• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemically Self-Assembled Fe/Cu Nanocomposite with Improved High-Rate and Low-Temperature Performances for Nickel-Iron Alkaline Battery

    2017-07-05 14:55:25LIUPingZHUDingYANGJunHUANGLanXiangCHENYunGui
    無機(jī)化學(xué)學(xué)報 2017年5期
    關(guān)鍵詞:高倍率四川大學(xué)伏安

    LIU Ping ZHU Ding YANG Jun HUANG Lan-Xiang CHEN Yun-Gui*,

    (1College of Materials Science and Engineering,Sichuan University,Chengdu 610065,China)

    (2Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610065,China)

    Electrochemically Self-Assembled Fe/Cu Nanocomposite with Improved High-Rate and Low-Temperature Performances for Nickel-Iron Alkaline Battery

    LIU Ping1ZHU Ding*,2YANG Jun1HUANG Lan-Xiang1CHEN Yun-Gui*,1

    (1College of Materials Science and Engineering,Sichuan University,Chengdu 610065,China)

    (2Institute of New Energy and Low-Carbon Technology,Sichuan University,Chengdu 610065,China)

    Fe/Cu nanocomposite was simply self-assembled through the cathodic decomposition of tetragonal spinel CuFe2O4(t-CuFe2O4)in alkaline solution.The phase transition from t-CuFe2O4to Cu/Fe3O4,and eventually to Fe/Cu composite was monitored by cyclic voltammetry(CV)and X-ray powder diffraction(XRD).Transmission electron microscope(TEM),selected area electron diffraction(SAED)and scanning TEM-energy dispersive X-ray (STEM-EDX)observations showed that the electro-crystallized copper and iron nanoparticles dispersed homogeneously and contacted intimately.When the Fe/Cu nanocomposite electrode was tested as the anode for nickeliron(Ni-Fe)rechargeable battery,it exhibited enhanced discharge capacity,charge-acceptance and especially remarkable high-rate and low-temperature performances.Excellent capacity output and potential characteristics were achieved at high discharge current density(4 500 mA·gFe-1)or low operation temperature(-40℃),respectively.Linear scanning voltammetry(LSV)analyses demonstrated that the incorporation of in situ formed copper facilitated the anodic kinetics of active iron,resulting to the markedly enhanced high-rate and low-temperature discharge-ability of electrode.

    copper ferrite;self-assembly;nanocomposite;iron alkaline electrode;high-rate and low temperature performance

    By virtue of its long service life,low cost, environmental friendliness,and excellent resistance to both physical and electrochemical abuse,Ni-Fe alkaline battery has been widely developed for traction,electric vehicles and stationary applications.Additionally,it may be a suitable substitution for lead-acid or nickelcadmium battery as the large-scale energy storage system(>1 MW)in the view of environmental protection[1-2].However,the bottlenecks of Fe anode,namely, extremely poor high-rate and low-temperature performances,low utilization of active iron and hydrogen evolution on the electrode lead to the decline in usage of Ni-Fe battery[3].Over several decades of efforts,researchers have circumvented some of these problems to a substantial degree[4-20].Various metal sulfides are demonstrated to markedly improve the capacity and the charge retention of Fe anode[4-9,15].Hydrogen-oxygen recombinant catalyst is used to successfully suppress the gas evolution in battery[11].And nanomaterial electrodes are confirmed to considerably enhance the utilization of active iron[10,17-18,20].However,few investigations have simultaneously focused on the performances of Fe anode operated under extremely conditions,that is,low-temperature or high-rate.Since most of the present Fe alkaline electrodes are merely adapted to operation temperature above-15℃and discharge current density below 300 mA·gFe-1[3,5-6,8-16], significant improvements are urgently needed if we want to extend the application scope of Ni-Fe battery.

    Slow anodic kinetics of active iron generally account for the poor low-temperature and high-rate performances of Fe alkaline electrode.The copper incorporation seems to be an effective way because Cu particles can effect as high conductive nucleation corestogreatlyassisttheanodicdissolutiondeposition process of iron species.Recently,Kao and co-workerssynthesizedFe/Cunanocompositevia NaBH4reduction,which exhibited an outstanding capacity delivery at the current density up to 3200 mA·gFe-1[20].This study put forward an effective route to improve the poor rate performance of Fe anode,but the involved preparation are somewhat elaborate for practice,and the low-temperature performance and anodic kinetics of electrode are not referred.

    In this study,a facile self-assembly of Fe/Cu nanocomposite through the cathodic decomposition of t-CuFe2O4precursor is proposed.The electrochemical performances,especiallythehigh-rateandlowtemperature discharge-ability of Fe/Cu nanocomposite electrode are investigated in detail.In addition,LSV isemployedtoanalyzetheeffectofcopper incorporation on the anodic kinetics of iron.

    1 Experimental

    1.1 Syntheses of t-CuFe2O4

    t-CuFe2O4was prepared by a co-precipitation method[21].Briefly,the aqueous solution of NaOH(5 mol·L-1)was added to the aqueous solution which contained 0.125 mol·L-1FeCl3·6H2O and 0.062 5 mol·L-1CuCl2·2H2O.The as-formed brown suspension was stirred at 373 K for 2 h.Then the precipitate was filtered and washed with deionized water and alcohol, and dried at 373 K for 12 h.Finally,the precursor was calcined at 1 073 K for 2 h to form pure t-CuFe2O4phase.

