• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雙Salamo型四肟配體構(gòu)筑的鋅配合物:合成,晶體結(jié)構(gòu)和熒光性質(zhì)

    2017-07-05 13:56:20楊玉華郝靜董銀娟王剛董文魁

    楊玉華 郝靜 董銀娟 王剛 董文魁

    (蘭州交通大學(xué)化學(xué)與生物工程學(xué)院,蘭州730070)

    楊玉華 郝靜 董銀娟 王剛 董文魁*

    (蘭州交通大學(xué)化學(xué)與生物工程學(xué)院,蘭州730070)

    通過(guò)二水乙酸鋅和雙Salamo型四肟配體6,6′-二乙氧基-雙(2,2′-(乙二氧雙(氮次甲基)))四酚(H4L)的配位反應(yīng),合成了2種鋅配合物即:[Zn3(L)(OAc)2(H2O)](1)和[Zn3(L)(OAc)2(H2O)]·[Zn3(L)(OAc)2(CH3OH)(H2O)]·3CH3OH·H2O(2)。該類配合物含有2個(gè)Salamo型L4-配體和3個(gè)鋅離子,其中2個(gè)鋅原子位于Salamo型螯合單元的N2O2空腔內(nèi)。[Zn(L)]螯合物中橋聯(lián)的酚氧原子進(jìn)一步和中心的鋅原子配位。這類結(jié)構(gòu)能通過(guò)2個(gè)橋聯(lián)的乙酸根配體穩(wěn)定,從而使配合物1和2達(dá)到電荷平衡。配合物有2種不同的幾何構(gòu)型即扭曲的三角雙錐和四方錐(配合物1)或三角雙錐和八面體(配合物2)。另外,配合物1和2在激發(fā)波長(zhǎng)為340和337 nm時(shí)能發(fā)出強(qiáng)的綠光,其最大發(fā)射波長(zhǎng)分別為531和536 nm。

    雙Salamo型四肟配體;鋅配合物;合成;晶體結(jié)構(gòu);熒光性質(zhì)

    0 Introduction

    The salen-type ligand and its metal complexes were discovered since the 19th century,the synthesis of the salen-type complexes have been extensively investigated for the past several decades[1],At present, some significant applications in the research of the transitionmetal complexeswith salen-type ligands has been observed,and these complexes have been widely used in many areas,such as asymmetric catalysis[2], dioxygen carriers[3],Luminescent and magnetic properties[4-11]and biological activities,for instance,sterilization,anti-virusand anticancerand soon[12-20].Although the studies of salen-[21-25]or salamo-type[26-37]ligands and their complexes have made great progress,but it is very rarely that the study on bis(salen)-type ligands and theirmetal complexes[38-39].These bis(salen)-type ligands containing two salen-type moieties are also fascinating because some novel functions originating from the cooperation of several metal centers are expected.And these bis(salen)-type ligands play an important role in the selective strong binding with metal(ⅡorⅢ)atoms in coordination chemistry.These metal complexes also have some important practical values[40-41].

    In order to further investigate syntheses,crystal structures and properties ofmetal complexes with bis (salen)-type ligands,herein,we report syntheses, structural characterizations and fluorescent properties of two new bis(salamo)-type Zncomplexes,[Zn3(L) (OAc)2(H2O)](1)and[Zn3(L)(OAc)2(H2O)]·[Zn3(L)(OAc)2(CH3OH)(H2O)]·3CH3OH·H2O(2)via the complexation of zincacetate dihydrate with a bis(salamo)-type tetraoxime ligand H4L.Furthermore,the fluorescence behavior of complexes 1 and 2 in DMF are discussed.

    1 Experimental

    1.1 M aterials and physicalmeasurements

    3-Ethoxy-2-hydroxybenzaldehyde was purchased from Aldrich and used without further purification. Other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory.C,H and N analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer. Elemental analysis for Zn was detected by an IRIS ER/S·WP-1 ICP atomic emission spectrometer.1H NMR spectra were recorded on a Mercury-400BB spectrometer.UV-Vis absorption and fluorescence spectrawere recorded on a Shimadzu UV-2550 spectrometer and Perkin-Elmer LS-55 spectrometer,respectively.X-ray single crystal structures were determined on a Bruker Smart APEX CCD area detector.Electrolytic conductance measurements were made with a DDS-11D type conductivity bridge using a 1mmol·L-1solution in DMF at room temperature.Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company,and the thermometer was uncorrected.

    1.2 Syntheses of H4L and its Zncomplexes 1 and 2

    Scheme 1 Synthetic route to H4L

    Synthetic route to H4Lis shown in Scheme 1.H4Lwas synthesized according to an analogous method reported earlier[39,42-45].m.p.401~402 K.1H NMR(400 MHz,CDCl3):δ=3.93(s,6H,-CH3),4.46~4.53(m,8H, -OCH2CH2O-),4.63(dt,J=5.4,1.5Hz,4H,-OCH2-),6.77 (s,2H,Ph-H),6.78~6.86(m,4H,Ph-H),6.93(dd,J= 7.2,2.2 Hz,2H,Ph-H),8.25(s,2H,N=CH),8.28(s, 2H,N=CH),9.60(s,2H,-OH),9.69(s,2H,-OH).Anal. Calcd.for C30H34N4O10(%):C,59.01;H,5.61;N,9.18. Found(%):C,59.15;H,5.57;N,8.96.

    The single crystals of 2 were grown up by a similar procedure aforementioned taking Zn(OAc)2· H2O(3.26mg,0.015mmol)inmethanol(3mL)and H4L (3.03 mg,0.005 mmol)in 1.0 mL THF solution.The obtained bright yellow mixture was filtered and the filtrate was allowed to stand was stand at room temperature for three weeks.The solventwas partially evaporated and obtained yellow block-like single crystals suitable for X-ray crystallographic analysis. Yield:57.7%(3.4 mg).Anal.Calcd.for[Zn3(L)(OAc)2(H2O)]·[Zn3(L)(OAc)2(CH3OH)(H2O)]·3CH3OH·H2O (C72H93N8O35Zn6)(%):C,42.75;H,4.63;N,5.54;Zn, 19.40.Found(%):C,42.39;H,4.56;N,5.61;Zn,18.97. 1.3 Crystal structure determ ination

    X-ray diffraction data were collected on a Bruker Smart Apex CCD diffractometer at 298(2)K. Using graphitemonochromatized Mo Kαradiation(λ= 0.071 073 nm).The structures were solved using the directmethod and refined by full-matrix least-squares on F2using the SHELXL-97 program package[46].All non-hydrogen atoms were refined anistropically and hydrogens were added in calculated positions and refined usinga ridingmodel.The X-ray crystallographic data collection,solution and refinement parameters for the Zncomplexes are summarized in Table 1.

