• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Eu2+ Activated Barium Phosphosilicate Phosphors with Two-color Emission by A New Two-step Method

    2017-07-05 13:01:25CHENGZhiyuanZHANGYanjieYUJingjieLIDeshengCAOGuanyingZHAOZuoren
    發(fā)光學(xué)報(bào) 2017年7期
    關(guān)鍵詞:博士

    CHENG Zhi-yuan, ZHANG Yan-jie, YU Jing-jie, LI De-sheng, CAO Guan-ying, ZHAO Zuo-ren

    (Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China)

    Preparation of Eu2+Activated Barium Phosphosilicate Phosphors with Two-color Emission by A New Two-step Method

    CHENG Zhi-yuan, ZHANG Yan-jie*, YU Jing-jie*, LI De-sheng, CAO Guan-ying, ZHAO Zuo-ren

    (Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, China)

    A series of single phase Eu2+-activated barium phosphosilicates phosphors, Ba10-x(PO4)4(SiO4)2∶xEu2+, with apatite structure were successfully synthesized by a novel two-step method and they exhibited interesting two-color emission at 414 nm (blue) and 504 nm (green), respectively. As a significant contrast, the phosphors preparedviatraditional solid state reaction method, only showed single-color emission at 504 nm. The luminescent properties of these as-prepared phosphors are strongly dependent on the substitute sites of Eu2+in apatite crystal structure and the two-color emission was proved due to the occupation of Eu3+on two lattice sites of BaⅠand BaⅡin host material. Furthermore, the relative intensity of two emission peaks can be tuned readilyviaadjusting the substitution of BaⅠsite by Eu2+.

    phosphor; single phase; photoluminescence; Ba10(PO4)4(SiO4)2

    1 Introduction

    Solid-state lighting based on white light-emitting diodes (LEDs) has been dramatically promoted and widely used in illumination fields because of its energy efficiency, long lifetime and non-mercury pollution[1-5]. Currently, phosphor-converted LEDs (pc-LEDs) consisted of a blue chip and a yellow phosphor (YAG∶Ce3+) are dominant in the market because of their low cost and simplicity in manufacturing. However, the lack of red component in blue InGaN-based LEDs results in a white light emitting with low color rendering index (Ra<80) and poor color reproducibility, which cannot meet the requirement of interior lighting[6-7]. Accordingly, a near-ultraviolet (NUV) chip combined with multi-component phosphors (Red, Green and Blue) has attracted much attention recently to achieve high color rendering index (Ra>90) and effectively avoid the uncomfortable glare[8-10]. Consequently, It is necessary to design and develop novel single-component phosphor with two- or three-color emitting due to the serious re-absorption caused by the mixing of multi-component phosphors[8,11-16].

    Generally speaking, as for those phosphors with multi-color emission bands, the strategy is to use different rare earth ions and other ions (such as Mn2+) as co-activators. For example, Sr5(PO4)3Cl∶Eu2+,Mn2+was developed and used as a NUV excited LEDs phosphor[17]. A α-Ca2P2O7∶Eu2+,Mn2+phosphor with two emission bands centered at around 416 nm (blue) and 600 nm (orange) under NUV excitation at 400 nm is also reported[18]. In both samples, Mn2+ions are often acted as the red-emitting activator. Nowadays, the development of the phosphor with single activator is a new rising tendency for multi-color emission due to many advantages. For example, the energy loss generated by interaction between various compounds and the non-radioactive transition produced between the activator and different matrices components in multi-matrix phosphors can be reduced[19]. Shindeetal.[20]synthesized novel Dy3+activatedX6AlP5O20(X=Sr, Ba, Ca and Mg) phosphors, which show an efficient blue (485 nm) and yellow (573 nm) band emissions excited by 350 nm NUV light. Jeonetal.[21]developed a new full-color-emitting phosphor (Na2-x-Al2-xSixO4∶Eu2+, 0≤x≤1) based on the variation ofxvalue using a wet chemical reaction. Zhangetal.[22]investigated a novel blue emitting long lasting phosphorescence phosphor Sr5(PO4)3Cl∶Eu2+which showed two emission bands at 426 nm and 467 nm due to the different surrounding coordination of the two Sr2+(Eu2+) sites.

    2 Experiments

    2.1 Materials and Synthesis

    The Ba10-x(PO4)4(SiO4)2∶xEu2+samples were prepared by a two-step solid state reaction method using BaCO3(A.R.), NH4H2PO4(A.R.), H2SiO3(A.R.) and Eu2O3as raw materials. According to the stoichiometric ratios, the raw materials were thoroughly mixed and ground in agate mortar. The two-step solid state reaction method (Two-step method) is described as follows. In the first step, the mixture was transferred into an alumina crucible and then loaded into a tube furnace. The samples were sintered at 1 170 ℃ for 4 h in air. In the second step, the samples obtained after the first step were reduced at 1 170 ℃ for 2 h in an atmosphere of H2(10%) and N2(90%). The influence of temperature was also investigated by a different sintering temperature (800 ℃) in the first step and reducing temperature (850 ℃) in the second step. After the two-step method, the samples were cooled to room temperature in the reducing atmosphere. Then, the products were ground using an agate mortar.

    In comparison with the samples prepared by the two-step method, Ba10-x(PO4)4(SiO4)2∶xEu2+phosphors were also synthesized by a traditional solid state reaction method (One-step method) at 1 170 ℃ for 4 h in a reducing atmosphere of H2(10%) and N2(90%).

    2.2 Characterizations

    The phases of the resulting powders were identified by X-ray powder diffraction (XRD) with a Bruker D8 Advance diffractometer with Cu Kα radiation (λ=0.153 74 nm) operating at 40 mA and 40 kV. Photoluminescence (PL) excitation and emission spectra were recorded by a HITACH F-4500 fluorescence spectrophotometer at room temperature. Morphology of the phosphors were observed by field emission electron microscopy (FESEM, JSM-7800F, JEOL).