    1.2 Self-assembly and characterization of Fe/Cu nano-composite electrode

    Galvanostatic charging technique was used to induce the reduction of t-CuFe2O4to self-assemble the Fe/Cu nano-composite electrode.The working electrode was fabricated by pasting a slurry mixture of 80%t-CuFe2O4,15%acetylene black and 5%PVA onto a nickel foam(1 cm×1 cm)and then dried at 373 K for 12 h.Electrochemical experiments were performed using a three-electrode cell including one working electrode,four sintered Ni(OH)2/NiOOH counter electrodes and one Hg/HgO reference electrode.The electrolyte comprised of 8 mol·L-1KOH and 0.05 mol·L-1Na2S.The cathodic current density was kept at 300 mA·goxide-1and the reduction time was 2 h.

    The phase transition process was monitored by CV(Par2273 potentiostat with the potential range of 0 to-1.4 V at a sweep rate of 5 mV·s-1)and XRD (Dandong DX-2600 with Cu Kα radiation,λ=0.154 18 nm,U=35 kV,I=25 mA,2θ=20°~70°).TEM,SAED, STEM-EDX and high-resolution transmission electronmicroscope(HRTEM)analyses were conducted on a Tecnai G220 S-TWIN microscope to observe morphology,elemental distribution and interface configuration of the as-formed Fe/Cu nanocomposite.

    1.3 Electrochem ical measurements of Fe/Cu nano-composite electrode

    Galvanostatic discharging-charging tests were conducted to measure the electrochemical performances of Fe/Cu nanocomposite electrode.The capacity and charge-acceptance of Fe/Cu nanocomposite electrode were evaluated with a current density of 300 mA·gFe-1under 30℃.To investigate the high-rate performance,the electrode was charged with a 300 mA·gFe-1current density for 2 h,and the fully charged electrode was discharged at 50,300,1 500 and 4 500 mA·gFe-1under 30℃,respectively.To investigate the low-temperature performance,the fully charged electrode was discharged under 30,0,-20 and-40℃at 50 mA·gFe-1,respectively.The tests at lower temperatures were conducted after the system was held at a constant temperature for 2 h.LSV was employed to study the anodic kinetic properties of Fe/Cu nanocomposite electrode with various scan rates using the Par2273 potentiostat.

    2 Results and discussion

    2.1 Self-assembly of Fe/Cu nanocomposite electrode from t-CuFe2O4

    Fig.1(a)illustrates the electrochemical redox behaviors of t-CuFe2O4in aqueous alkaline solution. Four pairs of redox peaks appear in the CV curve of t-CuFe2O4.Referring to the CV curve of Fe3O4,two pairs of cathodic/anodic peaks Red1/Ox1and Red2/Ox2can be attributed to the reduction/oxidation of Fe3+/2+?Fe2+and Fe2+?Fe0,respectively.The additional redox couples,marked as Red1′/Ox1′and Red2′/Ox2′, correspond to the redox reactions of Cu2+?Cu+and Cu+?Cu0[22],respectively.Obviously,along thecathodic direction,copper cations are preferentially reduced to metallic state,then ferric iron is reduced to ferrous iron,and eventually to elemental iron.From a thermodynamics point of view,Cu can keep metallic state while Fe undergoes the reversibly faradic reactions(Fe3+?Fe0)in a certain potential range(the left area of the dot in Fig.(1a)).

    Fig.1(b)records the phase transition during the self-assembly of Fe/Cu nanocomposite from t-CuFe2O4. Initially,only t-CuFe2O4phase can be detected.Then t-CuFe2O4decomposes into Cu/Fe3O4composite after Red2′reaction.Finally,magnetite converts into metallic Fe while Cu remains stable.The elemental Cu and Fe exist not as alloy or solid-solution but as two separated phases due to the immiscibility.The crystallite size of each phase is calculated to be 54.9 nm(Cu)and 61.8 nm(Fe)using the Scherrer equation,suggesting the self-assembly of Fe/Cu composite at the nanoscale.

    Fig.1 Self-assembly of Fe/Cu nanocomposite electrode from t-CuFe2O4:(a)Redox behavior of t-CuFe2O4compared to Fe3O4;(b)Phase transition upon the self-assembly process

    Fig.2 Characterization of Fe/Cu nanocomposite electrode:(a)TEM overview;(b)STEM-EDX element mapping for Fe and Cu at a random area;(c)HRTEM image

    TEM image also confirms the nano-level combination of iron and copper(Fig.2(a)).Indeed,the average particle size is below 100 nm and consistent with XRD results.SAED(Fig.2(a),Inset)presents a clear spots and rings pattern demonstrating the nanocrystalline nature.Judging from the d-spacing, the five distinct rings can be indexed to the(111)and (200)reflections of Cu,and to the(110),(220)and (221)reflections of Fe,respectively.Element mapping for either Fe or Cu(Fig.2(b))reveals the homogeneous dispersion of two phases,which can be further proved by the HRTEM image(Fig.2(c)),where two kinds of nanoparticles with different contrasts distribute uniformly.The inset of Fig.2(c)gives more information about the crystal structure and the interface configuration of the nanocomposite.The lattice fringes illustrate the well crystallinity of two nanoparticles and exhibit the interplanar distances of 0.207 nm(the dark)and 0.141 nm(the light)that are characteristic of copper (111)planes and iron(200)planes,respectively, agreeing well with the analyses of XRD and SEAD. An intimate contact between two metallic grains is pronounced around the phase boundary.