    CCDC:864890,1;1470489,2.

    Table 1 X-ray crystallographic data and refinement parameters for comp lexes 1 and 2

    Continued Table 1

    2 Results and discussion

    2.1 M olar conductance

    Complexes 1 and 2 are soluble in DMF and DMSO,CHCl3,butnotsoluble in EtOH,MeOH,MeCN, THF,acetone and ethyl acetate.Complexes 1 and 2 display good stability in air at room temperature. Meanwhile,H4L is soluble in aforementioned solvents. Molar conductance values of complexes 1 and 2(1 mmol·L-1in DMF)at 298 K are 3.4 and 5.7 S·m2· mol-1,respectively,indicating complexes 1 and 2 are non-electrolyte.

    2.2 FT-IR spectra

    The IR spectra of H4L and its complexes 1 and 2 show a characteristic C=N stretching band.For the free ligand H4L this band appears at 1 608 cm-1, while the C=N bandsof complexes1 and 2 are observed at 1 616 and 1 612 cm-1,respectively.These shifts toward higher wavenumbers of the C=N absorption of about 8~6 cm-1on going from H4L to complexes 1 and 2 suggest a weak p-accepting ability of the coordinated ligand[47].

    The Ar-O stretching frequencies appear as a strong band within the 1 265~1 213 cm-1range,as reported for similar salen-type ligands.These bands occur at 1 265 cm-1for H4L,1 260 cm-1for complex 1 and 1 263 cm-1for complex 2.The Ar-O stretching frequency is shifted to a lower value,indicating that the Zn-O bond was formed between the Znatoms and oxygen atoms of the phenolic groups[27-31,45].

    The O-H stretching frequency of H4L appears at 3 410 cm-1.In addition,the broad absorption centered on 3 384,3 420 and 3 419 cm-1in complexes 1 and 2,respectively,which may be assigned to the O-H stretching vibration ofwater ormethanolmolecules.

    2.3 UV-Vis absorption spectra

    The absorption spectra of H4L and its complexes 1 and 2 in diluted DMF solution are shown in Fig.1. It can be seen that the absorption peaks of complexes 1 and 2 are obviously different from H4L upon complexation,and the spectral shapes of complexes 1 and 2 are similar to each other.An important feature of the absorption spectrum of H4L is shown that two absorption peaks are observed at 273 and 310 nm,respectively.The former absorption peak at 273 nm can be assigned to theπ-π*transition of the benzene rings and the latter one at 310 nm can be attributed to the intra-ligandπ-π*transition of the C=N bonds[28-29].

    Fig.1 UV-Vis absorption spectra of H4L and its complexes 1 and 2 in DMF(50μmol·L-1)

    Compared with the absorption peak of H4L,there are three absorption peaks in complexes 1 and 2.The former absorption peak at 273 nm in H4L was shifted to 285 and 287 nm in complexes 1 and 2,respectively. Meanwhile,the other absorption peak at 310 nm in H4L was shifted to 328 and 331 nm in complexes 1 and 2,which was shifted by ca.18 and 21 nm, respectively.The absorption peaks of 273 and 310 nm were red-shifted upon coordination to the Zn(II)atoms in complexes 1 and 2,which can be assigned to the π-π*transitions of the salamo-type ligand.In addition,a new absorption peak at 439 and 442 nmwas observed in complexes 1 and 2,respectively.

    2.4 Description of the crystal structures

    2.4.1 Crystal structure of complex 1

    Selected bond lengths and angles for complex 1 are presented in Table 2.Complex 1 crystallizes in themonoclinic system,spacegroup P21/c.Theassembly of three Znatoms,one L4-ligand units,two acetate ions and one coordinated H2O molecule results in atrinuclear Zncomplex(Fig.2).In molecule unit of complex 1,three Znatoms are all pentacoordinated.Firstly,the terminal Znatom(Zn2)is penta-coordinated by two oxime nitrogen(N1 and N2) and phenolic oxygen(O1 and O5)atoms of the bis (salamo)-type L4-unit and one oxygen(O12)atom of one chelating acetate ion.Secondly,the centre Znatom(Zn1)is penta-coordinated by two bridging phenolic oxygen(O1 and O2)atoms of the bis(salamo) -type L4-unit,two oxygen(O11 and O13)atoms of the chelating acetate ions and one oxygen(O15)atom from one coordinated water molecule in the apical position.At last,The terminal Znatom(Zn3)is penta-coordinated by two oxime nitrogen(N3 and N4) and phenolic oxygen(O2 and O9)atoms of the bis (salamo)-type L4-unit and one oxygen(O14)atom ofthe chelating acetate ion.The two chelating acetate ions coordinate to the three Znatoms via a familiar Zn1-O-C-O-Zn2 and Zn1-O-C-O-Zn3 coordinatedmodes.

    Table 2 Selected bond lengths(nm)and angles(°)for complexes 1 and 2

    Continued Table 2

    Fig.2 (a)Molecule structure and atom numberings of complex 1 with 30%probability displacementellipsoids; (b)Coordination polyhedra for Znatoms of complex 1