    3 Results and Discussion

    3.1 Phase Component and Structure

    Fig.1 presents the X-ray diffraction pattern of typical Ba9.7(PO4)4(SiO4)2∶0.3Eu2+samples obtained by one-step method and two-step method together with the corresponding standard JCPDS card. For both as-synthesized samples, the XRD peaks marked by ◆ in Fig.1 can be well indexed by the standard JCPDS card (JCPDS No. 24-0028) of Ba10(PO4)6(OH)2, which indicates that samples obtained by either way have an isostructure with Ba10-(PO4)6(OH)2. The other XRD peaks are attributed to the replacement of SiO44-on the basis of the JCPDS (JCPDS No.70-2113) of Ba2SiO4. Ba10(PO4)6(OH)2apatite crystallizes in the hexagonal system with the space groupP63/m. According to the crystal structure of Ba10(PO4)6(OH)2, as shown in Fig.2, there are two non-equivalent cationic sites (BaⅠand BaⅡ) for Ba2+with different positions. BaⅠsite (4f,C3point symmetry) and BaⅡsite (6h,Cspoint symmetry) are coordinated with 9 and 7 oxygen atoms, respectively[12].

    Fig.1 XRD patterns of the typical Ba9.7(PO4)4(SiO4)2∶0.3Eu2+phosphor prepared by one-step method (a) and two-step method (b) compared with the standard patterns of Ba10(PO4)4(SiO4)2(JCPDS No. 24-0028).

    The diffraction peaks marked by ◆ are corresponding to Ba10(PO4)6(OH)2.

    Fig.2 Unit cell structure of Ba10(PO4)6(OH)2and coordination environment of Ba2+ions in the host lattice

    Fig. 3 presents the SEM images of samples obtained by one-step method and two-step method, respectively. No significant difference of morphology can be observed for Fig. 3(a) and 3(b). The particles show an irregular morphology with particle size of 5-20 μm. Therefore, it can be concluded from the results of XRD and SEM that the samples prepared by one-step method and two-step method exhibit similar crystal structure and morphology of Ba10(PO4)4(SiO4)2host.

    Fig.3 SEM images of the samples obtained by one-step method (a) and two-step method (b), respectively.

    3.2 Influence of Preparation Method on Photoluminescence Properties

    For comparison, a traditional solid state reaction method (one-step method) has also been employed to prepare Ba10-x(PO4)4(SiO4)2∶xEu2+phosphors. Fig.4 presents the differences between emission spectra of Ba10-x(PO4)4(SiO4)2∶xEu2+phosphors (x=0.3 and 0.75) preparedviaone-step and two-step method, respectively. In Fig.4(a), two emission bands centered at 414 nm and 505 nm can be observed under the excitation of 350 nm for Ba9.7(PO4)4(SiO4)2∶0.3Eu2+sample prepared by two-step method. The double emission band is consistent with the different substitution sites of Eu2+in host material of Ba10(PO4)4(SiO4)2crystal. Photoluminescence of Eu2+ions generates from the electron transition between 4f7and 4f65d configuration. 4f electrons shielded by 5s and 5p electron cloud can be barely influenced by crystal environment; however, the energy level of unprotected 5d electron can be splitted by the force of crystal field. It is well known that Eu2+located at smaller site will experience a larger crystal field splitting, which leads to the emission band being shifted to a longer wavelength[22]. Therefore, the emission band at 505 nm can be attributed to the substitution of BaⅡsite and another weak one at 414 nm can be assigned to Eu2+occupying BaⅠsite. The sample obtained by one-step method only exhibits one emission band at 502 nm, which shows a large Stokes shift (ΔS≈8 650 cm-1) and full width at half-maximum (FWHM ≈ 2 432 cm-1), indicating that this peak can be attributed to the anomalous fluorescent emission of Eu2+[12,23].

    Fig.4 PL emission spectra of Ba9.7(PO4)4(SiO4)2∶0.3Eu2+(a) and Ba9.25(PO4)4(SiO4)2∶0.75Eu2+(b) under the excitation of 350 nm. The samples are synthesized by two-step and one-step methods, respectively.

    With increasing the Eu2+doping content, Ba9.25(PO4)4(SiO4)2∶0.75Eu2+phosphor obtained by one-step method also shows a weak emission band at 414 nm in addition to 505 nm (Fig.4(b)). This indicates that an increase of Eu2+doping content in host can facilitate the substitution of BaⅠsite. In comparison with the phosphor prepared by one-step method, Ba9.25(PO4)4(SiO4)2∶0.75Eu2+phosphor synthesized by two-step method displays much higher emission band intensity at 414 nm and 504 nm (Fig.4(b)), which shows a similar tendency for Ba9.7(PO4)4(SiO4)2∶0.3Eu2+sample (Fig.4(a)). The above results indicate that the luminescence property of the Ba10-x(PO4)4(SiO4)2:xEu2+phosphor in this research is strongly dependent on the preparation method. Two-step method dramatically enhances the emission band intensity, and, in the first step, makes it easier for Eu3+to occupy the BaⅠsite with less O2-ligands because of smaller iron radius (0.101 nm) than Eu2+(0.120 nm), which creates better opportunity for luminescence of Eu2+locating at BaⅠsite after reduction.