    Considering that the bonding nature of Cu-O is weaker than that of Fe-O in t-CuFe2O4[23],and that the equilibrium potentials of Cu2+?Cu0reactions are more positive than those of Fe3+?Fe0reactions,copper cations at the octahedral sites of t-CuFe2O4are readily and preferentially reduced and migrated from the lattice upon the electrochemical reduction. Accompanied with the phase separation,the copper species dissolve and precipitate homogeneously on the surface of Fe species.The in situ formed Cu nanoparticles can uniformize the cathodic current distribution and suppress the coalescence of Fe grains to facilitate the electro-crystallization of Fe.Thus,Fe particles finely disperse and strongly contact within Cu nanoparticles to form the well-architectured Fe/Cu nano-composite.

    2.2 Electrochem ical performances of Fe/Cu nano-composite electrode

    Fig.3 shows the typical charge-discharge profiles of Fe/Cu nanocomposite electrode,and the traditional Fe electrode is introduced for comparison.Both electrodes exhibit two pairs of potential plateaus, corresponding to Red1/Ox1and Red2/Ox2in Fig.1(a), respectively.Briefly,Red1/Ox1involves the diffusion of protons between the solid lattices of Fe3O4and Fe(OH)2. Red2/Ox2represents the cathodic electro-crystallization and the anodic dissolution of Fe,respectively.The extra plateau in both charging curves(dot line)links to the hydrogen evolution reaction(HER).For the traditional Fe electrode,the potential plateaus of Red2and HER tend to overlap,and a lot of chargingcurrent is consumed to HER instead of Fe electrocrystallization,causing a poor charge-acceptance.On the other hand,Fe/Cu nanocomposite electrode shows a relatively low polarization of Red2,thus Fe species can be mainly reduced before the electrolysis of water.Furthermore,both the discharge capacity and the potential characteristics of Fe/Cu electrode are markedly improved as compared to those of Fe electrode,suggesting that the incorporation of Cu enhances the utilization and anodic kinetics of active iron.

    Fig.3 Typical charge-discharge profiles of Fe and Fe/Cu nano-composite electrodes

    In the practical application of Fe alkaline electrode,only the Red2/Ox2redox is involved[3].So the followingdiscussionsonthehigh-rateandlowtemperature discharge-ability mainly focus on the first discharge plateau.Fig.4 shows the comparison of the discharge curves for Fe and Fe/Cu electrodes at various current densities.Fe/Cu electrode displays a significantly enhanced high-rate performance than that of Fe electrode.When the current density increases from 50 to 1 500 mA·gFe-1,the capacity retention of Fe/Cu electrode attains 72%,which is almost twice than that of Fe electrode(37%).When the current density further increases up to 4 500 mA·gFe-1,Fe/Cu electrode still remains~50%capacity output,whereas Fe electrode is close to failure.Besides,the potential plateaucharacteristicsofFe/Cuelectrodeunder increasedcurrentdensityisalsoimproved.The midpoint potential(Emid)of Fe/Cu electrode at each current density is 0.94,0.93,0.9 and 0.83 V(vs Hg/ HgO),respectively,and the corresponding value of Fe electrode is 0.91,0.86,0.78 and 0.7 V(vs Hg/HgO), respectively.Clearly,the anodic polarization of Ox2is significantlyrelievedforFe/Cunanocomposite electrode.

    Fig.4Discharge curves of Fe and Fe/Cu nanocomposite electrodes at various current densities

    Fig.5Discharge curves of Fe and Fe/Cu nanocomposite electrodes at various operating temperatures

    Therearesimilarregulationsbetweenthe influence of the low-temperature and the high-rate on the discharge-ability of Fe and Fe/Cu electrodes(Fig. 5).With the temperature decreasing from 30 to-40℃,both electrodes suffer capacity deterioration and increasingpolarization.However,thetemperature influence on the discharge-ability for Fe/Cu electrode is much smaller as compared to Fe electrode.At 30℃,the capacity and Emidof Fe/Cu electrode are slightly higher than those Fe/Cu electrode,but the gaps between capacity and midpoint potential of two electrodes gradually widens with decreasing temperature.At-40℃,Fe/Cu electrode is able to deliver a capacity of 211 mAh·gFe-1,which accounts for 61%of its capacity at room-temperature,and is more than seven times higher than the capacity output of Fe electrode(30 mAh·gFe-1).Moreover,the Emidvalue of Fe/Cu electrode is nearly 100 mV higher than that of Fe electrode at-40℃.It is clear that both the capacity output and the depolarization of the Fe/Cu nanocomposite electrode are significantly superior to those of thetraditionalFeelectrodeinlow-temperature environment.As previously stated,the copper species dissolve and precipitate homogeneously on the surface of Fe species.The in situ formed Cu nanoparticles can uniformize the cathodic current distribution and suppress the coalescence of Fe grains.Cu nanoparticles can also effect as high conductive nucleation corestogreatlypromotetheanodicdissolutiondeposition process of Fe species,thereby significantly improve the performance of the electrode at low temperature.

    2.3 Anodic kinetics of Fe/Cu nano-composite electrode

    Theexcellenthigh-rateandlow-temperature performances of Fe/Cu nanocomposite electrode can be attributed to the greatly enhanced anodic kinetics of Ox2reaction.To study the effect of Cu incorporation on the kinetics of Ox2reaction,LSV tests at various scan rates are conducted and the results are shown in Fig.6(a~b).Both the current response at each scan rate and the increment of current density with the scan rate are much higher for Fe/Cu electrode as opposed to Fe electrode.This implies that a much higher reaction rate of Ox2is achieved for Fe/Cu electrode.Furthermore,the shift in anodic peak potential is minimal for Fe/Cu electrode,indicating that Fe/Cu electrode suffers relatively low anodic polarization as previous discussion.