    The Zn1 atom adopts a slightly distorted square pyramidal geometry(τ=0.470)[18],which deviate from themean plane(O1-O2-O11-O13)by 0.029 5(3)nm. The distance of Zn1 atom to the five donor atoms are all different(0.198 8(5)~0.206 1(5)nm).The distances from the four atoms to the mean plane are not equal (0.030 0~0.034 2 nm),and the distances from phenolic oxygen atom(O2)of the bis(salamo)-type L4-unit to themean plane is 0.221 8(4)nm.The Zn2 atom also adopts a slightly distorted square pyramidal geometry (τ=0.373),Four coordination atoms(O1,O5,N1 and N2)give a mean plane,and the Zn2 atom deviate from themean plane by 0.037 4(4)nm.The distances from the five coordination atoms to the mean plane are not equal:O1 and N2 above average by 0.021 3(3) and 0.019 1(3)nm,O5 and N1 below average by 0.020 8(4)and 0.019 6(3)nm,respectively.In addition, one oxygen atom(O6)of the acetate ion deviates from themean plane by 0.236 7(3)nm.The dihedral angle of O1-Zn2-N1 and O5-Zn2-N2 is 32.97(3)°.Interestingly,the geometry of the Zn3 atom is different from the Zn1 and Zn2 atoms.The value ofτ=0.671 clearly indicates that the environment of the Zn3 atom is a trigonal bipyramidal geometry in which the axial positions are occupied by O2 and N4 atoms.Which deviate from themean plane(O9-N3-O14)by 0.007 4(3) nm.The distance of the Zn3 atom to the five donor atomsarealldifferent(0.1976(5),0.1992(5),0.2015(4), 0.213 4(5)and 0.214 4(5)nm,respectively).The dihedral angle between the plane of N3-Zn1-O2 and thatof N4-Zn1-O9 is 53.10(3)°,which indicates the L4-unit has serious distortion.Thus,two kinds of type coordination geometries(trigonal bipyramidal and square pyramidal)are showed in complex 1.

    2.4.2 Crystal structure of complex 2

    Selected bond lengths and angles for complex 2 are presented in(Table 2).Complex 2 crystallizes in themonoclinic system,space group P21/c,Complex 2 consistsofsix Znatoms,two completely deprotonated L4-ligand units,four acetate ions,three coordinated watermolecules,three crystallizing methanol and one crystallizing water molecules.A perspective view of which is shown in Fig.3 together with the atomic labeling of the coordinated polyhedra.

    As shown in Fig.3,the crystal structure of complex 2 consists of two independent molecules A and B,and the two molecules are all trinuclear structures.In molecule A,three Znatoms are all penta-coordinated.The Znatom(Zn1)is pentacoordinated by three phenolic oxygen(O1,O2 and O5) atomsof thebis(salamo)-type L4-unit,oneoxygen(O11) atom of the chelating acetate ion and one oxygen atom (O15)from one coordinated watermolecule.The Znatom(Zn2)is penta-coordinated by two oxime nitrogen (N1 and N2)and phenolic oxygen(O1 and O5)atoms of the bis(salamo)-type L4-unit and one oxygen(O13) atom of onemonochelate acetate ion.In addition,the Znatom(Zn3)is penta-coordinated by two oxime nitrogen(N3 and N4)and phenolic oxygen(O2 and O9)atoms of the bis(salamo)-type L4-unit and one oxygen(O12)atom of the chelating acetate ion.Itwill be seen from the discussion mentioned above that the coordination environments of the three Znatoms in themolecular A is very similar.

    The coordination geometries of the Znatoms (Zn2 and Zn3)are best described as distorted trigonal bipyramidalgeometries(Zn2,τ=0.568;Zn3,τ=0.722)[18]in which the axial positions are occupied by O5,N1 and O2,N4 atoms,respectively,and the Zn2 and Zn3 atoms deviate from themean plane(O13-N2-O1)and (O12-N3-O9)by 0.006 0(3)and 0.001 2(3)nm,respectively.The distance of the Zn3 and Zn2 atoms to the five donoratomsarealldifferent(Zn2:0.196 8~0.219 4 nm;Zn3:0.196 4~0.212 4 nm).The dihedral angle between the plane of N2-Zn2-O5 and that of N1-Zn2-O1 is 58.74(3)°,and the dihedral angle between the plane of N3-Zn3-O2 and that of N4-Zn3-O9 is 58.44(3)°,which indicates the structureof the trinuclear core distorts from the ideal symmetry.Interestingly, the geometry of the centre Zn1 atom is different from the other two terminal Znatoms(Zn2 and Zn3). The Zn1 atom have a square pyramidal structure in which the axial sites are occupied by the O1 atom(τ=0.453),and which deviate from the mean plane(O1-O2-O11-O5)by 0.057 5(3)nm.The distance of the Zn1 atom to the four atoms from the mean plane are all different(0.196 1~0.214 8 nm).The distances from the four atoms to themean plane are not equal(0.026 1~0.041 4 nm),the dihedral angle between the plane of O1-Zn1-O5 and that of O2-Zn1-O11 is 53.83(3)°.In addition,there exists a four-membered ring(Zn1-O1-Zn2-O5)which adopts a chair-chair conformation. Thus,two kinds of coordination geometries(trigonal bipyramid and square pyramid)are showed in the molecule A.

    Fig.3(a)Molecule structure and atom numberings of complex 2 with 30%probability displacementellipsoids; (b)Coordination polyhedra for Znatoms of complex 2

    In themolecule B,Zn5 and Zn6 atoms are penta -coordinated,however,Zn4 atom is hexa-coordinated by two phenolic oxygen(O16 and O17)atoms of the bis(salamo)-type L4-unit,two oxygen(O26 and O28) atoms of the chelating acetate ions and two oxygen (O30 and O31)atoms from the coordinated water and methanol molecules,respectively.The coordination sphere of the terminal Znatom(Zn5)is completed by two oxime nitrogen(N5 and N6)and phenolic oxygen(O16 and O20)atoms of the bis(salamo)-type L4-unit and one oxygen(O27)atom of one chelating acetate ion.The coordination environment of the Zn6 atom is completely consistent with that of the Zn5 atom,and penta-coordinated by two oxime nitrogen (N7 and N8)and phenolic oxygen(O17 and O24) atoms of the bis(salamo)-type L4-unit and one oxygen atom(O29)of one chelating acetate ion.The two chelating acetate ions coordinate to the three Znatoms via a familiar Zn5-O-C-O-Zn4 and Zn4-O-C-OZn6 coordinatedmodes.