    3.3 Formation Mechanism of The Two-color Emission by Two-step Method

    The major difference between the one-step method and two-step method for preparation of the phosphors is the formation of the intermediates after the first step during two-step method. When substituting Ba2+with Eu3+ions[36-37], charge balance is not disturbed because introduced flux can be used for charge compensation. Fig.5 shows the emission spectra of the intermediates obtained after the first step. The5D0-7FJ(J=0-4) transitions of Eu3+are present under NUV excitation of 394 nm: emissions peaking at 613.4 nm and 624.8 nm can be ascribed to the transition of5D0-7F2and those peaking at 585, 591 and 595.8 nm are related to the transition of5D0-7F1[l]. Obviously, the red emission transition from5D0-7F2is dominant in the spectra, which indicates that Eu3+mainly occupy the asymmetric site (BaⅡsite withCspoint symmetry). The abnormal5D0-7F0transition of Eu3+also appears based on the emission peak at 577 nm in Fig. 5. Normally, the5D0-7F0transition is forbidden and can only be present when Eu3+occupying both the sites ofC3andCs[38]. In our cases, two lattice sites of BaⅠ(C3point symmetry) and BaⅡ(Cspoint symmetry) in host material have been occupied by Eu3+during the first step of two-step solid state method. Furthermore, Eu2+ions will similarly occupy two lattice sites of BaⅠand BaⅡafter Eu3+ions in the intermediates are reduced during the second step process and an expected two-color emission can be finally obtained[23].

    Fig.5 PL emission spectra of the sample after first preparation step forx=0.3 and 0.75 excited by 394 nm

    The influence of sintering temperature in the first step and reducing temperature in the second step on luminescence properties of products has also been investigated, as shown in Fig.6. In Fig.6(a), the comparison of a lower sintering temperature of 800 ℃ in the first step gives a lower emission band intensity of Ba9.25(PO4)4(SiO4)2∶0.75Eu2+phosphor, which is probably related to the decreased crystallization of host material. Similarly, a decreased intensity of the emission band can also be observed when a low reducing temperature is employed in the second step (Fig. 6(b)).

    Fig.6 PL emission spectra of Ba9.25(PO4)4(SiO4)2∶0.75Eu2+phosphor under different sintering temperature in the first step (a) and reducing temperature in the second step(b) on luminescence properties of products

    3.4 Effect of Eu2+Doping Concentrations on Emission Spectra

    In general, energy transfer can only occur if the sensitizer emission spectra overlap the activator adsorption spectra for unlike luminescent centers. In the case of Ba9.0(PO4)4(SiO4)2∶1.0Eu2+, the emission peak at 414 nm from EuⅠsite overlaps the excitation peak of Band Ⅱ from EuⅡsite in Fig.7. Therefore, energy transfer from EuⅠto EuⅡis considered to exist in Ba10-x(PO4)4(SiO4)2∶xEu2+phosphors.

    Fig.7 PL emission and excitation spectra of Ba9.0(PO4)4-(SiO4)2∶1.0Eu2+phosphor

    Fig.8(a) presents the dependence of emission intensity of Ba10-x(PO4)4(SiO4)2∶xEu2+on Eu2+doping concentration (x=0.2-1.0). The emission intensity at 414 nm (Band Ⅰ) increases with an increased Eu2+doping concentration fromx=0.2 tox=1.0 because of the more substitution of BaⅠsite. While, the intensity of Band Ⅱ shows a peculiar increase whenx=0.3 and then decreases along with the changes ofxvalue (from 0.3 to 1.0) in Fig.8(a). The peculiar increase whenx=0.3 for Band II is attributed to the energy transfer from EuⅠto EuⅡ. The plot of the relative intensity of these two emission band as a function of Eu2+doping concentration is summarized in Fig.8(b). It can be obviously concluded that high Eu2+doping concentration greatly enhances the relative intensity of the band at 414 nm because more BaⅠsites have been occupied by Eu2+in the host material.

    Fig.8 (a) PL emission spectra of Ba10-x(PO4)4(SiO4)2∶xEu2+with different Eu2+doping concentration. (b) Curves of Eu2+doping concentration and relative intensity of Band Ⅰ/Band Ⅱ.

    4 Conclusion

    In summary, a series of Ba10-x(PO4)4(SiO4)2∶xEu2+phosphors with expected double emission peaks at 414 nm and 504 nm using a 350 nm excitation wavelength were prepared by a new two-step solid state reaction method. The luminescent properties of the phosphors are strongly dependent on the substitute sites of Eu2+in apatite crystal structure. It can be concluded from the PL emission spectra of the sample obtained after first step that Eu3+ions occupied two lattice sites of BaⅠ(C3point symmetry) and BaⅡ(Cspoint symmetry) in host material. The Eu3+ions are reduced during the second step process and the two-color emission can be finally obtained. PL spectra of Ba10-x(PO4)4(SiO4)2∶xEu2+(x=0.2-1.0) also reveal the dependence of the relative intensity of two emission peaks on Eu2+doping. The emission intensity of the band at 414 nm increases whenxis varied from 0.2 to 1.0, which can be attributed to the more substitution of BaⅠsite by Eu2+. The excitation spectra of Ba9.25(PO4)4(SiO4)2∶0.75Eu2+phosphor is located at a large range (250-420 nm) in UV region.

    Acknowledgements:We gratefully acknowledge the technical support of Prof. Chun-shan SHI from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.

    [1] H?PPE H A. Recent developments in the field of inorganic phosphors [J].Angew.Chem.Int.Ed., 2009, 48(20):3572-3582.

    [2] XIE R J, HIROSAKI N. Silicon-based oxynitride and nitride phosphors for white LEDs—a review [J].Sci.Technol.Adv.Mater., 2007, 8(7-8):588-600.

    [3] VANITHAKUMARI S C, NANDA K K. A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors [J].Adv.Mater., 2009, 21(35):3581-3584.

    [4] LIN C C, LIU R S. Advances in phosphors for light-emitting diodes [J].J.Phys.Chem.Lett., 2011, 2(11):1268-1277.

    [5] KIM J S, JEON P E, CHOI J C,etal.. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8∶Eu2+, Mn2+phosphor [J].Appl.Phys.Lett., 2004, 84(15):2931-2933.

    [6] DAICHO H, IWASAKI T, ENOMOTO K,etal.. A novel phosphor for glareless white light-emitting diodes [J].Nat.Commun., 2012, 3:1132.

    [7] WATANABE H, WADA H, SEKI K,etal.. Synthetic method and luminescence properties of SrxCa1-xAlSiN3∶Eu2+mixed nitride phosphors [J].J.Electrochem.Soc., 2008, 155(3):F31-F36.