    The variations of peak current density(Ip)with square root of the scan rate(v1/2)for iron electrodes with and without Cu incorporation are plotted in Fig.7. The peak current densities of both electrodes varies linearly with the square root of scan rate.Such a linear relationship between Ipand v1/2for Ox2can be expressed as[24]:

    Fig.6Anodic LSVs of Fe electrode(a)and Fe/Cu electrode(b)under various scan rates

    Fig.7Relationship between Ipand v1/2for Fe and Fe/Cu nano-composite electrodes

    Here K is the specific reaction rate constant for the metal dissolution reaction,which directly characterizes the reaction rate.Consequently,the kinetic properties of iron anodic dissolution can be largely evaluated from the slope of Ipto v1/2in Fig.7,and the Fe/Cu nanocomposite electrode evidently attains a much higher rate for Ox2reaction than Fe electrode.

    The anodic reaction of iron electrode(Ox2)can be represented as:

    It is a typical‘dissolution-deposition’process which proceeds through the following steps[25-26]:

    ForthetraditionalFeelectrode,thelow solubility of intermediates(HFeO2-)is responsible for the extremely poor high-rate and low-temperature performances[3].Due to the low solubility,HFeO2-is prone to supersaturation before diffusing in the electrolyte,thereby the insoluble and insulating Fe(OH)2tends to precipitate at or near the anodic reaction site and block the active surface of Fe.In this study,the introduction of Cu significantly promotes the kinetics of Ox2reaction as is confirmed above.Since the Cu incorporationcanhardlyaffectthesolubilityof HFeO2-in the alkaline solution,it is reasonable to conclude that Cu nanoparticles play an important role in altering the passivation behavior of active iron. Presumably,these Cu particles of tight adhesion with active Fe phase act as the heterogeneous nucleation cores for Fe(OH)2deposition,which suppresses the cover of Fe(OH)2on the reaction sites upon discharge, and keeps the high effective interface between active Fe and electrolyte.Additionally,Cu nanoparticles of high electronic conductivity distributes homogeneously through the whole electrode,which constructs a high conductive network to guarantee the electrons transport when electrode suffers a severely passivation,significantly reducing the anodic polarization of electrode upon discharge.

    3 Conclusions

    In summary,a facile self-assembly of Fe/Cu nanocomposite from the cathodic decomposition of t-CuFe2O4is presented.The electro-crystallized copper and iron nanoparticles disperse homogeneously andcontactintimately.Whentheas-preparedFe/Cu nanocomposite electrode was tested as the anode for Ni-Fe alkaline battery,it exhibits enhanced discharge capacity,charge-acceptance and especially remarkable high-rate and low-temperature performances.Excellent capacity output and potential plateau characteristics can be achieved even at 4 500 mA·gFe-1or-40℃.It is demonstrated that the incorporation of copper promotes the anodic kinetics of active iron upon the dissolution-deposition process,resulting to the greatly enhanced high-rate and low-temperature dischargeability of the electrode.

    Thepresentedroutestillhasroomfor optimization.Our further work shows that by adjusting the atomic ratio nCu/nFein the pristine binary oxide can make the electrode to output much higher capacity whileremainingtheexcellentrateperformance (unpublished).The employment of other reductive methods,such as pulse charging or H2reduction,may assisttheFe/Cucompositetogetmoreideal morphology for practice.Furthermore,such route also has a promising application in Fe-air and Fe-AgO rechargeable alkaline batteries,which are bothered by the poor high-rate and low-temperature performances of Fe alkaline anodes as well.

    [1]Shukla A K,Venugopalan S,Hariprakash B.J.Power Sources, 2001,100:125-148

    [2]Ibrahim H,Ilinca A,Perron J.Renewable Sustainable Energy Rev.,2008,12:1221-1250

    [3]Brodd R J,Linden D,Reddy T B.Handbook of Batteries. 3rd Ed.New York:McGraw-Hill,2002:25-45

    [4]Kalaignan G P,Muralidharan V S,Vasu K I.J.Appl. Electrochem.,1987,17:1083-1092

    [5]Ravikumar M K,Balasubramanian T S,Shukla A K.J. Power Sources,1995,56:209-212

    [6]Periasamy P,Bahu B R,Iyer S V.J.Power Sources,1996, 62:9-14

    [7]Ravikumar M K,Balasubramanian T S,Shukla A K,et al.J. Appl.Electrochem.,1996,26:1111-1115

    [8]Caldas C A,Lopes M C,Carlos I A.J.Power Sources,1998, 74:108-112

    [9]Souza C A C,Carlos I A,Lopes M C,et al.J.Power Sources, 2004,132:288-290

    [10]Wang Y D,Ai X P,Cao Y L,et al.Electrochem.Commun., 2004,6:780-784

    [11]Hariprakash B,Martha S K,Hegde M S,et al.J.Appl. Electrochem.,2005,35:27-32

    [12]Hang B T,Watanabe T,Eashira M,et al.J.Power Sources, 2005,150:261-271

    [13]Casellato U,Comisso N,Mengoli G.Electrochim.Acta,2006, 51:5669-5681

    [14]Ujimine K,Tsutsumi A.J.Power Sources,2006,160:1431-1435

    [15]Hang B T,Yoon S H,Okada S,et al.J.Power Sources, 2007,168:522-532

    [16]Hang B T,Hayashi H,Yoon S H,et al.J.Power Sources, 2008,178:393-401

    [17]Huang K C,Chou K S.Electrochem.Commun.,2007,9:1907 -1912

    [18]Kao C Y,Chou K S.J.Power Sources,2010,195:2399-2404

    [19]Urbaniak J,Skowroński J M,Olejnik B.J.Solid State Electrochem.,2010,14:1629-1635