    The Zn5 and Zn6 atoms have similar trigonal bipyramidalgeometries(Zn5,τ=0.732;Zn6,τ=0.882)[30]with approximatemolecular symmetry C3,in which the axial positions are occupied by O16,N6 and O17,N8 atoms,respectively.The Zn5 and Zn6 atoms deviate from the mean plane(O27-N5-O20)and(O24-N7-O29)by 0.004 8(3)and 0.003 0(3)nm,respectively. Although the Zn1 and Zn2 atoms are both penta-coordinated,but the distance of the Zn3 and Zn2 atoms to the five donor atoms are all different.The dihedral angle between the plane of N6-Zn5-O20 and that of N5-Zn5-O16 is 63.46(3)°,and another dihedral angle between the plane of N8-Zn6-O24 and that of N7-Zn6-O17 is 60.64(3)°.These results indicate that the L4-unithas serious distortion.Due to the Zn4 atom is hexa-coordinated,so it is clearly indicates that the coordination environment of the Zn4 atom is an octahedral geometry.The distance of the Zn4 atom to the six donor atoms are all different(Zn4-O28 0.200 5 nm,Zn4-O26 0.203 5 nm,Zn4-O16 0.205 0 nm,Zn4-O17 0.206 7 nm,Zn4-O30 0.207 5 nm and Zn4-O31 0.243 1 nm).In addition,The dihedral angle between the plane of O17-Zn6-O28 and that of O26-Zn4-O16 is 24.20(3)°.So,two kinds of coordination geometries (trigonal bipyramid and octahedron)are showed in the molecule B.

    From the above,we can know complex 2 consists of two independentmolecules A and B,and the two molecules are all trinuclear structures.There are three kinds of coordination geometries(trigonal bipyramid, square pyramid and octahedron),and every trinuclear structure has serious distortion.

    2.5 Supramolecular interaction

    2.5.1 Supramolecular interaction of complex 1

    The feature of complex 1 is its self-assembling array linked by intramolecular hydrogen bonds and intermolecular C-H…πinteractions.The hydrogen bond data and C-H…πinteraction data are given in (Table 3).

    In the crystal structure,there are four intramolecular O15-H15C…O6,O15-H15C…O9,C9-H9B…O12 and C21-H21A…O14 hydrogen bonds (Table 3)involving the coordinated water,two acetate ions and alkoxy O atoms in each molecule,which is shown in Fig.4.There is also one intermolecular C-H…π(C9-H9A…Cg1)interaction(Table 3).The molecule is interlinked through intermolecular C-H…πinteractions into an infinite 1D chain(Fig.5).

    Table 3 Intra-and intermolecular hydrogen geometries for com plexes 1 and 2

    Fig.4 View of the intramolecular hydrogen-bonding interactions of complex 1

    2.5.2 Supramolecular interaction of complex 2

    In the crystal structure of complex 2,there are twelve intramolecular(O15-H15C…O9,O15-H15D…O14,O30-H30F…O24,O30-H30F…O24,O30-H30F…O25,O31-H31…O20,O33-H33…O35, O35-H35C…O34,C35-H35D…O25,C9-H9A…O13,C21-H21B…O12,C44-H44B…O27,C55-H55B…O29,C56-H56…O12,C71-H71A…O32 and C71-H71B…O26)hydrogen bond interactions(Table 3)involving three coordinated water,two acetate ions, crystallizing water molecules and alkoxy O atoms in each molecule,which is shown in Fig.6.Moreover, intramolecular C-H…π(C50-H50…Cg1)(Table 3) and hydrogen bonding interactions into an infinite wave-like 2D-layer supramolecular structure parallel to the crystallographic plane(Fig.7).

    Fig.5 View of intermolecular C-H…πinteractions of complex 1

    2.6 Lum inescence properties

    Few reports have appeared so far on the prospective use of fluorescence characteristics on transition metal complexation of bis(salamo)-type tetraoxime ligands.In this work,the fluorescence studies have been employed as independent evidence of complexation between the ligand H4L and Znatoms.

    Fig.6 View of the intramolecular hydrogen-bonding interactions of complex 2

    The fluorescent properties of H4L and its complexes 1 and 2 were investigated at room temperature(Fig.8).The ligand H4L exhibits an intense emission peak at 456 nm upon excitation at 340 nm,which should be assigned to the intraligandπ-π*transition[19].The emission spectra of complexes 1 and 2 show amain peak at 531 nm(λex=340 nm) and 536 nm(λex=338 nm),respectively.The two Zncomplexes 1 and 2 exhibit similar fluorescence emissions because of their similar molecular structures. Meanwhile,it can be seen that complexes 1 and 2 exhibit a red-shiftwith respect to the bis(salamo)-type tetraoxime ligand H4L.We tentatively assign it to a ligand-to-metal charge transfer(LMCT)[31].In addition, compared with the emission spectrum of H4L,the enhanced fluorescence intensity of complexes 1 and 2 is observed,we attributed it to the following points: (1)themore rigidity of the ligand coordination to Znatom that effectively reduces the loss of energy and increase the emission efficiency;(2)full d10electronic configuration of Znatom;(3)An increased rigidity in structure of the complexes 1 and 2 and a restriction in the photoinduced electron transfer(PET)[48-49].In addition,The differences of the peak positionsmay be considered to be a result of the dissimilar coordination of themetal centers because the emission behavior is closely associated to the metal ions and ligands around them[31].The strong green fluorescence indicates complexes 1 and 2 may be a good candidate for fluorescentmaterials.Thus,the emission observed in complexes 1 and 2 is tentatively assigned to the LMCT fluorescence.

    Fig.7 View of intramolecular and intermolecular C-H…πinteractions of complex 2

    Fig.8 Emission spectra of H4L and its complexes 1 and 2 in dilute DMF solution(50μmol·L-1)at room temperature

    3 Conclusions

    Acknow ledgements:This work was supported by the National Natural Science Foundation of China(Grant No. 21361015),which is gratefully acknowledged.