    [8] NISHIDA T, BAN T, KOBAYASHI N. High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors [J].Appl.Phys.Lett., 2003, 82(22):3817-3819.

    [9] TAKAHASHI K, HIROSAKI N, XIE R J,etal.. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz)(z~1) oxynitride phosphors and their application in white light-emitting diode [J].Appl.Phys.Lett., 2007, 91(9):091923-1-3.

    [10] QIAN F J, FU R L, AGATHOPOULOS S,etal.. Synthesis and luminescence properties of a broad-band red phosphor Ca3Si2O7∶Eu2+for warm white light-emitting diodes [J].J.Lumin., 2012, 132(1):71-75.

    [11] LI K, GENG D L, SHANG M M,etal.. Color-tunable luminescence and energy transfer properties of Ca9Mg(PO4)6F2∶Eu2+, Mn2+phosphors for UV-LEDs [J].J.Phys.Chem. C, 2014, 118(20):11026-11034.

    [12] YU J J, GONG W T, ZHANG Y J,etal.. White-light-emitting diode using a single-phase full-color (Ba, Sr)10(PO4)4(SiO4)2∶Eu2+phosphor [J].J.Lumin., 2014, 147:250-252.

    [13] RAVINDRANADH K, BABU B, PUSHPA MANJARI V,etal.. Optical and structural properties of undoped and Mn2+doped Ca-Li hydroxyapatite nanopowders using mechanochemical synthesis [J].J.Lumin., 2015, 159:119-127.

    [14] CHEN X, DAI P P, ZHANG X T,etal.. A highly efficient white light (Sr3, Ca, Ba)(PO4)3Cl∶Eu2+, Tb3+, Mn2+phosphorviadual energy transfers for white light-emitting diodes [J].Inorg.Chem., 2014, 53(7):3441-3448.

    [15] JIAO M M, JIA Y C, Lü W,etal.. Structure and photoluminescence properties of novel Ca2NaSiO4F:Re(Re=Eu2+, Ce3+, Tb3+) phosphors with energy transfer for white emitting LEDs [J].J.Mater.Chem. C, 2014, 2(21):4304-4311.

    [16] HUANG C H, CHEN T M. A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4∶Ce3+, Mn2+, Tb3+phosphor for UV-light emitting diodes [J].J.Phys.Chem. C, 2011, 115(5):2349-2355.

    [17] GUO C, LUAN L, DING X,etal.. Luminescent properties of Sr5(PO4)3Cl∶Eu2+, Mn2+as a potential phosphor for UV-LED-based white LEDs [J].Appl.Phys. B, 2009, 95(4):779-785.

    [18] HAO Z D, ZHANG J H, ZHANG X,etal.. White light emitting diode by usingα-Ca2P2O7∶Eu2+, Mn2+phosphor [J].Appl.Phys.Lett., 2007, 90(26):261113-1-3.

    [19] YANG W J, CHEN T M. Ce3+/Eu2+codoped Ba2ZnS3: a blue radiation-converting phosphor for white light-emitting diodes [J].Appl.Phys.Lett., 2007, 90(17):171908-1-3.

    [20] K. N. SHINDE K N, DHOBLE S J, KUMAR A. Eu3+activatedM6AlP5O20(M=Sr/Ba/Mg) novel red phosphors [J].J.Lumin., 2011, 131(9):1939-1944.

    [21] HAN J Y, IM W B, KIM D,etal.. New full-color-emitting phosphor, Eu2+-doped Na2-xAl2-xSixO4(0≤x≤1), obtained using phase transitions for solid-state white lighting [J].J.Mater.Chem., 2012, 22(12):5374-5381.

    [22] WU C Q, ZHANG J C, FENG P F,etal.. Blue photoluminescence and long lasting phosphorescence properties of a novel chloride phosphate phosphor∶Sr5(PO4)3Cl∶Eu2+[J].J.Lumin., 2014, 147:229-234.

    [23] YU J J, GONG W T, XIAO Z G,etal.. Spectral structure of barium-phosphate-silicate phosphor Ba10(PO4)4(SiO4)2∶EuM+[J].J.Lumin., 2012, 132(11):2957-2960.

    [24] KOTTAISAMY M, JAGANNATHAN R, JEYAGOPAL P,etal.. Eu2+luminescence inM5(PO4)3Xapatites, whereMis Ca2+, Sr2+and Ba2+, andXis F-, Cl-, Br-and OH-[J].J.Phys. D:Appl.Phys., 1994, 27(10):2210-2215.

    [25] N?TZOLD D, WULFF H, HERZOG G. Structural and optical properties of the system (Ca, Sr, Eu)5(PO4)3Cl [J].Phys.Stat.Sol.(b), 1995, 191(1):21-30.

    [26] RAMESH R, JAGANNATHAN R. Optical properties of Ce3+in self-assembled strontium chloro(hydroxy)apatite nanocrystals [J].J.Phys.Chem. B, 2000, 104(35):8351-8360.

    [27] SONG Y H, YOU H P, YANG M,etal.. Facile synthesis and luminescence of Sr5(PO4)3Cl∶Eu2+nanorod bundlesviaa hydrothermal route [J].Inorg.Chem., 2010, 49(4):1674-1678.

    [28] AL-KATTAN A, DUFOUR P, DEXPERT-GHYS J,etal.. Preparation and physicochemical characteristics of luminescent apatite-based colloids [J].J.Phys.Chem. C, 2010, 114(7):2918-2924.

    [29] TAO Z X, HUANG Y L, SEO H J. Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4) [J].DaltonTrans., 2012, 42(6):2121-2129.

    [30] KIM D, PARK D, OH N,etal.. Luminescent properties of rare earth fully activated apatites, LiRE9(SiO4)6O2(RE=Ce, Eu, and Tb): site selective crystal field effect [J].Inorg.Chem., 2015, 54(4):1325-1336.

