• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymptotics and Blow-up for M ass Critical Nonlinear Disp ersive Equations?

    2017-07-02 07:18:34FrankMERLE
    關(guān)鍵詞:黃玲墨鏡外地

    Frank MERLE

    (Dedicated to Professor Ha?m Brezis on the occasion of his 70th birthday)

    1 General Setting and Universality Questions

    Nonlinear partial differential equations with Hamiltonian structure appear in models of wave propagation in physics or geometry.In the 1980s,basic properties of these equations were established,notably the existence and stability of special solutions called solitons.In the 1990s,tools from harmonic analysis led to a refined understanding of properties of the corresponding linear equations and how to extend these properties to nonlinear equations.In particular,the notion of criticality appeared.There remained the problem of understanding the dynamics related to nonlinear objects(or special solutions).These questions have attracted considerable interest in the last fifteen years,and yet we are just beginning to have a rough picture of the subject.More precisely,the questions are what to expect in this context,what can be proved,and with which patterns or tools can one approach these problems.In this paper,I will consider the following equations(see[34]for a more extend review on the subject).

    (1)The L2(mass)critical nonlinear Schr?dinger(cNLS for short)equation

    (2)The L2(mass)critical Korteweg-de Vries(cKdV for short)equation

    These are special cases of the nonlinear Schr?dinger(NLS for short)equation and the generalized Korteweg-de Vries(gKd V for short)equation with power nonlinearities:

    where the equation with a?sign in front of the nonlinear term is called defocusing and is expected to have only linear behavior,while the equation with a+sign is called focusing and is expected to have nonlinear behavior(the nonlinear effect balances the linear effect).

    1.1 Local Cauchy theory

    Given initial data at time t=0,the general problem is to understand the behavior of the solution u(t)for t>0(and t<0).First,in the 1980sand 1990s,the existence and uniqueness of local solutions in time were clarified using Strichartz estimates on the linear equation,and fixed point arguments to treat the nonlinear term in a perturbative way.Many authors contributed to these developments;pioneering works are[2,5–6,8,11–13],and many others.For the above equations,we have the following results.

    The mass critical nonlinear Schr?dinger(cNLS for short)equation and the mass critical Korteweg-de Vries(cKd V for short)equation are both locally well-posed(exhibiting existence and uniqueness of a maximal solution)on[0,T)(similarly onandwhereEither T=+∞ (and the solution is to said to be global),or T<+∞,and then if(the solution is said to blow up in finite time).Note that the value of T is in fact independent of the space,and in L2the blow-up criterion is given by a Strichartz norm(see[5,13]).Moreover,one has the following conservation laws(mass and energy):For all t∈[0,T),

    We have,in addition to the standard invariance by translation in space and time of the equation(with phase and Galilean invariance for the NLS equation),the scaling symmetry of the solution:If u(t,x)is a solution of cNLSequation,then forλ>0,

    is also a solution,and for solutions of cKd V equation,

    is also a solution.These transformations leave invariant the L2norm of the solution,so that both problems are called mass critical.In the defocusing case,the?sign in the energy becomes a+sign and the energy is coercive.

    1.2 The problem of asymptotic behavior

    We first have the following classical examples:

    (i)Small data result.If the solution is small in the critical space(with a constant depending on a Strichartz inequality),then the solution is global and scatters(has linear behavior)as time approaches infinity.Let S(t)v0and S(t)(v0,v1)be the solutions of the corresponding linear equations.

    There is aδ>0,such that in the case of cNLS and cKd V equations,ifthen the solution is global and there are v±∈ L2such that

    (ii)Nonlinear objects such as periodic-in-time or stationary solutions.In the focusing situation,we have simple nonlinear objects which are stationary solutions up to the invariance of the equation.More precisely,we have for the cKd V equation a traveling wave solution of the form u(t,x)=Q(x?t)where Q is the one-dimensional solution in H1of

    For the cNLS equation,the periodic solution is of the formwhere Q is the ground state solution in H1of

    (see[1];note that excited states may also be considered).

    (iii)The so-called self-similar solution.This is an expected typical example of blow-up solutions.We consider solutions of the form(up to some time-dependent translation and phase)for the mass critical KdV and cKdV equations,

    for the mass critical NLS(the cNLSequation),

    From the criticality and the conservation laws,for cNLS,cKdV equations,we will exclude such self-similar blow-up(in a more general form)for solutions in the critical space.Nonexistence of self-similar blow-up(in critical space)is one of the features of critical equations.Indeed,one can see that F satisfies an equation and that the behavior of the solution as the space variable goes to infinity shows that the solution is not in the critical space.To exclude self-similar-like behavior is in general a challenge deeply related to the nature of each equation.It corresponds to replacing an ordinary differential equation analysis by a partial differential equation analysis.