    [1]Costamagna J,Vargas J,Latorre R,etal.Coord.Chem.Rev., 1992,119:67-88

    [2]Canali L,Sherrington D C.Chem.Soc.Rev.,1999,28:85-93

    [3]Beck W M,Calabrese J C,Kottmair N D.Inorg.Chem., 1979,18:176-182

    [4]Yu T Z,Zhang K,Zhao Y L,etal.Inorg.Chim.Acta,2008, 361:233-240

    [5]Liu Y A,Wang C Y,Zhang M,et al.Polyhedron,2017,127: 278-286

    [6]Liu PP,Wang C Y,Zhang M,et al.Polyhedron,2017,129: 133-140

    [7]Song X Q,Liu P P,Liu Y A,et al.Dalton Trans.,2016,45: 8154-8163

    [8]Song X Q,Zheng Q F,Wang L,et al.Luminescence,2012, 25:328-335

    [9]Liu PP,Sheng L,Song X Q,et al.Inorg.Chim.Acta,2015, 434:252-257

    [10]Song X Q,Liu PP,Xiao ZR,etal.Inorg.Chim.Acta,2015, 438:232-244

    [11]Song X Q,Peng Y J,Chen G Q,et al.Inorg.Chim.Acta, 2015,427:13-21

    [12]Han H Y,Song Y L,Hou H W,et al.J.Chem.Soc.,Dalton Trans.,2006,250:1972-1980

    [13]Wu H L,Pan G L,Bai Y C,et al.Res.Chem.Intermed., 2015,41:3375-3388

    [14]Wu H L,Wang C P,Wang F,et al.J.Chin.Chem.Soc., 2015,62:1028-1034

    [15]Wu H L,Pan G L,Bai Y C,et al.J.Photochem.Photobiol. B,2014,135:33-43

    [16]Wu H L,Bai Y C,Zhang Y H,etal.J.Coord.Chem.,2014, 67:3054-3066

    [17]Chen C Y,Zhang JW,Zhang Y H,et al.J.Coord.Chem., 2015,68:1054-1071

    [18]Wu H L,Bai Y C,Zhang Y H,et al.Z.Anorg.Allg.Chem., 2014,640:2062-2071

    [19]Wu H L,Pan G L,Bai Y C,et al.J.Chem.Res.,2014,38: 211-217

    [20]Wu H L,Pan G L,BaiY C,etal.J.Coord.Chem.,2013,66: 2634-2646

    [21]Sun SS,Stern C L,Nguyen S T,et al.J.Am.Chem.Soc., 2004,126:6314-6326

    [22]Zhao L,Dang X T,Chen Q,et al.Synth.React.Inorg.Met.-Org.Nano-Met.Chem.,2013,43:1241-1246

    [23]XU Li(許力),ZHANG Yan-Ping(張艷萍),SHI Jun-Yan(史軍妍),etal.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2007, 23:1999-2002

    [24]Wang L,Ma JC,Dong W K,et al.Z.Anorg.Allg.Chem., 2016,642:834-839

    [25]Xu L,Zhang Y P,Wang L,et al.Chin.J.Struct.Chem., 2008,27:183-186

    [26]Wang P,Zhao L.Synth.React.Inorg.Met-Org.Nano-Met. Chem.,2016,46:1095-1101

    [27]Sun Y X,Wang L,Dong X Y,et al.Synth.React.Inorg. Met-Org.Nano-Met.Chem.,2013,43:599-603

    [28]DongW K,Ma JC,Zhu LC,etal.Inorg.Chim.Acta,2016, 445:140-148

    [29]DongW K,Zhang J,Zhang Y,etal.Inorg.Chem.Acta,2016, 444:95-102

    [30]DongW K,Li X L,Wang L,et al.Sens.Actuators B,2016, 229:370-378

    [31]Ma J C,Dong X Y,Dong W K,et al.J.Coord.Chem., 2016,69:149-159

    [32]Sun Y X,Zhang S T,Ren Z L,et al.Synth.React.Inorg. Met-Org.Nano-Met.Chem.,2013,43:995-1000

    [33]Sun Y X,Gao X H,et al.Synth.React.Inorg.Met-Org. Nano-Met.Chem.,2011,4:973-978

    [34]Dong X Y,Sun Y X,Wang L,et al.J.Chem.Res.,2012, 36:387-390

    [35]Zhao L,Wang L,Sun Y X,et al.Synth.React.Inorg.Met-Org.Nano-Met.Chem.,2012,42:1303-1308

    [36]Wang P,Zhao L.Spectrochim.Acta Part A,2015,135:342-350

    [37]Xu L,Zhu L C,Ma JC,etal.Z.Anorg.Allg.Chem.,2015, 641:2520-2524

    [38]Akine S,Taniguchi T,Nabeshima T,et al.Angew.Chem., 2002,114:4864-4867

    [39]Chai L Q,Wang G,Sun Y X,et al.J.Coord.Chem.,2012,65:1621-1631

    [40]Cho SH,Gadzikwa T,AfshariM,etal.Eur.J.Inorg.Chem., 2007:4863-4867

    [41]Hoshino N.Coord.Chem.Rev.,1999,174:77-108

    [42]DONGWen-Kui(董文魁),SHI Jun-Yan(史軍妍),ZHONG Jin-Kui(鐘金魁),etal.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2008,24:10-14

    [43]DongW K,Sun Y X,He X N,et al.Spectrochim.Acta Part A,2010,76:476-483

    [44]Akine S,Taniguchi T,Dong W K,et al.J.Org.Chem., 2005,70:1704-1711

    [45]Dong W K,Sun Y X,Zhang Y P,et al.Inorg.Chim.Acta, 2009,362:117-124

    [46]Sheldrick GM.Acta Crystallogr.Sect.A,2008,64:112-122

    [47]Panja A,Shaikh N,Vojti?ek P,et al.New J.Chem.,2002, 26:1025-1028

    [48]Chattopadhyay N,Mallick A,Sengupta S.J.Photochem. Photobiol.A,2006,177:55-60

    [49]Hennrich G,Sonnenschein H,Genger U R.J.Am.Chem. Soc.,1999,121:5073-5074

    YANG Yu-Hua HAO Jing DONG Yin-Juan WANG Gang DONGWen-Kui*
    (School of Chemical and Biological Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

    Two Zncomplexes,[Zn3(L)(OAc)2(H2O)](1)and[Zn3(L)(OAc)2(H2O)]·[Zn3(L)(OAc)2(CH3OH)(H2O)]· 3CH3OH·H2O(2)have been synthesized via the complexation of zincacetate dihydrate with a bis(salamo)-type tetraoxime ligand H4L(H4L=6,6′-diethoxy-bis(2,2′-(ethylenedioxybis(nitrilomethylidyne)))tetraphenol).X-ray crystallographic analyses reveal formation of trinuclear structures consisting of two salamo-type L4-ligands and three Znatoms as expected from the analytical data.Two of the three Znatoms are located in the salamotype L4-chelatemoieties.Theμ-phenoxo oxygen atoms of the[Zn(L)]chelates further coordinate to centre Znatom.The trinuclear structure is probably stabilized by the twoμ-acetato ligands,which neutralize the whole charge of the complexes 1 and 2.There are two kinds of coordination geometries(trigonal bipyramidal and square pyramidal or trigonal bipyramidal and octahedral geometries)in complexes 1 and 2.In addition,complexes 1 and 2 exhibit strong green emissionλmax=531 and 536 nm when excited with 340 and 337 nm,respectively.CCDC: 864890,1;1470489,2.