    [20]Kao C Y,Tsai Y R,Chou K S.J.Power Sources,2011,196: 5746-5750

    [21]Shin H C,Choi S C.Chem.Mater.,2001,13:1238-1242

    [22]Cudennec Y,Lecerf A,Gérault Y.Eur.J.Solid State Inorg. Chem.,1995,32:1013-1018

    [23]Kameoka S,Tanabe T,Tsai A P.Appl.Catal.A,2010,375: 163-171

    [24]Bard A J,Faulkner L R.Electrochemical Methods:Fundamental and Applications.New York:John Wiley&Sons. Inc.,1980:6-20

    [25]Shoesmith D W,Taylor P,Bailey M G,et al.Electrochim. Acta,1978,23:903-916

    [26]Asakura S,Nobe K.J.Electrochem.Soc.,1991,118:13-18

    電化學(xué)自組裝Fe/Cu納米復(fù)合材料對鐵鎳電池高倍率及低溫性能改性

    劉平1朱?。?2楊軍1黃蘭香1陳云貴*,1
    (1四川大學(xué)材料科學(xué)與工程學(xué)院,成都610065)
    (2四川大學(xué)新能源與低碳技術(shù)研究院,成都610065)

    通過在堿液中陰極還原鐵酸銅(t-CuFe2O4)簡便地實(shí)現(xiàn)了納米Fe/Cu復(fù)合材料的自組裝。采用循環(huán)伏安(CV)與X射線衍射(XRD)分析了自組裝過程中的相變。通過透射電鏡(TEM)、選區(qū)電子衍射(SAED)以及掃描透射-能譜分析(STEM-EDX)的表征可以發(fā)現(xiàn)電結(jié)晶得到的鐵、銅納米顆粒分布均勻且接觸緊密。當(dāng)用于鐵鎳電池負(fù)極時,F(xiàn)e/Cu納米復(fù)合電極展現(xiàn)了較好的放電容量與充電接收能力,并具備優(yōu)異的高倍率與低溫性能。當(dāng)電流密度高達(dá)4 500 mA·gFe-1或運(yùn)行溫度僅為-40℃時,該電極仍擁有很好的輸出容量與電位特性。線性掃描伏安(LSV)分析證明了該電極中原位生成的Cu納米顆粒催化了活性Fe的陽極溶解動力學(xué)性能,因而明顯改善了電極的高倍率與低溫放電性能。

    鐵酸銅;自組裝;納米復(fù)合材料;鐵電極;高倍率與低溫性能

    TB331

    A

    1001-4861(2017)05-0779-08

    2016-12-29。收修改稿日期:2017-03-11。

    10.11862/CJIC.2017.089

    四川省科技支撐計(jì)劃(No.2015GZ0133)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:ygchen60@aliyun.com,zhuding@scu.edu.cn,Tel:+86 13981815102,+86 13881955107