    [31] XIA Z G, MOLOKEEV M S, IM W B,etal.. Crystal structure and photoluminescence evolution of La5(Si2+xB1-x)(O13-xNx)∶Ce3+solid solution phosphors [J].J.Phys.Chem. C, 2015, 119(17):9488-9495.

    [32] BOYER L, PIRIOU B, CARPENA J,etal.. Study of sites occupation and chemical environment of Eu3+in phosphate-silicates oxyapatites by luminescence [J].J.AlloysCompd., 2000, 311(2):143-152.

    [33] BACHMANN V, RONDA C, OECKLER O,etal.. Color point tuning for (Sr, Ca, Ba)Si2O2N2∶Eu2+for white light LEDs [J].Chem.Mater., 2009, 21(2):316-325.

    [34] LU S Z, ZHANG J S. Study on UV excitation properties of Eu3+-doped rare-earth phosphates [J].J.Lumin., 2007, 122-123:500-502.

    [35] NAGPURE I M, PITALE S S, COETSEE E,etal.. Lattice site dependent cathodoluminescence behavior and surface chemical changes in a Sr5(PO4)3F host [J].Phys. B:Condens.Matter, 2012, 407(10):1505-1508.

    [36] BOUZIDI C, FERHI M, ELHOUICHET H,etal.. Spectroscopic properties of rare-earth (Eu3+, Sm3+) doped BaWO4powders [J].J.Lumin., 2015, 161:448-455.

    [37] MA P C, SONG Y H, SHENG Y,etal.. Single-component and white light-emitting phosphor BaAl2Si2O8∶Dy3+, Eu3+synthesis, luminescence, energy transfer, and tunable color [J].Opt.Mater., 2016, 60:196-203.

    [38] ZHANG Z W, LIU L, SONG S T,etal.. A novel red-emitting phosphor Ca9Bi(PO4)7∶Eu3+for near ultraviolet white light-emitting diodes [J].Curr.Appl.Phys., 2015, 15(3):248-252.

    程志遠(yuǎn)(1989-),男,山東聊城人,碩士研究生,2010年于山東大學(xué)獲得學(xué)士學(xué)位,主要從事白光LED熒光粉的研究。

    E-mail: 381136875@qq.com

    于晶杰(1974-),女,遼寧大連人,博士,教授級(jí)高級(jí)工程師,2013年于大連理工大學(xué)獲得博士學(xué)位,主要從事半導(dǎo)體照明發(fā)光材料以及光源器件的研究。

    E-mail: yujingjie@dlpu.edu.cn

    張彥杰(1981-),男,山西祁縣人,博士,副研究員,2008年于中國科學(xué)院蘭州化學(xué)物理研究所獲得博士學(xué)位,主要從事白光LED用新型高效發(fā)光材料的研究。

    E-mail: zhang_yj@dlpu.edu.cn

    2016-12-07;

    2017-01-21

    遼寧省自然科學(xué)基金(20170540074); 大連工業(yè)大學(xué)博士啟動(dòng)基金 (61020726)資助項(xiàng)目 Supported by Natural Science Foundation of Liaoning Province (20170540074); Start-up Funding for Doctoral Researchers of Dalian Polytechnic University (61020726)

    單一基質(zhì)雙光色Ba10-x(PO4)4(SiO4)2∶xEu2+熒光粉的兩步法制備與光譜調(diào)控

    程志遠(yuǎn), 張彥杰*, 于晶杰*, 李德勝, 曹冠英, 趙作人

    (大連工業(yè)大學(xué) 光子學(xué)研究所, 遼寧 大連 116034)

    采用兩步法成功合成了單一基質(zhì)雙光色Ba10-x(PO4)4(SiO4)2∶xEu2+熒光粉,研究了稀土離子占據(jù)不同的晶格格位對(duì)熒光粉光譜特性的影響。結(jié)果表明:兩步法合成的熒光粉發(fā)射光譜由414 nm的藍(lán)光波帶和504 nm綠光波帶兩種光色組成,而傳統(tǒng)的高溫固相法制備的熒光粉只有504 nm處的綠光發(fā)射。熒光粉發(fā)光性能與Eu2+離子在磷灰石晶體結(jié)構(gòu)中占據(jù)的晶格位置關(guān)系十分密切。兩步法熒光粉雙光色的形成主要是由于在第一步氧化氣氛合成過程中Eu3+離子取代了基質(zhì)結(jié)構(gòu)中的BaⅠ和BaⅡ兩個(gè)格位的Ba2+離子;在第二步還原過程結(jié)束后,Eu2+離子仍然占據(jù)著兩種格位,從而形成了兩種具有不同配位環(huán)境的發(fā)光中心。此外,雙發(fā)射峰的相對(duì)強(qiáng)度能夠通過Eu2+離子對(duì)BaⅠ格位的取代率而調(diào)節(jié),進(jìn)而實(shí)現(xiàn)光譜的調(diào)變。