    bis(salamo)-type tetraoxime ligand;Zncomplex;synthesis;crystal structure;luminescence property

    O614.24+1

    A

    1001-4861(2017)07-1280-13

    10.11862/CJIC.2017.150

    2017-03-17。收修改稿日期:2017-05-08。

    國(guó)家自然科學(xué)基金(No.21361015)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:dongwk@126.com;會(huì)員登記號(hào):02M87091161。

    精品福利永久在线观看| 亚洲欧美成人精品一区二区| 男女免费视频国产| 久久99精品国语久久久| 啦啦啦在线观看免费高清www| 热re99久久国产66热| 少妇 在线观看| 九九爱精品视频在线观看| 成年女人在线观看亚洲视频| 亚洲av日韩在线播放| 亚洲欧美成人综合另类久久久| 免费大片18禁| 丰满迷人的少妇在线观看| 亚洲av国产av综合av卡| 国产高清三级在线| 麻豆精品久久久久久蜜桃| av一本久久久久| 亚洲欧美成人综合另类久久久| 高清黄色对白视频在线免费看| 国产日韩欧美亚洲二区| 久久精品夜色国产| 最后的刺客免费高清国语| 五月玫瑰六月丁香| 亚洲伊人久久精品综合| 王馨瑶露胸无遮挡在线观看| 最近2019中文字幕mv第一页| 亚洲av福利一区| 婷婷成人精品国产| 久久ye,这里只有精品| 亚洲精品自拍成人| 午夜视频国产福利| 亚洲欧美日韩另类电影网站| 看免费av毛片| 看非洲黑人一级黄片| 亚洲一码二码三码区别大吗| 人妻 亚洲 视频| 久久精品国产亚洲av天美| 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 成人黄色视频免费在线看| 街头女战士在线观看网站| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 十八禁网站网址无遮挡| 精品一区二区三区四区五区乱码 | 午夜老司机福利剧场| 国产欧美日韩一区二区三区在线| 90打野战视频偷拍视频| 久久精品国产自在天天线| 色视频在线一区二区三区| 国产69精品久久久久777片| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| 五月玫瑰六月丁香| 国产成人aa在线观看| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| 黄色怎么调成土黄色| 亚洲av综合色区一区| 欧美+日韩+精品| 久久99蜜桃精品久久| 丰满迷人的少妇在线观看| 激情视频va一区二区三区| a级片在线免费高清观看视频| 国产极品天堂在线| av国产精品久久久久影院| 999精品在线视频| 在线精品无人区一区二区三| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| 久久久久久人人人人人| 看十八女毛片水多多多| 大片电影免费在线观看免费| 秋霞在线观看毛片| 成年人免费黄色播放视频| 最黄视频免费看| 一区二区三区四区激情视频| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 桃花免费在线播放| 国产 精品1| 久久这里有精品视频免费| 一级,二级,三级黄色视频| 免费av中文字幕在线| 日韩 亚洲 欧美在线| 国产av一区二区精品久久| 2022亚洲国产成人精品| 搡老乐熟女国产| 天堂俺去俺来也www色官网| 色5月婷婷丁香| 中文欧美无线码| 看免费av毛片| 国产精品麻豆人妻色哟哟久久| 大话2 男鬼变身卡| 色哟哟·www| 亚洲欧美一区二区三区国产| 91精品三级在线观看| 欧美 日韩 精品 国产| 午夜福利乱码中文字幕| 亚洲美女黄色视频免费看| 日本av手机在线免费观看| 香蕉精品网在线| www.av在线官网国产| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 精品视频人人做人人爽| 亚洲色图 男人天堂 中文字幕 | 久热这里只有精品99| 永久网站在线| 在线观看国产h片| 免费看av在线观看网站| 欧美最新免费一区二区三区| 最近最新中文字幕免费大全7| www日本在线高清视频| 亚洲丝袜综合中文字幕| 中文字幕人妻熟女乱码| 女性被躁到高潮视频| 国产成人精品一,二区| 九草在线视频观看| 91国产中文字幕| 1024视频免费在线观看| 狠狠婷婷综合久久久久久88av| 国产精品 国内视频| 中文精品一卡2卡3卡4更新| av又黄又爽大尺度在线免费看| 久久97久久精品| 久久久久精品性色| 十八禁高潮呻吟视频| 日韩制服丝袜自拍偷拍| 少妇熟女欧美另类| 久久久久久人妻| 男女无遮挡免费网站观看| 最近中文字幕2019免费版| 午夜福利在线观看免费完整高清在| 欧美精品一区二区免费开放| 久久久国产一区二区| 人妻系列 视频| 看免费成人av毛片| 大码成人一级视频| 欧美丝袜亚洲另类| 看十八女毛片水多多多| 欧美另类一区| 熟妇人妻不卡中文字幕| 国产成人精品久久久久久| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| 九九爱精品视频在线观看| 丰满乱子伦码专区| 9色porny在线观看| 嫩草影院入口| 国产精品久久久久久精品电影小说| 国产爽快片一区二区三区| 国产男女超爽视频在线观看| 免费av中文字幕在线| 国产精品蜜桃在线观看| 男的添女的下面高潮视频| 制服人妻中文乱码| 高清在线视频一区二区三区| 日本黄大片高清| 两个人看的免费小视频| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 久久影院123| 丝瓜视频免费看黄片| 日本黄大片高清| 久久综合国产亚洲精品| 亚洲图色成人| 视频在线观看一区二区三区| 精品卡一卡二卡四卡免费| 免费人成在线观看视频色| 亚洲精品,欧美精品| 久久精品国产综合久久久 | 最近最新中文字幕免费大全7| 狂野欧美激情性bbbbbb| 国产欧美亚洲国产| 大片电影免费在线观看免费| 亚洲美女搞黄在线观看| 亚洲精品自拍成人| 一本大道久久a久久精品| av视频免费观看在线观看| 国产一区二区在线观看日韩| 男人爽女人下面视频在线观看| 宅男免费午夜| 国产欧美另类精品又又久久亚洲欧美| 天堂俺去俺来也www色官网| 久久久久久久久久人人人人人人| 久久久久人妻精品一区果冻| 午夜影院在线不卡| 在线观看免费日韩欧美大片| 热99国产精品久久久久久7| 亚洲精品一二三| 国产麻豆69| 曰老女人黄片| 精品酒店卫生间| 国产一区亚洲一区在线观看| 久久久久久人人人人人| 18在线观看网站| 在线观看免费高清a一片| 日韩视频在线欧美| 亚洲伊人久久精品综合| 国产成人欧美| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频| 日韩电影二区| 一级毛片 在线播放| 韩国av在线不卡| 亚洲av电影在线进入| 九色成人免费人妻av| 韩国高清视频一区二区三区| 满18在线观看网站| 午夜91福利影院| 免费看不卡的av| 亚洲国产精品专区欧美| 妹子高潮喷水视频| 精品福利永久在线观看| 日韩免费高清中文字幕av| 蜜桃在线观看..