    猜你喜歡
    高倍率四川大學(xué)伏安
    用伏安法測電阻
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    三維多孔石墨烯在高倍率超級電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    論ZVR高倍率視頻壓縮存儲技術(shù)的先進(jìn)性與實(shí)用性
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    中國公路(2017年13期)2017-02-06 03:16:37
    百年精誠 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    基于LABVIEW的光電池伏安特性研究
    電子制作(2016年23期)2016-05-17 03:53:41
    通過伏安特性理解半導(dǎo)體器件的開關(guān)特性
    四川大學(xué)華西醫(yī)院
    高倍率性能鋰離子電池Li[Ni1/3Co1/3Mn1/3]O2正極材料的制備及其電化學(xué)性能
    国产成人aa在线观看| 久久精品国产自在天天线| av网站免费在线观看视频| 麻豆成人av视频| 日韩成人伦理影院| 国产精品不卡视频一区二区| 国产伦在线观看视频一区| 中国美白少妇内射xxxbb| 欧美高清成人免费视频www| 99久久精品一区二区三区| 中文字幕久久专区| 亚洲无线观看免费| 高清视频免费观看一区二区| 99re6热这里在线精品视频| 国产一区二区三区综合在线观看 | 成人18禁高潮啪啪吃奶动态图 | av国产久精品久网站免费入址| 亚洲国产最新在线播放| 精品久久久久久久末码| 在线免费观看不下载黄p国产| 亚洲欧美日韩另类电影网站 | 内射极品少妇av片p| 看十八女毛片水多多多| 欧美区成人在线视频| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 亚洲人成网站在线观看播放| 老熟女久久久| av一本久久久久| 日本黄大片高清| 午夜激情福利司机影院| 亚洲国产欧美在线一区| 深夜a级毛片| 天天躁夜夜躁狠狠久久av| 亚洲欧美精品专区久久| 七月丁香在线播放| 国产综合精华液| 最近的中文字幕免费完整| 久久久久精品性色| 日韩人妻高清精品专区| 久久人人爽人人片av| 欧美精品国产亚洲| 丰满迷人的少妇在线观看| 人妻少妇偷人精品九色| 欧美日韩亚洲高清精品| 天堂俺去俺来也www色官网| 亚洲va在线va天堂va国产| 国产高潮美女av| 久久亚洲国产成人精品v| 国产探花极品一区二区| 中国美白少妇内射xxxbb| 日韩视频在线欧美| 91精品国产九色| 亚洲国产精品成人久久小说| 国语对白做爰xxxⅹ性视频网站| av一本久久久久| 日本色播在线视频| 国产成人精品久久久久久| 国产成人一区二区在线| 免费黄频网站在线观看国产| 国产久久久一区二区三区| 18禁动态无遮挡网站| 亚洲欧美一区二区三区国产| 中文字幕精品免费在线观看视频 | 欧美 日韩 精品 国产| 亚洲精品国产av成人精品| 99久久中文字幕三级久久日本| 熟女电影av网| 身体一侧抽搐| 国产午夜精品久久久久久一区二区三区| 人体艺术视频欧美日本| 精品视频人人做人人爽| 狠狠精品人妻久久久久久综合| 国产精品一二三区在线看| 大片免费播放器 马上看| 国产精品三级大全| 99久久中文字幕三级久久日本| 美女xxoo啪啪120秒动态图| 嫩草影院新地址| 免费看日本二区| 国产日韩欧美在线精品| 久久久久久久久久久免费av| av在线观看视频网站免费| 菩萨蛮人人尽说江南好唐韦庄| 一边亲一边摸免费视频| 91在线精品国自产拍蜜月| av不卡在线播放| 国产一级毛片在线| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| 国产午夜精品久久久久久一区二区三区| 22中文网久久字幕| 亚洲经典国产精华液单| 91aial.com中文字幕在线观看| 亚洲精品乱久久久久久| 一二三四中文在线观看免费高清| 秋霞在线观看毛片| 联通29元200g的流量卡| 夜夜看夜夜爽夜夜摸| 深夜a级毛片| 欧美精品国产亚洲| 久久国内精品自在自线图片| 久久久久久久久久久丰满| 国产av一区二区精品久久 | 看免费成人av毛片| 国产av精品麻豆| 国产黄频视频在线观看| 欧美另类一区| 热99国产精品久久久久久7| 91精品国产九色| av视频免费观看在线观看| 久久久久久久久久人人人人人人| 欧美bdsm另类| 欧美性感艳星| 亚洲不卡免费看| 免费少妇av软件| 国产毛片在线视频| 久久精品国产亚洲av天美| 男人爽女人下面视频在线观看| 免费观看的影片在线观看| 国产精品久久久久久精品电影小说 | 国产精品一区二区三区四区免费观看| av专区在线播放| 男女无遮挡免费网站观看| 如何舔出高潮| 久久久久网色| 高清欧美精品videossex| 婷婷色综合www| 欧美另类一区| 亚洲国产精品一区三区| 色婷婷av一区二区三区视频| 少妇被粗大猛烈的视频| 日韩一本色道免费dvd| 久久久久久九九精品二区国产| 欧美人与善性xxx| 日本黄色片子视频| 最近的中文字幕免费完整| 亚洲欧美中文字幕日韩二区| 毛片女人毛片| 春色校园在线视频观看| 午夜福利影视在线免费观看| 亚洲欧美中文字幕日韩二区| 日韩 亚洲 欧美在线| 51国产日韩欧美| 中文字幕精品免费在线观看视频 | 国产高潮美女av| 国产永久视频网站| 天天躁夜夜躁狠狠久久av| 午夜福利在线在线| 亚洲av中文av极速乱| 亚洲成人av在线免费| 91狼人影院| 免费少妇av软件| 免费人成在线观看视频色| 亚洲成人一二三区av| 亚洲精品第二区| 国产成人aa在线观看| 男人狂女人下面高潮的视频| 尾随美女入室| 亚洲第一区二区三区不卡| 小蜜桃在线观看免费完整版高清| 又黄又爽又刺激的免费视频.