    熒光粉; 單基質(zhì); 光致發(fā)光; Ba10(PO4)4(SiO4)2

    1000-7032(2017)07-0874-08

    O611.65 Document code: A

    10.3788/fgxb20173807.0874

    *Corresponding Authors, E-mail: yujingjie@dlpu.edu.cn; zhang_yj@dlpu.edu.cn

    猜你喜歡
    博士
    法博士之看牙
    制冷博士來幫忙
    神奇博士感冒了
    冒牌博士
    自作聰明的博士蚊
    快樂語文(2016年15期)2016-11-07 09:46:39
    讀博士的路雖苦,我卻樂此不疲
    博士蚊
    博士愛瘦羊
    勿拿“遣返博士”說事
    潤博士問答
    亚洲av中文av极速乱| 在线观看人妻少妇| 97超视频在线观看视频| 2022亚洲国产成人精品| 日韩欧美精品v在线| 国产乱人视频| 我的老师免费观看完整版| 免费大片黄手机在线观看| 免费观看精品视频网站| 80岁老熟妇乱子伦牲交| 十八禁国产超污无遮挡网站| 欧美成人午夜免费资源| 国产亚洲一区二区精品| 美女高潮的动态| 婷婷色av中文字幕| 国产乱来视频区| 国产老妇伦熟女老妇高清| 久久久色成人| 最后的刺客免费高清国语| av在线天堂中文字幕| 免费电影在线观看免费观看| 免费观看在线日韩| 一个人看视频在线观看www免费| 日韩成人伦理影院| 欧美不卡视频在线免费观看| 国产黄频视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 又大又黄又爽视频免费| 最近最新中文字幕免费大全7| 激情 狠狠 欧美| 最后的刺客免费高清国语| 欧美3d第一页| 成年女人在线观看亚洲视频 | 99久久精品国产国产毛片| 免费看av在线观看网站| 午夜精品一区二区三区免费看| 人人妻人人看人人澡| 最近中文字幕2019免费版| 婷婷色麻豆天堂久久| 色综合亚洲欧美另类图片| 成人特级av手机在线观看| 成人无遮挡网站| 日本黄色片子视频| 伊人久久国产一区二区| 高清视频免费观看一区二区 | 午夜福利在线观看免费完整高清在| 2021天堂中文幕一二区在线观| 美女黄网站色视频| 日本爱情动作片www.在线观看| 亚洲四区av| 女人被狂操c到高潮| 狠狠精品人妻久久久久久综合| 精品一区二区三卡| 日韩,欧美,国产一区二区三区| 国产女主播在线喷水免费视频网站 | 日本wwww免费看| 综合色av麻豆| 国产亚洲精品久久久com| 国产精品一二三区在线看| 午夜福利成人在线免费观看| 国产亚洲精品av在线| 日本黄大片高清| 美女大奶头视频| 97在线视频观看| 午夜福利在线观看吧| 日韩 亚洲 欧美在线| 尤物成人国产欧美一区二区三区| 久久久久国产网址| 91久久精品电影网| 久久这里只有精品中国| 亚洲av中文av极速乱| 国产精品人妻久久久影院| 免费观看性生交大片5| 国产淫片久久久久久久久| 亚洲久久久久久中文字幕| 美女被艹到高潮喷水动态| 国产黄片美女视频| 国产三级在线视频| 精品久久久久久久久av| 亚洲欧美清纯卡通| 女的被弄到高潮叫床怎么办| 欧美激情国产日韩精品一区| 中文欧美无线码| 日日撸夜夜添| 亚洲高清免费不卡视频| 啦啦啦啦在线视频资源| 内地一区二区视频在线| 国产一区二区三区综合在线观看 | 国产免费视频播放在线视频 | 国产亚洲91精品色在线| 久久国内精品自在自线图片| 精品久久久久久久人妻蜜臀av| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 99热6这里只有精品| 欧美高清成人免费视频www| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 嘟嘟电影网在线观看| 九草在线视频观看| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 国产探花在线观看一区二区| 精品人妻视频免费看| 日日干狠狠操夜夜爽| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲5aaaaa淫片| 国产综合精华液| 女的被弄到高潮叫床怎么办| 寂寞人妻少妇视频99o| 有码 亚洲区| 免费黄色在线免费观看| 国产成人一区二区在线| eeuss影院久久| 男女视频在线观看网站免费| 免费观看精品视频网站| 亚洲精品日韩在线中文字幕| 国产综合精华液| 亚洲av电影不卡..在线观看| 麻豆久久精品国产亚洲av| 一级毛片电影观看| 一级av片app| 一个人看的www免费观看视频| 美女黄网站色视频| 亚洲成人久久爱视频| 中文资源天堂在线| 精华霜和精华液先用哪个| 欧美日韩国产mv在线观看视频 | 精品亚洲乱码少妇综合久久| 91午夜精品亚洲一区二区三区| 中国国产av一级| 蜜桃亚洲精品一区二区三区| 最近中文字幕2019免费版| 天堂√8在线中文| 亚洲精品第二区| 国产成人一区二区在线| 热99在线观看视频| 亚洲四区av| 18+在线观看网站| 日本午夜av视频| 亚洲高清免费不卡视频| 成人综合一区亚洲| 久久久午夜欧美精品| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av天美| 国内精品美女久久久久久| 舔av片在线| 成人亚洲精品av一区二区| 国产av码专区亚洲av| 一边亲一边摸免费视频| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 国产精品国产三级国产av玫瑰| 熟女人妻精品中文字幕| 国产伦一二天堂av在线观看| 在线免费观看的www视频| 国产精品一区www在线观看| 91狼人影院| 欧美bdsm另类| 校园人妻丝袜中文字幕| 亚洲精品一区蜜桃| 国内少妇人妻偷人精品xxx网站| 欧美一区二区亚洲| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 男女边吃奶边做爰视频| 如何舔出高潮| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| 乱码一卡2卡4卡精品| 22中文网久久字幕| 日本av手机在线免费观看| 国产一级毛片在线| 在线天堂最新版资源| 久久久精品94久久精品| 国产精品蜜桃在线观看| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| 直男gayav资源| 永久免费av网站大全| 亚洲av一区综合| 精品99又大又爽又粗少妇毛片| 天堂中文最新版在线下载 | 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 99热这里只有是精品50| 国产黄频视频在线观看| 