| 亚洲国产av新网站| 国产无遮挡羞羞视频在线观看| 亚洲第一区二区三区不卡| 国产精品一区二区在线不卡| av在线app专区| 视频在线观看一区二区三区| 亚洲四区av| 国产一区二区三区综合在线观看 | 尾随美女入室| 国产激情久久老熟女| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 在线精品无人区一区二区三| 亚洲欧洲精品一区二区精品久久久 | 成人免费观看视频高清| 免费大片18禁| 国产又色又爽无遮挡免| 五月玫瑰六月丁香| 99久久人妻综合| 亚洲精品乱码久久久久久按摩| 亚洲国产最新在线播放| 七月丁香在线播放| 欧美丝袜亚洲另类| 午夜日本视频在线| www日本在线高清视频| 岛国毛片在线播放| 国产精品欧美亚洲77777| 伊人久久国产一区二区| 中文欧美无线码| 精品一区二区三区视频在线| 性高湖久久久久久久久免费观看| 亚洲av电影在线观看一区二区三区| 涩涩av久久男人的天堂| 亚洲欧洲国产日韩| 999精品在线视频| 22中文网久久字幕| 少妇猛男粗大的猛烈进出视频| 18+在线观看网站| 国产成人91sexporn| a级毛色黄片| 国产av精品麻豆| 9色porny在线观看| 成人午夜精彩视频在线观看| 美女国产视频在线观看| 国产精品久久久久久精品古装| 边亲边吃奶的免费视频| 欧美人与性动交α欧美软件 | 国产精品久久久久成人av| 捣出白浆h1v1| 男女边吃奶边做爰视频| 精品国产一区二区三区四区第35| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 丝袜脚勾引网站| 精品国产露脸久久av麻豆| 久久99热这里只频精品6学生| 考比视频在线观看| 一级片'在线观看视频| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 国产日韩欧美视频二区| 免费观看在线日韩| 毛片一级片免费看久久久久| 国产在线视频一区二区| 观看美女的网站| 亚洲丝袜综合中文字幕| 亚洲成国产人片在线观看| 久久久久久久大尺度免费视频| 1024视频免费在线观看| 狂野欧美激情性bbbbbb| 久久免费观看电影| 午夜激情av网站| 插逼视频在线观看| 国精品久久久久久国模美| 另类亚洲欧美激情| 一级毛片电影观看| 国产av一区二区精品久久| 亚洲国产av新网站| 国产 精品1| 亚洲国产日韩一区二区| 中文字幕人妻熟女乱码| 卡戴珊不雅视频在线播放| 久久久久久人妻| 熟女电影av网| 在线观看美女被高潮喷水网站| 久热这里只有精品99| 黑人高潮一二区| 欧美成人午夜免费资源| 亚洲欧美成人综合另类久久久| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 国产亚洲精品久久久com| av有码第一页| 亚洲欧美日韩卡通动漫| 国产一区二区激情短视频 | 韩国av在线不卡| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| 中文字幕人妻丝袜制服| 国产亚洲精品久久久com| 久久女婷五月综合色啪小说| 久久 成人 亚洲| 欧美激情国产日韩精品一区| 青青草视频在线视频观看| 日韩欧美一区视频在线观看| xxx大片免费视频| 香蕉精品网在线| 成人毛片60女人毛片免费| 成人手机av| 亚洲欧洲精品一区二区精品久久久 | 亚洲色图综合在线观看| 欧美xxxx性猛交bbbb| 涩涩av久久男人的天堂| 国产免费现黄频在线看| 久久精品久久久久久噜噜老黄| 综合色丁香网| 人妻系列 视频| 成年女人在线观看亚洲视频| 一级毛片黄色毛片免费观看视频| 色哟哟·www| 亚洲国产精品成人久久小说| 午夜福利,免费看| 亚洲欧洲日产国产| 少妇的逼水好多| 欧美国产精品一级二级三级| 久久毛片免费看一区二区三区| 国产精品三级大全| 国产精品国产av在线观看| 一级片'在线观看视频| 亚洲欧美色中文字幕在线| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡 | av视频免费观看在线观看| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 久久久久视频综合| 国产成人精品一,二区| 一本色道久久久久久精品综合| 丝瓜视频免费看黄片| 视频区图区小说| 久久久久久人妻| 免费播放大片免费观看视频在线观看| 99久久人妻综合| 国产精品秋霞免费鲁丝片| 九九爱精品视频在线观看| 又大又黄又爽视频免费| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| av线在线观看网站| 日韩大片免费观看网站| av黄色大香蕉| 亚洲精品色激情综合| 丁香六月天网| 午夜激情久久久久久久| 巨乳人妻的诱惑在线观看| 777米奇影视久久| 国产色婷婷99| 色哟哟·www| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院 | 欧美精品高潮呻吟av久久| 久久久久久伊人网av| 丁香六月天网| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 国产视频首页在线观看| 欧美激情国产日韩精品一区| 久久国产亚洲av麻豆专区| 国产精品.