| 中文字幕久久专区| 国产女主播在线喷水免费视频网站| 精品一区二区免费观看| 午夜老司机福利剧场| 亚洲综合精品二区| 久久精品久久精品一区二区三区| 久久女婷五月综合色啪小说| 久久久久精品久久久久真实原创| 一二三四中文在线观看免费高清| 亚洲国产色片| 久久鲁丝午夜福利片| 蜜臀久久99精品久久宅男| 在线观看三级黄色| 亚洲va在线va天堂va国产| 成人二区视频| 嘟嘟电影网在线观看| 一级毛片久久久久久久久女| 中国国产av一级| 国产av国产精品国产| 日韩免费高清中文字幕av| 毛片一级片免费看久久久久| 99久国产av精品国产电影| 日韩免费高清中文字幕av| 色婷婷久久久亚洲欧美| 欧美xxxx性猛交bbbb| 人妻系列 视频| 美女高潮的动态| 久久人人爽人人片av| 国产91av在线免费观看| 伊人久久国产一区二区| 国产成人a区在线观看| av专区在线播放| 国产精品99久久久久久久久| 日韩国内少妇激情av| 国产成人午夜福利电影在线观看| av视频免费观看在线观看| 国产在线视频一区二区| 三级经典国产精品| 国产男女超爽视频在线观看| 亚洲成人av在线免费| 免费观看在线日韩| 成人一区二区视频在线观看| 18+在线观看网站| 一个人看视频在线观看www免费| 久久鲁丝午夜福利片| 少妇人妻精品综合一区二区| 免费观看在线日韩| 国产黄片美女视频| 成人亚洲精品一区在线观看 | 久久久久久久久大av| 精品久久久久久电影网| 2018国产大陆天天弄谢| 99久久精品热视频| 1000部很黄的大片| 亚洲人成网站在线观看播放| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av涩爱| 亚洲丝袜综合中文字幕| 精品少妇黑人巨大在线播放| 午夜免费男女啪啪视频观看| 国产午夜精品一二区理论片| 亚洲人与动物交配视频| 国内精品宾馆在线| 婷婷色综合www| 国产毛片在线视频| 成年av动漫网址| 国产黄色免费在线视频| 国产色婷婷99| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区黑人 | 亚洲av免费高清在线观看| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| av一本久久久久| 国产精品三级大全| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 亚洲av日韩在线播放| 日日撸夜夜添| 一区二区三区四区激情视频| 日本免费在线观看一区| 国产真实伦视频高清在线观看| 免费人成在线观看视频色| 秋霞伦理黄片| 亚洲经典国产精华液单| 欧美三级亚洲精品| 国产午夜精品久久久久久一区二区三区| 日本色播在线视频| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 国产高清三级在线| 三级经典国产精品| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 国产黄色视频一区二区在线观看| 97超碰精品成人国产| 免费人妻精品一区二区三区视频| 久久精品久久精品一区二区三区| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 国产黄频视频在线观看| 啦啦啦视频在线资源免费观看| 噜噜噜噜噜久久久久久91| 春色校园在线视频观看| 免费人成在线观看视频色| 永久免费av网站大全| 国产精品偷伦视频观看了| 国产精品欧美亚洲77777| 99热6这里只有精品| 99re6热这里在线精品视频| 最新中文字幕久久久久| 高清欧美精品videossex| 亚洲成人一二三区av| 日本vs欧美在线观看视频 | 人妻夜夜爽99麻豆av| 中文精品一卡2卡3卡4更新| 亚洲欧美中文字幕日韩二区| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 欧美另类一区| 国产黄色视频一区二区在线观看| 午夜激情久久久久久久| 又大又黄又爽视频免费| 七月丁香在线播放| 色吧在线观看| 国产高潮美女av| 日韩欧美 国产精品| 日日摸夜夜添夜夜添av毛片| 久久国产精品大桥未久av | 欧美极品一区二区三区四区| 久久ye,这里只有精品| 五月开心婷婷网| 久久精品国产自在天天线| 18+在线观看网站| 嘟嘟电影网在线观看| 亚洲精品日韩在线中文字幕| 乱系列少妇在线播放| 国产免费福利视频在线观看| 久久精品国产亚洲av天美| 欧美xxxx黑人xx丫x性爽| 一区二区三区精品91| 国产精品免费大片| 国产精品99久久99久久久不卡 | 久久影院123| 99视频精品全部免费 在线| 国产精品一区二区在线观看99| 麻豆成人av视频| 一级毛片我不卡| 久久99热这里只频精品6学生| 啦啦啦视频在线资源免费观看| 亚洲不卡免费看| 国产精品.久久久| av网站免费在线观看视频| 不卡视频在线观看欧美| 国产精品99久久99久久久不卡 | 一区二区三区四区激情视频| 免费观看a级毛片全部| 日韩av在线免费看完整版不卡| 国产一区有黄有色的免费视频| 国产亚洲最大av| a 毛片基地| 尾随美女入室| 日本wwww免费看| 午夜免费鲁丝| 简卡轻食公司| 久久久久网色| 噜噜噜噜噜久久久久久91| 亚洲在久久综合| 我的女老师完整版在线观看| 国产无遮挡羞羞视频在线观看| 国产永久视频网站| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 嘟嘟电影网在线观看| 伊人久久精品亚洲午夜| 精品久久久噜噜| 国产美女午夜福利| 视频区图区小说| 天堂俺去俺来也www色官网| 国语对白做爰xxxⅹ性视频网站| 国产精品三级大全| 国产精品精品国产色婷婷| 国产亚洲91精品色在线| 日韩不卡一区二区三区视频在线| 嘟嘟电影网在线观看| 激情五月婷婷亚洲| 成人国产av品久久久| 亚洲欧美一区二区三区国产| 成人美女网站在线观看视频| 国产成人一区二区在线| 少妇精品久久久久久久| 精品人妻一区二区三区麻豆| 亚洲国产最新在线播放| av又黄又爽大尺度在线免费看| 亚洲国产欧美在线一区| 亚洲性久久影院| 尾随美女入室| 亚洲欧美一区二区三区黑人 | 国产在视频线精品| 精品视频人人做人人爽| 两个人的视频大全免费| 免费播放大片免费观看视频在线观看| 最近最新中文字幕免费大全7| 国产又色又爽无遮挡免| 国产美女午夜福利| 午夜精品国产一区二区电影| 亚洲av成人精品一区久久| 又黄又爽又刺激的免费视频.| 欧美日韩综合久久久久久| 大陆偷拍与自拍| 夫妻午夜视频| 国产精品一区www在线观看| 高清av免费在线| 美女主播在线视频| 三级国产精品片| 最黄视频免费看| 国产精品99久久久久久久久| 91狼人影院| 国产男女超爽视频在线观看| 夜夜看夜夜爽夜夜摸| videossex国产| 亚洲欧洲国产日韩| 国产av精品麻豆| 精品亚洲成a人片在线观看 | 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 亚洲熟女精品中文字幕| 最新中文字幕久久久久| 黄片无遮挡物在线观看| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 亚洲一级一片aⅴ在线观看| 国产精品不卡视频一区二区| 亚洲第一区二区三区不卡| 欧美xxⅹ黑人| 哪个播放器可以免费观看大片| 自拍欧美九色日韩亚洲蝌蚪91 | a 毛片基地| 舔av片在线| 亚洲真实伦在线观看| 免费av不卡在线播放| 我的老师免费观看完整版| 欧美激情国产日韩精品一区| 99久久精品热视频| 精品午夜福利在线看| 