能在线免费看毛片的网站| 久久久欧美国产精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产色片| 国产高清不卡午夜福利| 激情五月婷婷亚洲| 高清毛片免费看| ponron亚洲| 69av精品久久久久久| 成人综合一区亚洲| 3wmmmm亚洲av在线观看| 日韩亚洲欧美综合| 99re6热这里在线精品视频| 我的女老师完整版在线观看| 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 免费观看性生交大片5| 免费少妇av软件| 亚洲真实伦在线观看| av国产久精品久网站免费入址| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 成人二区视频| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频 | 夜夜看夜夜爽夜夜摸| 亚洲av电影在线观看一区二区三区 | 尤物成人国产欧美一区二区三区| 国产黄频视频在线观看| 国产亚洲av嫩草精品影院| 久久亚洲国产成人精品v| 美女大奶头视频| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 日日撸夜夜添| 午夜精品国产一区二区电影 | 久久久久精品久久久久真实原创| 成年免费大片在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲精品中文字幕在线视频 | 最后的刺客免费高清国语| 亚洲国产日韩欧美精品在线观看| 九色成人免费人妻av| 欧美高清性xxxxhd video| 久久久久久九九精品二区国产| 一个人观看的视频www高清免费观看| 国产欧美日韩精品一区二区| 国产精品国产三级专区第一集| 狂野欧美激情性xxxx在线观看| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 亚洲精品久久午夜乱码| 熟妇人妻不卡中文字幕| 日韩av在线免费看完整版不卡| 欧美激情在线99| 天堂av国产一区二区熟女人妻| 精品久久久久久电影网| 色视频www国产| 寂寞人妻少妇视频99o| 色播亚洲综合网| 最近最新中文字幕大全电影3| 免费观看a级毛片全部| 中文乱码字字幕精品一区二区三区 | 2018国产大陆天天弄谢| 中文字幕免费在线视频6| 久久热精品热| 亚洲国产色片| 亚洲欧美一区二区三区黑人 | 伊人久久精品亚洲午夜| 精品久久国产蜜桃| 天堂影院成人在线观看| 精品人妻视频免费看| 人妻少妇偷人精品九色| 国产av码专区亚洲av| 最近中文字幕高清免费大全6| av专区在线播放| 国产精品一及| 国产单亲对白刺激| 日韩av不卡免费在线播放| 亚洲综合精品二区| 日本熟妇午夜| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 国产高清三级在线| 欧美bdsm另类| 欧美 日韩 精品 国产| 男人舔奶头视频| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看| 欧美日韩视频高清一区二区三区二| 精品久久久噜噜| 少妇被粗大猛烈的视频| 成人性生交大片免费视频hd| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 熟妇人妻久久中文字幕3abv| 国产精品女同一区二区软件| 免费看不卡的av| 亚洲国产欧美在线一区| 亚洲天堂国产精品一区在线| 精品久久久久久电影网| 中文字幕制服av| 久久99蜜桃精品久久| 狂野欧美白嫩少妇大欣赏| 肉色欧美久久久久久久蜜桃 | 在线免费十八禁| 特级一级黄色大片| 久久人人爽人人爽人人片va| 青春草国产在线视频| 1000部很黄的大片| 亚洲欧美清纯卡通| 黄色日韩在线| 性插视频无遮挡在线免费观看| 内射极品少妇av片p| 久久久国产一区二区| 免费黄频网站在线观看国产| 高清日韩中文字幕在线| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看| 亚洲成人久久爱视频| 国产成人精品久久久久久| av国产久精品久网站免费入址| 大香蕉久久网| 一个人观看的视频www高清免费观看| 99re6热这里在线精品视频| 搡老乐熟女国产| 久久这里有精品视频免费| 精品午夜福利在线看| 精品久久久久久久久久久久久| freevideosex欧美| 51国产日韩欧美| 1000部很黄的大片| 一夜夜www| 亚洲精品一二三| 高清日韩中文字幕在线| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| 国产成人精品福利久久| 两个人视频免费观看高清| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 黄色欧美视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人伦理影院| 亚洲最大成人av| 天堂av国产一区二区熟女人妻| 亚洲av成人av| 精品一区二区三卡| 国产男人的电影天堂91| 国产色婷婷99| 亚洲国产欧美人成| 日韩一区二区视频免费看| 国产男人的电影天堂91| 国产亚洲av片在线观看秒播厂 | 麻豆乱淫一区二区| 午夜福利在线在线| 99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 国产淫片久久久久久久久| 国内精品美女久久久久久| 国内精品宾馆在线| 亚洲第一区二区三区不卡| 高清欧美精品videossex| 高清午夜精品一区二区三区| 国内精品宾馆在线| 寂寞人妻少妇视频99o| 国产亚洲精品久久久com| 肉色欧美久久久久久久蜜桃 | 亚洲av成人精品一区久久| 国产成人免费观看mmmm| 国产乱人偷精品视频| 草草在线视频免费看| 午夜精品国产一区二区电影 | 国产成人精品婷婷| 国产探花在线观看一区二区| 久久久精品94久久精品| 免费看不卡的av| 激情 狠狠 欧美| 久久亚洲国产成人精品v| 欧美性猛交╳xxx乱大交人| 尾随美女入室| 久久97久久精品| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 99久久九九国产精品国产免费| 一二三四中文在线观看免费高清| 成人亚洲精品一区在线观看 | 丰满人妻一区二区三区视频av| 国产综合懂色| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 高清av免费在线| 成人综合一区亚洲| 亚洲国产欧美人成| 亚洲精品一二三| 一级毛片久久久久久久久女| 国产毛片a区久久久久| 久久97久久精品| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| av天堂中文字幕网| 插阴视频在线观看视频| 大话2 男鬼变身卡| 国产美女午夜福利| 国产极品天堂在线| 成人二区视频| 久久99热这里只有精品18| 国产乱人偷精品视频| 丰满人妻一区二区三区视频av| 国产一区有黄有色的免费视频 | 中文字幕人妻熟人妻熟丝袜美| 国产精品一及| 美女被艹到高潮喷水动态| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 观看美女的网站| 岛国毛片在线播放| 天天躁日日操中文字幕| 国产老妇女一区| 99久久精品国产国产毛片| 国产女主播在线喷水免费视频网站 | 人人妻人人澡人人爽人人夜夜 | 成年版毛片免费区| av国产久精品久网站免费入址| 日本免费在线观看一区| 国产人妻一区二区三区在| 国产永久视频网站| 久久99热6这里只有精品| 日本午夜av视频| 日本三级黄在线观看| 我的女老师完整版在线观看| 美女被艹到高潮喷水动态| or卡值多少钱| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 免费观看在线日韩| 97精品久久久久久久久久精品| 免费看a级黄色片| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 日韩电影二区| 99九九线精品视频在线观看视频| 三级经典国产精品| 亚洲四区av| 亚洲激情五月婷婷啪啪| 亚洲一区高清亚洲精品| 久久精品国产自在天天线| 又爽又黄a免费视频| 亚洲熟妇中文字幕五十中出| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 国产av码专区亚洲av| 男人爽女人下面视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品456在线播放app| 国产伦精品一区二区三区视频9| 乱码一卡2卡4卡精品| 国产成人福利小说| 久久久久久久久久成人| 中文资源天堂在线| 久久97久久精品| 美女脱内裤让男人舔精品视频| 在线 av 中文字幕| 国产精品无大码| 熟妇人妻不卡中文字幕| 亚洲熟妇中文字幕五十中出| 人妻一区二区av| 91久久精品国产一区二区成人| 欧美区成人在线视频| av女优亚洲男人天堂| 日本与韩国留学比较| 熟妇人妻不卡中文字幕| 久久人人爽人人爽人人片va| 久久久久久久久久成人| 国语对白做爰xxxⅹ性视频网站| 男的添女的下面高潮视频| 日本黄色片子视频| 国国产精品蜜臀av免费| 黄色配什么色好看| 大香蕉97超碰在线| 国产三级在线视频| 天堂影院成人在线观看| av一本久久久久| 国产毛片a区久久久久| 免费观看的影片在线观看| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 黑人高潮一二区| 免费看不卡的av| 色播亚洲综合网| av在线蜜桃| 成人鲁丝片一二三区免费| 亚洲国产精品专区欧美| 可以在线观看毛片的网站| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| 男人舔女人下体高潮全视频| 精品久久久噜噜| 免费大片18禁| 你懂的网址亚洲精品在线观看| 非洲黑人性xxxx精品又粗又长| 久久精品久久久久久噜噜老黄| 国产精品麻豆人妻色哟哟久久 | 亚洲色图av天堂| 成年人午夜在线观看视频 | 亚洲精品第二区| 日韩伦理黄色片| 免费少妇av软件| 亚洲av一区综合| 夜夜看夜夜爽夜夜摸| 三级国产精品片| www.色视频.com| 少妇的逼水好多| 免费观看无遮挡的男女| 1000部很黄的大片| 女的被弄到高潮叫床怎么办| 一级片'在线观看视频| 不卡视频在线观看欧美| 精品欧美国产一区二区三| 国产三级在线视频| 男女那种视频在线观看| 青春草亚洲视频在线观看| 99re6热这里在线精品视频| 午夜老司机福利剧场| 久久久午夜欧美精品| 直男gayav资源| 丰满乱子伦码专区| 老司机影院毛片| 一级黄片播放器| 亚洲国产av新网站| 国产午夜精品一二区理论片| 欧美xxxx黑人xx丫x性爽| 亚洲av中文av极速乱| 直男gayav资源| 综合色av麻豆| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲网站| 亚洲国产精品专区欧美| 在线播放无遮挡| 国语对白做爰xxxⅹ性视频网站| 国产av在哪里看| 乱码一卡2卡4卡精品| 欧美性感艳星| 亚洲国产高清在线一区二区三| 欧美丝袜亚洲另类| 热99在线观看视频| 人人妻人人看人人澡| 欧美日韩国产mv在线观看视频 | 日韩欧美 国产精品| 国产v大片淫在线免费观看| 亚洲18禁久久av| 一个人看视频在线观看www免费| 在现免费观看毛片| 国产一区二区在线观看日韩| 国产激情偷乱视频一区二区| 少妇猛男粗大的猛烈进出视频 | 最近视频中文字幕2019在线8| 九九在线视频观看精品| 建设人人有责人人尽责人人享有的 | 成人午夜精彩视频在线观看| 18禁在线无遮挡免费观看视频| 91午夜精品亚洲一区二区三区| 国产乱人偷精品视频| av在线天堂中文字幕| 天堂中文最新版在线下载 | 久久久a久久爽久久v久久| 超碰av人人做人人爽久久| 欧美三级亚洲精品| 欧美 日韩 精品 国产| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 午夜激情福利司机影院| 亚洲伊人久久精品综合| 国产伦在线观看视频一区| 亚洲四区av| 国产不卡一卡二| 小蜜桃在线观看免费完整版高清| 最后的刺客免费高清国语| 国产一区二区三区av在线| 国产色婷婷99| 性插视频无遮挡在线免费观看| 婷婷色麻豆天堂久久| 真实男女啪啪啪动态图| av在线播放精品| 日韩av不卡免费在线播放| 天堂影院成人在线观看| 校园人妻丝袜中文字幕| 久久久久久九九精品二区国产| 久久精品国产鲁丝片午夜精品| 深爱激情五月婷婷| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 亚洲av电影在线观看一区二区三区 | 2022亚洲国产成人精品| 国产一区有黄有色的免费视频 | 国产大屁股一区二区在线视频| 国产亚洲91精品色在线| 网址你懂的国产日韩在线| 99热这里只有是精品在线观看| 精品午夜福利在线看| 看十八女毛片水多多多| 久久99热6这里只有精品| 久久人人爽人人爽人人片va| 国产精品1区2区在线观看.| 99热这里只有是精品在线观看| 久久久久久久久大av| 国产成人freesex在线| 国产美女午夜福利| 国产精品国产三级国产av玫瑰| 欧美激情久久久久久爽电影| 亚洲欧美一区二区三区国产| 99久久中文字幕三级久久日本| 天天一区二区日本电影三级| 97精品久久久久久久久久精品| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久久久av| 最近中文字幕2019免费版| 晚上一个人看的免费电影| 成人特级av手机在线观看|