久久久| 热re99久久国产66热| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 男女免费视频国产| 亚洲欧美一区二区三区国产| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 日本vs欧美在线观看视频| 精品亚洲成国产av| 亚洲内射少妇av| 亚洲丝袜综合中文字幕| 久久影院123| 欧美人与善性xxx| av国产精品久久久久影院| 大香蕉久久网| 午夜福利影视在线免费观看| 欧美精品一区二区大全| 国产精品国产三级国产专区5o| 黄片无遮挡物在线观看| 成年av动漫网址| 99热网站在线观看| 青春草视频在线免费观看| 日本欧美视频一区| 欧美少妇被猛烈插入视频| 考比视频在线观看| 黄色怎么调成土黄色| 精品酒店卫生间| 久久精品国产综合久久久 | 国产精品一二三区在线看| 免费高清在线观看视频在线观看| 国产精品蜜桃在线观看| av免费观看日本| 中文字幕制服av| 亚洲av成人精品一二三区| 国产日韩欧美亚洲二区| 国产激情久久老熟女| 蜜桃在线观看..| 午夜免费鲁丝| 亚洲成av片中文字幕在线观看 | 在现免费观看毛片| 这个男人来自地球电影免费观看 | 亚洲欧美中文字幕日韩二区| 只有这里有精品99| 国产精品蜜桃在线观看| 日韩大片免费观看网站| 两个人免费观看高清视频| 久久午夜综合久久蜜桃| 伦理电影大哥的女人| 性色avwww在线观看| 男女下面插进去视频免费观看 | 免费播放大片免费观看视频在线观看| 国产亚洲av片在线观看秒播厂| 久久人人爽人人爽人人片va| 久久av网站| 免费观看性生交大片5| 成人免费观看视频高清| 免费日韩欧美在线观看| av在线观看视频网站免费| 中文字幕亚洲精品专区| 免费不卡的大黄色大毛片视频在线观看| 青春草视频在线免费观看| 国产视频首页在线观看| 国产一区二区激情短视频 | 天天影视国产精品| 制服人妻中文乱码| 看十八女毛片水多多多| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| 亚洲精品第二区| 69精品国产乱码久久久| 乱码一卡2卡4卡精品| 有码 亚洲区| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 亚洲av成人精品一二三区| 午夜影院在线不卡| 美女xxoo啪啪120秒动态图| 五月开心婷婷网| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 超碰97精品在线观看| 精品一区二区免费观看| 久久精品aⅴ一区二区三区四区 | 又黄又粗又硬又大视频| 亚洲av国产av综合av卡| 自线自在国产av| 少妇的丰满在线观看| 久久精品aⅴ一区二区三区四区 | 中文乱码字字幕精品一区二区三区| 18在线观看网站| 中文字幕免费在线视频6| 成人国语在线视频| 赤兔流量卡办理| 中文字幕av电影在线播放| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩另类电影网站| 成人国产麻豆网| 亚洲三级黄色毛片| 精品少妇久久久久久888优播| 99国产综合亚洲精品| 丝袜脚勾引网站| 波多野结衣一区麻豆| 日日啪夜夜爽| 夫妻午夜视频| 伦理电影大哥的女人| 亚洲精品日本国产第一区| 中文欧美无线码| 高清在线视频一区二区三区| av一本久久久久| 女人久久www免费人成看片| 色婷婷久久久亚洲欧美| 男人操女人黄网站| 日本91视频免费播放| 一级毛片电影观看| 成人亚洲精品一区在线观看| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄| 国产色婷婷99| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 青春草国产在线视频| 亚洲国产精品专区欧美| 另类亚洲欧美激情| 丝袜美足系列| 男的添女的下面高潮视频| 欧美 日韩 精品 国产| 精品午夜福利在线看| 欧美+日韩+精品| 我要看黄色一级片免费的| 蜜臀久久99精品久久宅男| 国产乱人偷精品视频| 国产亚洲午夜精品一区二区久久| 国产精品.久久久| 黄色视频在线播放观看不卡| 日韩中字成人| 成年动漫av网址| 国产av国产精品国产| 国产福利在线免费观看视频| 18禁动态无遮挡网站| 国产亚洲欧美精品永久| 亚洲国产日韩一区二区| 美女国产高潮福利片在线看| 精品国产乱码久久久久久小说| 青春草视频在线免费观看| 亚洲色图综合在线观看| 精品福利永久在线观看| 内地一区二区视频在线| av一本久久久久| 久久国产精品大桥未久av| 少妇熟女欧美另类| 我的女老师完整版在线观看| 国产伦理片在线播放av一区| 一本大道久久a久久精品| 成人手机av| 国产精品久久久av美女十八| 最近中文字幕高清免费大全6| 在线看a的网站| 欧美 日韩 精品 国产| 2018国产大陆天天弄谢| 性高湖久久久久久久久免费观看| 久久精品夜色国产| 亚洲av男天堂| a级片在线免费高清观看视频| 夜夜骑夜夜射夜夜干| 91aial.com中文字幕在线观看| 丁香六月天网| 天美传媒精品一区二区| av.在线天堂| 国产成人欧美| 国产亚洲午夜精品一区二区久久| 国产免费现黄频在线看| 日韩一区二区三区影片| 亚洲成国产人片在线观看| 不卡视频在线观看欧美| 热99国产精品久久久久久7| 婷婷色综合大香蕉| 国产xxxxx性猛交| 久久 成人 亚洲| 亚洲av国产av综合av卡| 午夜福利视频在线观看免费| 人人澡人人妻人| 国产成人精品无人区| 免费黄网站久久成人精品| 亚洲欧洲精品一区二区精品久久久 | 97人妻天天添夜夜摸| 国产极品粉嫩免费观看在线| 一区二区日韩欧美中文字幕 | 捣出白浆h1v1| 日韩 亚洲 欧美在线| av片东京热男人的天堂| 免费在线观看完整版高清| 在现免费观看毛片| 人人妻人人澡人人看| 97超碰精品成人国产| 2021少妇久久久久久久久久久| 中文字幕人妻熟女乱码| 久久毛片免费看一区二区三区| 婷婷色综合www| av福利片在线| 成人午夜精彩视频在线观看| 性色avwww在线观看| 日本色播在线视频| 成人午夜精彩视频在线观看| 亚洲综合精品二区| 美女主播在线视频| 少妇的逼水好多| 中文字幕精品免费在线观看视频 | 午夜影院在线不卡| 国产1区2区3区精品| 欧美日韩成人在线一区二区| 精品国产一区二区三区四区第35| 嫩草影院入口| 国产精品一国产av| 午夜福利乱码中文字幕| 美国免费a级毛片| 男人操女人黄网站| av视频免费观看在线观看| 高清欧美精品videossex| 国产极品粉嫩免费观看在线| 熟女av电影| 美女国产高潮福利片在线看| 亚洲av.av天堂| 91精品三级在线观看| 亚洲人与动物交配视频|