男人爽女人下面视频在线观看| 国产一级毛片在线| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av涩爱| 免费看日本二区| 一级毛片我不卡| 国产黄色视频一区二区在线观看| 成人二区视频| 国产精品人妻久久久久久| h日本视频在线播放| 亚洲国产精品专区欧美| 大话2 男鬼变身卡| 国产精品不卡视频一区二区| 五月玫瑰六月丁香| 亚洲综合色惰| 亚洲美女视频黄频| 最新中文字幕久久久久| 亚洲国产色片| 99久久精品国产国产毛片| 国产精品一二三区在线看| 在线免费观看不下载黄p国产| 王馨瑶露胸无遮挡在线观看| 亚洲av免费高清在线观看| 少妇熟女欧美另类| 天堂俺去俺来也www色官网| av线在线观看网站| 精品久久久噜噜| 国产高潮美女av| 免费大片18禁| 亚洲国产精品成人久久小说| 日韩三级伦理在线观看| 深夜a级毛片| 亚洲av中文字字幕乱码综合| 成年av动漫网址| 岛国毛片在线播放| 黄片无遮挡物在线观看| av又黄又爽大尺度在线免费看| 激情 狠狠 欧美| 最近中文字幕2019免费版| 国产成人一区二区在线| 看十八女毛片水多多多| 汤姆久久久久久久影院中文字幕| 久久久午夜欧美精品| 国产爱豆传媒在线观看| 久久6这里有精品| 久久久欧美国产精品| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线观看99| 国产av精品麻豆| 丝袜喷水一区| 免费观看av网站的网址| 少妇被粗大猛烈的视频| 久久国产精品大桥未久av | 成人综合一区亚洲| 街头女战士在线观看网站| 嫩草影院入口| 免费观看的影片在线观看| 91精品国产九色| 少妇的逼水好多| 久热久热在线精品观看| 狂野欧美激情性bbbbbb| 国产91av在线免费观看| 三级国产精品欧美在线观看| 十分钟在线观看高清视频www | 欧美 日韩 精品 国产| 国产亚洲一区二区精品| 国产精品一二三区在线看| 狠狠精品人妻久久久久久综合| 日韩在线高清观看一区二区三区| 99久久人妻综合| 尤物成人国产欧美一区二区三区| 国产伦在线观看视频一区| av免费观看日本| 欧美zozozo另类| 免费黄网站久久成人精品| 国产毛片在线视频| 亚洲美女黄色视频免费看| 亚洲熟女精品中文字幕| 成人18禁高潮啪啪吃奶动态图 | 91在线精品国自产拍蜜月| 久久99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区性色av| 日韩精品有码人妻一区| 能在线免费看毛片的网站| 一级二级三级毛片免费看| 毛片女人毛片| 极品教师在线视频| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 国产在线免费精品| 观看美女的网站| 国产色爽女视频免费观看| 免费看不卡的av| 一区在线观看完整版| 卡戴珊不雅视频在线播放| 男男h啪啪无遮挡| 久久久久精品性色| 老司机影院成人| 在线亚洲精品国产二区图片欧美 | 精品人妻视频免费看| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| 成人影院久久| 久久精品久久精品一区二区三区| 久久国内精品自在自线图片| a级毛色黄片| 久久久久久久亚洲中文字幕| 老师上课跳d突然被开到最大视频| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 亚洲精品自拍成人| av又黄又爽大尺度在线免费看| 久久精品夜色国产| 岛国毛片在线播放| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| 一本色道久久久久久精品综合| 国产 精品1| 伦理电影大哥的女人| 黄片wwwwww| 亚洲,一卡二卡三卡| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 国产在线视频一区二区| 3wmmmm亚洲av在线观看| 免费看av在线观看网站| 久久久久国产网址| 欧美少妇被猛烈插入视频| 欧美精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 国产精品久久久久久精品古装| 九草在线视频观看| av在线观看视频网站免费| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲网站| 蜜桃在线观看..| 日本av免费视频播放| 毛片一级片免费看久久久久| 国产大屁股一区二区在线视频| 国产精品久久久久久久电影| 天堂8中文在线网| 中国美白少妇内射xxxbb| 亚洲国产最新在线播放| 久久久久久久久久久免费av| 国产中年淑女户外野战色| 免费看光身美女| 免费观看性生交大片5| 成人一区二区视频在线观看| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 国产精品爽爽va在线观看网站| 亚洲成人一二三区av| 成人高潮视频无遮挡免费网站| 丝瓜视频免费看黄片| av免费观看日本| 国国产精品蜜臀av免费| 直男gayav资源| 精华霜和精华液先用哪个| 深爱激情五月婷婷| 免费少妇av软件| 日韩制服骚丝袜av| 综合色丁香网| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 国产精品嫩草影院av在线观看| 日日啪夜夜爽| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 青春草国产在线视频| 亚洲欧美日韩东京热| 中国国产av一级| 国产精品久久久久久精品古装| 高清午夜精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 18禁裸乳无遮挡免费网站照片| 最后的刺客免费高清国语| 亚洲婷婷狠狠爱综合网| 国产成人aa在线观看| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说| 高清av免费在线| 男人爽女人下面视频在线观看| 18禁动态无遮挡网站| 亚洲性久久影院| 一区二区av电影网| 18禁裸乳无遮挡免费网站照片| 国产在线一区二区三区精| 九九爱精品视频在线观看| 全区人妻精品视频| 亚洲自偷自拍三级| 国产伦精品一区二区三区四那| 精品国产乱码久久久久久小说| 大码成人一级视频| 精品人妻一区二区三区麻豆| 久久av网站| 一区二区三区乱码不卡18| 欧美三级亚洲精品| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 日日摸夜夜添夜夜爱| 伦理电影大哥的女人| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥|