卡| 男女那种视频在线观看| 亚洲色图av天堂| 村上凉子中文字幕在线| 久久久久久国产a免费观看| 天天躁日日操中文字幕| 一边摸一边抽搐一进一小说| 成年女人毛片免费观看观看9| 伦精品一区二区三区| av天堂在线播放| 日韩成人av中文字幕在线观看 | 全区人妻精品视频| 1000部很黄的大片| 日韩人妻高清精品专区| 高清午夜精品一区二区三区 | 国产av不卡久久| 亚洲七黄色美女视频| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片| 中文字幕免费在线视频6| 成人欧美大片| 插逼视频在线观看| 国产精品乱码一区二三区的特点| 少妇熟女aⅴ在线视频| 日韩av不卡免费在线播放| 色吧在线观看| 最近中文字幕高清免费大全6| av卡一久久| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩高清专用| 亚洲av电影不卡..在线观看| 免费黄网站久久成人精品| 天堂av国产一区二区熟女人妻| 国语自产精品视频在线第100页| 国产男靠女视频免费网站| 色噜噜av男人的天堂激情| 丰满的人妻完整版| 亚洲av一区综合| 日韩欧美免费精品| 日韩亚洲欧美综合| 在线免费十八禁| 成年免费大片在线观看| 九九爱精品视频在线观看| 又爽又黄a免费视频| 国产av一区在线观看免费| 久久精品国产亚洲av涩爱 | 在线观看一区二区三区| 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 蜜桃亚洲精品一区二区三区| 免费人成在线观看视频色| 色哟哟哟哟哟哟| 3wmmmm亚洲av在线观看| 亚洲av一区综合| 日本爱情动作片www.在线观看 | 小说图片视频综合网站| 国产乱人视频| 大型黄色视频在线免费观看| 91麻豆精品激情在线观看国产| 国产黄色小视频在线观看| 成人av在线播放网站| 亚洲成人久久爱视频| 欧美最黄视频在线播放免费| av在线老鸭窝| 日本熟妇午夜| www日本黄色视频网| 嫩草影院精品99| 搡老妇女老女人老熟妇| 一区二区三区免费毛片| 毛片女人毛片| 午夜爱爱视频在线播放| 午夜激情福利司机影院| 国产大屁股一区二区在线视频| 午夜精品一区二区三区免费看| 麻豆一二三区av精品| 欧美日韩综合久久久久久| 人妻夜夜爽99麻豆av| 欧美又色又爽又黄视频| 国产男人的电影天堂91| 俺也久久电影网| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 国产成人a∨麻豆精品| 日韩高清综合在线| 精品午夜福利视频在线观看一区| 少妇熟女aⅴ在线视频| 在现免费观看毛片| 在线看三级毛片| 久久精品国产亚洲av天美| 欧美绝顶高潮抽搐喷水| 亚洲成人久久性| 国产精品一区二区免费欧美| 人妻制服诱惑在线中文字幕| 日韩一本色道免费dvd| 69人妻影院| 欧美极品一区二区三区四区| 亚洲无线观看免费| 在线观看一区二区三区| 国产精品久久视频播放| a级一级毛片免费在线观看| 村上凉子中文字幕在线| 91久久精品国产一区二区成人| av黄色大香蕉| 在线a可以看的网站| 久久人人精品亚洲av| 丰满人妻一区二区三区视频av| 欧美性猛交╳xxx乱大交人| 亚洲va在线va天堂va国产| 国产69精品久久久久777片| 最近最新中文字幕大全电影3| 国产午夜精品论理片| 女同久久另类99精品国产91| 男人舔奶头视频| 丰满人妻一区二区三区视频av| 亚洲av一区综合| 亚洲欧美中文字幕日韩二区| 欧美极品一区二区三区四区| 日韩一区二区视频免费看| 亚洲av二区三区四区| 国内少妇人妻偷人精品xxx网站| avwww免费| 综合色av麻豆| 久久国内精品自在自线图片| 啦啦啦啦在线视频资源| 欧美最黄视频在线播放免费| 国产黄片美女视频| 亚洲精品日韩在线中文字幕 | 亚洲精品日韩在线中文字幕 | 久久精品夜夜夜夜夜久久蜜豆| 国产精品三级大全| 97热精品久久久久久| 啦啦啦啦在线视频资源| 99热精品在线国产| 五月玫瑰六月丁香| 69人妻影院| 一进一出抽搐动态| 亚洲天堂国产精品一区在线| 日本熟妇午夜| 神马国产精品三级电影在线观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美中文日本在线观看视频| 国产成人a区在线观看| 亚洲国产精品合色在线| 国产精品久久久久久亚洲av鲁大| 久久久久久久久久黄片| 女人十人毛片免费观看3o分钟| 51国产日韩欧美| 日本一本二区三区精品| h日本视频在线播放| 自拍偷自拍亚洲精品老妇| 久久人人爽人人爽人人片va| 搡老妇女老女人老熟妇| 99热全是精品| 联通29元200g的流量卡| 在线观看66精品国产| 日韩欧美精品v在线| 国产精品日韩av在线免费观看| 日韩欧美精品免费久久| 亚洲精品456在线播放app| 免费av观看视频| 老熟妇仑乱视频hdxx| 99热只有精品国产| 69av精品久久久久久| 免费看av在线观看网站| 真人做人爱边吃奶动态| 免费观看在线日韩| 国产精品av视频在线免费观看| 日本a在线网址| 亚洲在线观看片| 日本五十路高清| 色播亚洲综合网| 看片在线看免费视频| 免费观看在线日韩| 97在线视频观看| 欧美中文日本在线观看视频| 国产精品一区二区三区四区免费观看 | 最近手机中文字幕大全| 搞女人的毛片| 91麻豆精品激情在线观看国产| 能在线免费观看的黄片| 亚洲国产精品合色在线| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站在线播| 男女啪啪激烈高潮av片| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 一进一出好大好爽视频| 免费在线观看成人毛片| 成人亚洲欧美一区二区av| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 亚洲自拍偷在线| 精品一区二区三区视频在线| 大香蕉久久网| 久久久久久久午夜电影| 国产大屁股一区二区在线视频| 国产一区二区三区av在线 | 97超级碰碰碰精品色视频在线观看| 全区人妻精品视频| 一个人免费在线观看电影| 天堂网av新在线| 国产一区二区三区av在线 | 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 国产精品一区www在线观看| 亚洲色图av天堂| av在线天堂中文字幕| 欧美一级a爱片免费观看看| 欧美日韩精品成人综合77777| 一进一出抽搐动态| 在线天堂最新版资源| 欧美日韩乱码在线| av专区在线播放| 国产精品久久久久久精品电影| 三级毛片av免费| av.在线天堂| 亚洲aⅴ乱码一区二区在线播放| 看黄色毛片网站| 国产成年人精品一区二区| 精品日产1卡2卡| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 久久久精品欧美日韩精品| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 中文字幕精品亚洲无线码一区| 日本黄色视频三级网站网址| 卡戴珊不雅视频在线播放| av在线亚洲专区| 国产一区二区亚洲精品在线观看| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看成人毛片| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看| 国产色爽女视频免费观看| 日本黄色片子视频| 在线观看免费视频日本深夜| 最近视频中文字幕2019在线8| 精品久久久久久久久久久久久| 精品久久久久久久久久久久久| 给我免费播放毛片高清在线观看| 国产在线男女| 午夜a级毛片| 国产欧美日韩一区二区精品| 亚洲av中文字字幕乱码综合| 国产综合懂色| 日韩欧美国产在线观看| 欧美色欧美亚洲另类二区| av天堂中文字幕网| a级毛片免费高清观看在线播放| 亚洲久久久久久中文字幕| 日韩精品青青久久久久久| 精品久久久久久久末码| 啦啦啦韩国在线观看视频| 91午夜精品亚洲一区二区三区| 不卡一级毛片| 天美传媒精品一区二区| 国产色爽女视频免费观看| 美女大奶头视频| 丝袜美腿在线中文| 成人午夜高清在线视频| 国产精品一区二区免费欧美| 美女黄网站色视频| 成人亚洲精品av一区二区| 此物有八面人人有两片| 欧美色视频一区免费| 久久精品国产亚洲av涩爱 | 99久久久亚洲精品蜜臀av| 亚洲av熟女| 老司机福利观看| 小蜜桃在线观看免费完整版高清| 久久久色成人| 不卡视频在线观看欧美| 久久久久久久久大av| 亚洲精品国产成人久久av| 中文字幕人妻熟人妻熟丝袜美| 日本 av在线| 老司机福利观看| 一区福利在线观看| 午夜福利成人在线免费观看| 久久国产乱子免费精品| 色av中文字幕| 五月伊人婷婷丁香| 成人二区视频| 日韩欧美精品v在线| 国产视频内射| 久久热精品热| 精品欧美国产一区二区三| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩卡通动漫| 熟妇人妻久久中文字幕3abv| 成人漫画全彩无遮挡| 看黄色毛片网站| 中文字幕熟女人妻在线| 亚洲人成网站在线观看播放| 国产精品日韩av在线免费观看| 中文字幕av在线有码专区| 麻豆国产97在线/欧美| 亚洲丝袜综合中文字幕| 九色成人免费人妻av| 午夜精品一区二区三区免费看| 99在线人妻在线中文字幕| 啦啦啦观看免费观看视频高清| 日韩三级伦理在线观看| 丝袜喷水一区| 国产精品人妻久久久影院| 国产 一区 欧美 日韩| 久久亚洲精品不卡| 日本三级黄在线观看| 看非洲黑人一级黄片| 狂野欧美白嫩少妇大欣赏| 嫩草影视91久久| 久久久久九九精品影院| 亚洲电影在线观看av| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 欧美激情在线99| 黄色日韩在线| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 禁无遮挡网站| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 两个人的视频大全免费| 亚洲国产精品成人久久小说 | 久久亚洲国产成人精品v| 久久99热这里只有精品18| 中出人妻视频一区二区| 日韩欧美 国产精品| 国产精品一区www在线观看| 国产三级中文精品| 99热全是精品| 一级a爱片免费观看的视频| 校园春色视频在线观看| 少妇人妻一区二区三区视频| 极品教师在线视频| 美女大奶头视频| 精品久久久久久成人av| 日韩欧美一区二区三区在线观看| 精品久久久久久久久久久久久| 久久久成人免费电影| 男女那种视频在线观看| 国产成年人精品一区二区| 精品一区二区三区av网在线观看| 美女黄网站色视频| 99久久精品一区二区三区| 色综合站精品国产| 91狼人影院| а√天堂www在线а√下载| av天堂中文字幕网| 亚洲欧美清纯卡通| 在线天堂最新版资源| 在现免费观看毛片| 精品一区二区三区人妻视频| 亚洲欧美清纯卡通| 日本熟妇午夜| 99九九线精品视频在线观看视频| 99精品在免费线老司机午夜| 亚洲av美国av| av在线老鸭窝| 国产蜜桃级精品一区二区三区| 久久人人爽人人片av| 麻豆久久精品国产亚洲av| 精品人妻熟女av久视频| 不卡一级毛片| 欧美成人a在线观看| 黄色一级大片看看| 久久韩国三级中文字幕| 九九在线视频观看精品| av女优亚洲男人天堂| 国产三级中文精品| 99久国产av精品| 国产成人91sexporn| 天堂网av新在线| 色哟哟·www| 国产免费男女视频| 精品久久久久久久末码| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 亚洲高清免费不卡视频| 欧美日韩一区二区视频在线观看视频在线 | 色播亚洲综合网| 久久精品国产99精品国产亚洲性色| 天堂网av新在线| eeuss影院久久| 久久草成人影院| 国产精品av视频在线免费观看| 久久人妻av系列| 亚洲国产欧洲综合997久久,| 中文字幕久久专区| 精品久久久久久久久av| 中文字幕av在线有码专区| 欧美性感艳星| 国产免费男女视频| 99国产精品一区二区蜜桃av| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人手机在线| 一进一出抽搐gif免费好疼| 99热全是精品| 少妇人妻一区二区三区视频| 校园春色视频在线观看| 国产精品,欧美在线| 99热精品在线国产| or卡值多少钱| 成人永久免费在线观看视频| 午夜福利视频1000在线观看| 亚洲精品日韩av片在线观看| 国产欧美日韩精品一区二区| 欧美xxxx黑人xx丫x性爽| 日本五十路高清| 成人美女网站在线观看视频| 丝袜美腿在线中文| 神马国产精品三级电影在线观看| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看 | 国产乱人偷精品视频| 激情 狠狠 欧美| 成年女人看的毛片在线观看| 亚洲av电影不卡..在线观看| or卡值多少钱| 亚洲一区二区三区色噜噜| 国产精品久久电影中文字幕| 我要看日韩黄色一级片| 亚洲一区二区三区色噜噜| 免费黄网站久久成人精品| 听说在线观看完整版免费高清| 色哟哟哟哟哟哟| 色尼玛亚洲综合影院| 日韩欧美免费精品| 午夜福利高清视频| 午夜久久久久精精品| 一夜夜www| 国产爱豆传媒在线观看| 国产大屁股一区二区在线视频| 日本免费a在线| 一区二区三区高清视频在线|