    Other examples of solutions are generally in some respects a combination of the previous examples.They involve understanding the nature of dispersion at infinity in space and its coupling with the nonlinear dynamics.In particular,to construct a blow-up solution with a precise behavior is extremely complicated,even at a formal level,involving interaction of nonlinear/linear dynamics.Typically,dynamics of the solution is(up to scaling)asymptotic to a simple nonlinear object as defined before.In the global case,it is an example of asymptotic stability.In the blow-up case,we obtain a bubbling solution with a universal profile.In the examples considered,dynamics near a soliton are quite degenerate(having more degenerate directions than those given by the symmetries of the equation)and small perturbations in a regular space can dramatically change the global nonlinear behavior.In particular,behavior of initial data at infinity(tails)is essential.To get a formal understanding of these dynamics and to rigorously establish the formal picture was a challenge and required a new set of ideas.In general,understanding these interactions will lead to a classification of the possible dynamics.The two main problems of this type that we considered were to understand blow-up behavior for the mass critical NLS,and to prove blow-up for the the mass critical Kd V.These questions were open for several decades,and their resolution has a number of consequences in different contexts.Our strategy is to see that in each situation deep knowledge of the dispersion is related to a monotonicity formula(or sets of monotonicity formulas)which encodes notions of irreversibility.Note that when we speak about monotonicity formulas in these problems of time oscillatory integrals,we mean to have a decreasing quantity up to terms of lower order which are controlled.As we shall see,this monotonicity gives stability properties of the resulting dynamics.

    We will now restrict attention to the physically relevant space dimension associated with each model.This is dimension one for the mass critical KdV(the cKdV equation),dimension two for the mass critical NLS(the cNLSequation).

    2 The Nonlinear Schr?dinger Equation

    2.1 History of the problem

    We focus in this section on the cNLS equation in the physically relevant dimension N=2.We will work in the energy space,assuming that u0∈H1.From an obstructive identity related to a pseudo-conformal invariance,it is known since the 1970s(see[10])that if

    Variational arguments yield that blow-up is related to bubbling(and no blow-up occurs forThen in the early 1990s,the following precursor result containing a rigidity notion for Hamiltonian dynamics was proved.

    Theorem 2.1(Dynamical Characterization of S in(2.2)and Q in(1.8))(see[30,32])Letand u(t,x)be the solution of the cNLS equation with initial data u0,then either(1)or(2)holds as follows:

    (1)u is equal to S or to Q(x)eit,up to the symmetries of the equation,

    (2)u is global,and scatters as

    The first step of the proof is to show,using the minimality of the mass,that the solution is either scattering or nondispersive.Then variational arguments,estimates on tails,and conformal invariance lead to the result.Now the solutions S,Q can be seen as the only solutions which have a nonlinear dynamics at the critical mass level|Q|L2.

    The next challenge is then to understand the dynamics in the context of a nonlinear/linear interaction,and a natural setting for this is small nonlinear data theory:For a small 0<α??1 and u0∈H1with small supercritical mass

    2.2 Loglog blow-up and classification(the Merle-Rapha?l theory)

    The starting point of this program is the Martel-Merle theory introducing rigidity notions for general data and dynamical application of these(see next section).We are now considering dynamics close to Q up to renormalization.Here the linearized problem around Q is very degenerate(having a higher degree of degeneracy than invariances of the equation)and the picture even at the formal level is not given by the linear theory.

    The idea is the following:We consider,near Q,a family of nonlinear objects related to self-similar blow-up with a small time-dependent parameter b(t)(on bounded sets,these self similar solutions look like Q,but have a tail at infinity and thus fail(just barely)to belong to L2).Next,we consider Qb,a regularization at infinity of this family which is minimal in some sense.At this point,the idea is to find irreversibility through the time evolution of the parameter b(t)from a monotonicity formula in b(t)(recall that this problem originally involves oscillatory integrals in time).

    The algebra related to Qbgives a formal proof of the loglog rate(related to cancellations at any polynomial order in the equation of the parameter b(t)).These notions based on monotonicity formulas do yield a rigorous proof of stable blow-up.The remarkable fact is that this theory works in H1and leads finally to the following theorem including a classification result.

    Theorem 2.2(L2Critical Blow-Up)(see[7,35–39,45])Let u0∈ H1with small supercritical mass(2.3)and u∈C([0,T),H1)be the corresponding solution to the cNLS equation.Then:

    (i)Sufficient condition for loglog blow-up:If E(u0)<0,or E(u0)=0 and,then u blows up in finite time with the loglog speed

    (ii)Stability of loglog blow-up:The set of H1initial data u0such that u(t)blows up in finite time with the loglog law(2.4)is open in H1.

    (iii)Universality of the bubble profile and classification of the blow-up rate:If T<+∞,then there exist parameters(λ(t),x(t),γ(t))and u?∈ L2,such that

    where Q is defined inandwhenand the speed of blow-up either satisfies the loglog law(2.4)or is bounded from below by the pseudo-conformal speed:

    2.3 Threshold solutions

    Theorem 2.2 yields the existence of an H1-open set of loglog blow-up solutions.In the neighborhood of Q,there are at least two other regimes:Scattering solutions displaying an H1-stable dynamics,and the solutions constructed by Bourgain-Wang[3]and Krieger-Schlag[17]which scatter to S:

    and which saturate the upper bound(2.6):when t→0.

    Such solutions are constructed by canceling interactions between S(t)and u?,taking u?to be very flat near the zero.Therefore,instability of such a solution is expected.In[40],adapting monotonicity properties to a mass constraint,one sees that the solutions(2.7)have an unstable threshold dynamics.

    Theorem 2.3(Instability of S-Type Solutions(2.7))(see[40])The Bourgain-Wang solutions are the threshold dynamics for the cNLSequation and lie on the boundary of both H1-open sets of solutions which scatter linearly as time goes to infinity,and solutions which blow up in finite time in the loglog regime.

    2.4 Other applications of this approach

    There are spectacular applications of this approach to the construction of blow-up solutions with a given behavior.This point of view involving monotonicity properties in problems of oscillatory integrals has been successfully used to solve some classical critical problems.

    The first step is to perform a formal analysis,where one considers specific localization of a self-similar profile(or its development with respect to a small parameter)and obtains,by computing the nonlinear equation of this reduction,a nonlinear finite-dimensional reduction of the problem.In all cases,we obtain the derivation of a monotonicity formula in a specific regime which ultimately leads to a rigor ousproof of the dynamics.It also shows that the infinite dimensional part of the solution is controlled by the finite-dimensional parameters.Here,in most cases,we use high regularity theory to obtain such monotonicity formulas via specific properties of the equation considered.A byproduct of the proof is a stability property with respect to the initial data of the dynamics in this higher regularity space(where one has the monotonicity formula).

    At this level,general classification is still out of reach and is a real challenge in most cases.Let me cite a few of these problems(see[46]for more details or examples).We have the focusing energy critical wave and Schr?dinger equations in dimension three(or their geometric counterparts in the critical dimension two)which can be reduced in the case of symmetry to the following equation:

    (i)The wave maps into the sphere S2(see[18,47–49])

    我打電話給黃玲說自己要到外地出差,問她大概什么時候回來,也許等她回來我可以將鑰匙交到她手里。我不知道為什么她要將鑰匙交給我,難道我這個只認識幾個月的女人比她的男朋友還可靠?黃玲給我的疑問太多,她像是藏在墨鏡背后的一個神秘的女人,時而近在咫尺溫暖人心,時而遙不可及神秘難測。

    (ii)The Schr?dinger maps into the sphere S2(see[41])

    3 Generalized Korteweg-de Vries Equation

    The cKd V equation admits the same conservation laws and scaling invariance as the cNLS equation and is mass critical.The problem of blow-up for the cKd V equation was considered as a classical and natural question,since it has the same features as the mass critical NLSequation but no conformal invariance(or associated virial identity which leads to a simple obstruction argument to global existence).For small 0<α??1,we consider data such that

    3.1 Subcritical and critical Martel-Merle theory for the generalized K orteweg-de Vries equation

    This problem was thoroughly studied by Martel and Merle in the early 2000s.Following the dynamical characterization of S for the mass critical NLS equation,where the nondispersive character of solutions follows from the mass constraint of the initial data,and the work of Glangetas,Merle[9],where for general data a minimality of an asymptotic dynamical property shows the nondispersive character of solutions,the set of results presented in this subsection is the next major breakthrough in the application of the notion of nondispersive solutions.

    The idea is to find a contradiction from energy constraints(E(u0)<0)and the exact asymptotic behavior of the solution in the critical situation.For this purpose,a method was introduced to produce irreversibility and rigidity in the problem.This method has as a byproduct the spectacular application in the subcritical case where solitons are stable(up to symmetry).Let us start with the simpler configuration.

    (i)The subcritical case(1

    In this subsection,we consider(1.4)for 10,

    is also a solution,whereThe main question was the asymptotic stability of the soliton Q:For initial data u0initially close to Q in the energy space,does the solution centered at a suitably chosen x(t)converge to Qclocally in space,as time goes to infinity?The main approach is to introduce rigidity,breaking the reversibility of the equation.For this purpose,we consider a new entire solution v(t)with initial data asymptotic to u(tn,xn+·)locally in space for some xn,where tngoes to infinity as follows:

    Then from a family of monotonicity formulas of the mass on half-lines,we are able to break the reversible character of the solution v(t)and to prove elliptic exponential estimates in x,uniform in time,on v(t,x+y(t))for some y(t).Thus v(t)is a nondispersive solution of the equation and we are able to conclude using dispersive properties that v(t,x)is exactly Q(x?t)up to symmetry of the equation.

    Theorem 3.1(Asymptotic Stability of Q)(see[22]) Assume 1

    where Qc+is defined in(3.2).

    (ii)The critical case(p=5).

    The situation in the critical case is much more delicate than in the subcritical case because of the possible oscillation in time of the scaling of the soliton.Nevertheless,through a use of irreversibility we are able to prove in the energy space the following.

    Theorem 3.2(L2Critical Blow-Up for the Kd V Equation)(see[22,23–25,33]) Let u0∈H1satisfying(3.1)and u∈C([0,T),H1)be the corresponding solution of the cKdV equation.Then:

    (i)Negative energy gives blow-up:If the initial data is such that E(u0)<0,then the solution blows up with T finite or infinite

    (ii)No self-similar blow-up:There are no solutions such that T<+∞and

    (iii)Universality of the bubble of concentration:There exist(λ(t),x(t))such that,for A>0,

    wherewhen t→ T.

    We remark that blow-up is in fact a consequence of asymptotic stability and energy constraints.Let E(u0)<0.The proof of blow-up goes along the following lines(arguing by contradiction):If the solution does not blow up,we are able to prove that u(tn)satisfies(3.5)with a sequenceλ(tn)>c>0.Using E(Qc)=0 and the coercivity of the energy for small mass,we obtain that the energy computed on this time sequence E(u(tn))is positive,which contradicts the conservation of the energy.

    3.2 Critical Martel-Merle-Rapha?l theory

    Another piece of Martel-Merle theory is as follows:Space decay of the initial data with negative energy leads to blow-up in finite time.Moreover,an estimate on the blow-up rate was obtained(see[25]).But clearly,compared to the mass critical NLS equation,one piece is missing in the full description of the blow-up.

    Recently,we came back to this problem and achieved a much more ambitious goal:We were ableto completely understand all solutions and their asymptotics for initial data near the ground state with decay(including blow-up rate/stability/instability/universality questions).This was set forth in the series of papers[27–29].Finally,we end up with a complete nonlinear finite dimensional description of the dynamical picture(despite the high degeneracy of the equation near the ground state).This is the only such situation known in the literature.The expectation is that the picture obtained is canonical and should be extended to different contexts.

    More precisely,consider the set of initial data forα0small,

    and consider the L2neighborhood around the family of solitary waves

    One first has the rigidity of the dynamics for data in A.

    Theorem 3.3(Rigidity of the Flow in A(3.6))(see[27])Letand u0∈ A?Tα?.Let u∈C([0,T),H1)be the corresponding solution of the cKdV equation.Then one of the following three scenarios occurs:

    (Blow-up)The solution blows up in finite time T>0 with the universal regime

    (Soliton)The solution is global(T=+∞)and converges asymptotically to a solitary wave Q c(u0).

    (Exit)The solution leaves the tube Tα? (3.7)at some time 0

    Moreover,the scenarios(Blow-up)and(Exit)are stable under small perturbations of the initial data in A.

    This is a complete classification of solutions with data in A which remain close in the L2sense to the manifold of solitary waves.Again,a monotonicity formula(not in the energy space but in a norm related to A)is a crucial step is this result.As for the cNLS equation,we have the following dynamical characterization of Q(1.8):If E(u0)≤ 0,u0∈ A andthen u blows up in finite time on both sides in time with the blow-up law(3.8).

    It remains to understand the long-time dynamics in the(Exit)regime.The first step is the existence and uniqueness of a minimal blow-up element which is the generalization of the S(t)dynamics for the cNLS equation.This result is a surprise since it was thought to be specific to the mass critical NLSequation and linked to the conformal invariance.A key to this existence result is the above classification result on localized initial data(even if this special solution has a spatially slow decay at infinity),and for the uniqueness a set of monotonicity properties.

    Theorem 3.4(Existence and Uniqueness of the Minimal Mass Blow-Up Element)(see[28])There exists a unique solution(up to symmetries of the equation)in H1of the cKdV equation with minimal masswhich blows up at T=0.

    Moreover,is globally defined for positive time.

    We next prove the relevance of this unstable solutionand the classification at minimal mass through a result which linksto a stable scenario(see also special examples of this fact in[32,40]for the mass critical NLS equation,and for the critical wave equation in[43],where they obtained a related classification of the flow near the solitary wave involving a description of the scattering zone and its boundary through a non-return lemma).The solutionis the universal attractor of all solutions in the(Exit)regime.

    Proposition 3.1(Description of the(Exit)Scenario)(see[28])Let u(t)be a solution in the(Exit)scenario of Theorem 3.3 and let t?be the corresponding exit time.

    (i)Then there existτ?= τ?(α?)and(λ?,x?)such that

    (ii)Assume that the solutionscatters asthen any solution in the(Exit)scenario is global for positive time and scatters as

    Note that it is natural to expectto scatter asfrom the situation for cNLS and ecNLW equations(see below)where it is proved.

    It is important to notice that the above results rely on the explicit computation on some parametrization of the solution for initial data in A,and not on algebraic virial type identities.One may justify the following procedure:Introduce the nonlinear decomposition of the flow

    where?is small,and show that to leading order,λ(t)obeys the dynamical system

    The three regimes(Exit),(Blow-up),and(Soliton)now correspond at the formal level respectively toλt(0)>0,λt(0)<0,and λt(0)=0.The main and deep part is a monotonicity formula in the original variable.

    We now consider initial data with slowly decaying tails interacting with the solitary wave which lead to new exotic singular regimes.

    Proposition 3.2(Exotic Blow-up Regimes for the cKd V Equation)(see[29]) There are solutions u∈H1of the cKdV equation,with initial data arbitrarily close in H1to Q,

    (i)which blow up at t=0 with speed

    (ii)which blow up at+∞ withas t→ +∞,forν>0.

    This shows that universality is lost without decay of the initial dataIn particular,the H1Martel-Merle theory is still relevant and optimal for solutions only in the energy space without strong decay.

    [1]Berestycki,H.and Lions,P.-L.,Nonlinear scalar field equations I:Existence of a ground state,Arch.Rational Mech.Anal.,82,1983,313–345.

    [2]Bourgain,J.,Global well-posedness of defocusing critical nonlinear Schr?dinger equation in the radial case,J.Am.Math.Soc.,12,1999,145–171.

    [3]Bourgain,J.and Wang,W.,Construction of blowup solutions for the nonlinear Schr?dinger equation with critical nonlinearity,Ann.S.Nor.Pisa,25,1998,197–215.

    [4]Brezis,H.and Coron,J.M.,Convergence of solutions of H-systems or how to blow bubbles,Arch.Rational Mech.Anal.,89,1985,21–56.

    [5]Cazenave,T.and Weissler,F.,Some remarks on the nonlinear Schr?dinger equation in the critical case,Nonlinear semigroups,partial differential equations and attractors,18–29,Lecture Notes in Math.,1394,Springer,Berlin,1989.

    [6]Colliander,J.,Keel,M.,Staffilani,G.,et al.,Global well-posedness and scattering for the energy-critical nonlinear Schr?dinger equation in R3,Ann.of Math.,167,2008,767–865.

    [7]Fibich,G.,Merle,F.and Rapha?l,P.,Proof of a spectral property related to the singularity formation for the critical NLS,Phys.D,220,2006,1–13.

    [8]Ginibre,J.and Velo,G.,Generalized Strichartz inequalities for the wave equation,J.Funct.Anal.,133,1995,50–68.

    [9]Glangetas,L.and Merle,F.,A Geometrical Approach of Existence of Blow-up Solution in H1for Nonlinear Schr?dinger Equations,Publications du Laboratoire d’Analyse Numérique,Université Pierre et Marie Curie,1995.

    [10]Glassey,R.,On the blowing up of solutions to the Cauchy problem for nonlinear Schr?dinger equations,J.Math.Phys.,18,1977,1794–1797.

    [11]Kato,T.,On nonlinear Schr?dinger equations,Ann.Inst.H.Poincaré Phys.Théor.,46,1987,113–129.

    [12]Kenig,C.,Recent developments on the global behavior to critical nonlinear dispersive equations,Proceedings of the International Congress of Mathematicians,Volume I,326–338,Hindustan Book Agency,New Delhi,2010.

    [13]Kenig,C.,Ponce,G.and Vega,L.,Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,Comm.Pure Appl.Math.,46,1993,527–620.

    [14]Killip,R.,Tao,T.and Visan,M.,The cubic nonlinear Schr?dinger equation in two dimensions with radial data,J.Eur.Math.Soc.,11,2009,1203–1258.

    [15]Killip,R.and Visan,M.,The focusing energy-critical nonlinear Schr?dinger equation in dimensions five and higher,Amer.J.Math.,132,2010,361–424.

    [16]Krieger,J.,Nakanishi,K.and Schlag,W.,Global dynamics away from the ground state for the energycritical nonlinear wave equation,Math.Z.,272,2012,297–316.

    [17]Krieger,J.and Schlag,W.,Non-generic blow-up solutions for the critical focusing NLSin 1-D,Jour.Eur.Math.Soc.,11,2009,1–125.

    [18]Krieger,J.,Schlag,W.and Tataru,D.,Renormalization and blow-up for charge one equivariant critical wave maps,Invent.Math.,171,2008,543–615.

    [19]Krieger,J.,Schlag,W.and Tataru,D.,Slow blow-up solutions for the H1(R3)critical focusing semilinear wave equation,Duke Math.J.,147,2009,1–53.

    [20]Landman,M.J.,Papanicolaou,G.C.,Sulem,C.and Sulem,P.-L.,Rate of blowup for solutions of the nonlinear Schr?dinger equation at critical dimension,Phys.Rev.A,38,1988,3837–3843.

    [21]Lions,P.-L.,The concentration-compactness principle in the calculus of variations:The limit case I and II,Rev.Mat.Ibero.,1,1985,45–121 and 145–201.

    [22]Martel,Y.and Merle,F.,A Liouville theorem for the critical generalized Korteweg–de Vries equation,J.Math.Pures Appl.,79,2000,339–425.

    [23]Martel,Y.and Merle,F.,Instability of solitons for the critical generalized Korteweg–de Vries equation,Geom.Funct.Anal.,11,2001,74–123.

    [24]Martel,Y.and Merle,F.,Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized Kd V equation,Ann.of Math.,155,2002,235–280.

    [25]Martel,Y.and Merle,F.,Blow-up in finite time and dynamics of blow-up solutions for the L2-critical generalized Kd V equation,J.Amer.Math.Soc.,15,2002,617–664.

    [26]Martel,Y.and Merle,F.,Nonexistence of blow-up solution with minimal L2-mass for the critical gKd V equation,Duke Math.J.,115,2002,385–408.

    [27]Martel,Y.,Merle,F.and Rapha?l,P.,Blow-up for critical gKd V equation I:Dynamics near the soliton,Acta Math.,to appear.ar Xiv:1204.4625

    [28]Martel,Y.,Merle,F.and Rapha?l,P.,Blow-up for critical gKd V equation II:Minimal mass solution,J.E.M.S.,to appear.

    [29]Martel,Y.,Merle,F.and Rapha?l,P.,Blow-up for critical gKd V equation III:Exotic regimes,Annali Scuola Norm.Sup.di Pisa,to appear.arXiv:1209.2510

    [30]Merle,F.,Determination of blow-up solutions with minimal mass for nonlinear Schr?dinger equations with critical power,Duke Math.J.,69,1993,427–454.

    [31]Merle,F.,Construction of solutions with exactly k blow-up points for the Schr?dinger equation with critical nonlinearity,Comm.Math.Phys.,129,1990,223–240.

    [32]Merle,F.,On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schr?dinger equation with critical exponent and critical mass,Comm.Pure Appl.Math.,45,1992,203–254.

    [33]Merle,F.,Existence of blow-up solutions in the energy space for the critical generalized Kd V equation,J.Amer.Math.Soc.,14,2001,555–578.

    [34]Merle,F.,Asymptotics for critical nonlinear dispersive equations,Proceedings of the International Congress of Mathematicians,2014,to appear.

    [35]Merle,F.and Rapha?l,P.,Sharp upper bound on the blow-up rate for the critical nonlinear Schr?dinger equation,Geom.Func.Anal.,13,2003,591–642.

    [36]Merle,F.and Rapha?l,P.,On universality of blow-up profile for L2critical nonlinear Schr?dinger equation,Invent.Math.,156,2004,565–672.

    [37]Merle,F.and Rapha?l,P.,The blow-up dynamics and upper bound on the blow-up rate for the critical nonlinear Schr?dinger equation,Ann.of Math.,161,2005,157–222.

    [38]Merle,F.and Rapha?l,P.,Profiles and quantization of the blow-up mass for critical nonlinear Schr?dinger equation,Commun.Math.Phys.,253,2005,675–704.

    [39]Merle,F.and Rapha?l,P.,On a sharp lower bound on the blow-up rate for the L2critical nonlinear Schr?dinger equation,J.Amer.Math.Soc.,19,2006,37–90.

    [40]Merle,F.,Rapha?l,P.and Szeftel,J.,The instability of Bourgain-Wang solutions for the L2critical NLS,Amer.Jour.Math.,135,2013,967–1017.

    [41]Merle,F.,Rapha?l,P.and Rodnianski,I.,Blow-up dynamics for smooth data equivariant solutions to the energy critical Schr?dinger map problem,Invent.Math.,193,2013,249–365.

    [42]Merle,F.,Rapha?l,P.and Rodnianski,I.,Type II blow up for the energy supercritical NLS,preprint.

    [43]Nakanishi,K.and Schlag,W.,Global dynamics above the ground state energy for the cubic NLSequation in 3D,Arch.Ration.Mech.Anal.,203,2012,809–851.

    [44]Perelman,G.,On the formation of singularities in solutions of the critical nonlinear Schr?dinger equation,Ann.Henri Poincaré,2,2001,605–673.

    [45]Rapha?l,P.,Stability of the log-log bound for blow-up solutions to the critical nonlinear Schr?dinger equation,Math.Ann.,331,2005,577–609.

    [46]Rapha?l,P.,Blow up bubbles in Hamiltonian evolution equations:A quantitative approach,Proceedings of the International Congress of Mathematicians,2014,to appear.

    [47]Rapha?l,P.and Rodnianski,I.,Stable blow-up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems,Publ.Math.Inst.Hautes Etudes Sci.,115,2012,1–122.

    [48]Rodnianski,I.and Sterbenz,J.,On the formation of singularities in the critical O(3)σ-model,Ann.of Math.,172,2010,187–242.

    [49]Sterbenz,J.and Tataru,D.,Regularity of wave-maps in dimension 2+1,Comm.Math.Phys.,298,2010,139–230.

    [50]Tao,T.,Visan,M.and Zhang,X.,Minimal-mass blowup solutions of the mass-critical NLS,Forum Math.,20,2008,881–919.

    [51]Weinstein,M.I.,Nonlinear Schr?dinger equations and sharp interpolation estimates,Comm.Math.Phys.,87,1983,567–576.

    猜你喜歡
    黃玲墨鏡外地
    出行安全
    替婚
    金山(2022年4期)2022-04-09 16:54:11
    王子尋寶
    失焦
    智族GQ(2020年4期)2020-04-13 02:58:46
    雪季墨鏡
    智族GQ(2019年12期)2019-01-07 09:08:57
    黃玲任:全力推行愛的教育
    太陽好大,你的墨鏡買好了嗎
    Coco薇(2017年6期)2017-06-24 10:08:21
    北京郊區(qū)外埠車猛增本地人高價買外地牌
    借傘
    戴墨鏡穿泳衣的冬日
    国产欧美日韩精品亚洲av| a级毛片a级免费在线| 全区人妻精品视频| 91狼人影院| netflix在线观看网站| 99热精品在线国产| 精品久久久久久久人妻蜜臀av| 国产又黄又爽又无遮挡在线| 亚洲av电影不卡..在线观看| 亚洲人成伊人成综合网2020| 在线免费十八禁| 国产欧美日韩一区二区精品| 毛片女人毛片| 久久久久国内视频| 欧美xxxx黑人xx丫x性爽| 99riav亚洲国产免费| 日韩高清综合在线| 两个人视频免费观看高清| 午夜亚洲福利在线播放| 亚洲精品国产成人久久av| 国产国拍精品亚洲av在线观看| 免费高清视频大片| 九九热线精品视视频播放| a级毛片a级免费在线| 中文字幕熟女人妻在线| 哪里可以看免费的av片| 有码 亚洲区| 色吧在线观看| 久久亚洲精品不卡| 欧美bdsm另类| 亚洲自偷自拍三级| 床上黄色一级片| 露出奶头的视频| 久久久精品欧美日韩精品| 偷拍熟女少妇极品色| 制服丝袜大香蕉在线| 观看美女的网站| 久久6这里有精品| 69人妻影院| 亚洲精华国产精华精| 桃红色精品国产亚洲av| 午夜精品在线福利| 精品久久久久久久久久久久久| 久久久国产成人精品二区| 成人二区视频| 国内精品久久久久久久电影| 三级毛片av免费| 国内精品久久久久久久电影| 在线免费观看不下载黄p国产 | 国产 一区 欧美 日韩| 高清在线国产一区| 99热这里只有精品一区| 国产在视频线在精品| 男女那种视频在线观看| 精品久久久久久久久久免费视频| 尾随美女入室| 国语自产精品视频在线第100页| 国产av在哪里看| 亚洲国产欧美人成| 春色校园在线视频观看| 久久精品国产亚洲av天美| 老司机深夜福利视频在线观看| 1000部很黄的大片| 精品乱码久久久久久99久播| 一个人观看的视频www高清免费观看| 国产69精品久久久久777片| av专区在线播放| 欧美三级亚洲精品| 色综合亚洲欧美另类图片| 两个人视频免费观看高清| 啦啦啦啦在线视频资源| 又黄又爽又刺激的免费视频.| 真人做人爱边吃奶动态| 女同久久另类99精品国产91| 波多野结衣高清无吗| 精品乱码久久久久久99久播| 偷拍熟女少妇极品色| 日韩亚洲欧美综合| 欧美成人免费av一区二区三区| 欧美高清性xxxxhd video| 赤兔流量卡办理| av在线亚洲专区| 成人国产综合亚洲| 午夜福利在线观看免费完整高清在 | 搞女人的毛片| 少妇高潮的动态图| 国内少妇人妻偷人精品xxx网站| 久久久久久九九精品二区国产| 国内精品美女久久久久久| 亚洲 国产 在线| 亚洲精品在线观看二区| 国产精品福利在线免费观看| 国产av在哪里看| 日韩一本色道免费dvd| 国产一区二区三区av在线 | 欧美成人性av电影在线观看| 91在线精品国自产拍蜜月| 综合色av麻豆| 美女高潮喷水抽搐中文字幕| 欧美一区二区国产精品久久精品| 日韩欧美一区二区三区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲av美国av| 97超视频在线观看视频| 国产黄a三级三级三级人| 欧美性感艳星| 琪琪午夜伦伦电影理论片6080| 观看美女的网站| 禁无遮挡网站| 一进一出抽搐动态| 欧美中文日本在线观看视频| 精品久久久久久久久久免费视频| 日韩欧美在线乱码| 亚洲色图av天堂| 动漫黄色视频在线观看| 日韩人妻高清精品专区| 3wmmmm亚洲av在线观看| 免费高清视频大片| 亚洲欧美日韩卡通动漫| 久99久视频精品免费| 亚洲精品乱码久久久v下载方式| 久久人妻av系列| 亚洲无线观看免费| 又紧又爽又黄一区二区| 亚洲中文字幕一区二区三区有码在线看| 亚洲乱码一区二区免费版| 97超视频在线观看视频| 亚洲黑人精品在线| 麻豆成人午夜福利视频| 99热这里只有精品一区| 天天一区二区日本电影三级| 无遮挡黄片免费观看| 国产精品一及| 露出奶头的视频| 性色avwww在线观看| 欧美3d第一页| 国产伦精品一区二区三区四那| 日本成人三级电影网站| 97人妻精品一区二区三区麻豆| 变态另类丝袜制服| videossex国产| 成熟少妇高潮喷水视频| 日韩在线高清观看一区二区三区 | 午夜福利18| 亚洲熟妇熟女久久| 在线播放国产精品三级| 亚洲精华国产精华液的使用体验 | 亚洲国产色片| 桃红色精品国产亚洲av| 久久精品国产清高在天天线| 十八禁网站免费在线| 国产伦人伦偷精品视频| 久久九九热精品免费| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 日韩欧美 国产精品| 少妇被粗大猛烈的视频| 精品免费久久久久久久清纯| 人妻久久中文字幕网| 国产精品一区二区三区四区免费观看 | 人妻制服诱惑在线中文字幕| 在线观看一区二区三区| 男女视频在线观看网站免费| 午夜久久久久精精品| 国产精品久久久久久久电影| 国产精品,欧美在线| 久久午夜亚洲精品久久| 99热精品在线国产| 亚洲av中文av极速乱 | 成人高潮视频无遮挡免费网站| 黄片wwwwww| 亚洲五月天丁香| 99热这里只有是精品50| 日韩一本色道免费dvd| 深爱激情五月婷婷| 精品午夜福利视频在线观看一区| 国产毛片a区久久久久| 亚洲av.av天堂| 亚洲av免费高清在线观看| 欧美国产日韩亚洲一区| 午夜日韩欧美国产| 日韩人妻高清精品专区| 日韩欧美三级三区| 久久九九热精品免费| 在线播放国产精品三级| 亚洲欧美日韩东京热| 波多野结衣高清无吗| 琪琪午夜伦伦电影理论片6080| 在线免费十八禁| 国内精品久久久久精免费| 在线天堂最新版资源| 久久精品国产亚洲av香蕉五月| 成人午夜高清在线视频| 干丝袜人妻中文字幕| 搡老熟女国产l中国老女人| 日韩欧美国产一区二区入口| 国产精品三级大全| 99久久精品国产国产毛片| 蜜桃久久精品国产亚洲av| 少妇高潮的动态图| 国产成年人精品一区二区| 欧美xxxx黑人xx丫x性爽| 中文字幕人妻熟人妻熟丝袜美| 一个人看视频在线观看www免费| 91久久精品电影网| 少妇被粗大猛烈的视频| 99九九线精品视频在线观看视频| 国产成人aa在线观看| 日韩欧美国产在线观看| 亚洲色图av天堂| 91av网一区二区| 嫩草影院新地址| 国产v大片淫在线免费观看| 欧美+日韩+精品| 国产 一区精品| 久久6这里有精品| 精品久久久久久成人av| 国产精品国产高清国产av| avwww免费| 亚洲精华国产精华精| av黄色大香蕉| 熟女电影av网| 波多野结衣高清作品| 一本一本综合久久| 免费观看精品视频网站| 午夜福利在线观看免费完整高清在 | 色播亚洲综合网| 亚洲国产精品久久男人天堂| 黄色一级大片看看| 12—13女人毛片做爰片一| 亚洲欧美日韩无卡精品| 亚洲狠狠婷婷综合久久图片| 丝袜美腿在线中文| 中文字幕免费在线视频6| 国产色爽女视频免费观看| 欧美日韩瑟瑟在线播放| 亚洲成人免费电影在线观看| 自拍偷自拍亚洲精品老妇| 日本精品一区二区三区蜜桃| a级毛片a级免费在线| 久久久久九九精品影院| 简卡轻食公司| 色视频www国产| 最近最新中文字幕大全电影3| 国产在线男女| 国产女主播在线喷水免费视频网站 | 国产69精品久久久久777片| 黄色欧美视频在线观看| 欧美最新免费一区二区三区| 久久人人精品亚洲av| 亚洲18禁久久av| 成人无遮挡网站| 老司机福利观看| 午夜视频国产福利| 精品不卡国产一区二区三区| 日韩中字成人| 久久6这里有精品| 国产成人aa在线观看| 一本精品99久久精品77| 国内精品一区二区在线观看| 日韩欧美国产一区二区入口| 岛国在线免费视频观看| 亚洲成人久久爱视频| 九九爱精品视频在线观看| 国产伦一二天堂av在线观看| 此物有八面人人有两片| 国产精品一区二区三区四区久久| 亚洲精品影视一区二区三区av| 成人鲁丝片一二三区免费| 美女被艹到高潮喷水动态| 亚洲中文字幕一区二区三区有码在线看| 最新中文字幕久久久久| 超碰av人人做人人爽久久| 少妇人妻精品综合一区二区 | 女同久久另类99精品国产91| 少妇被粗大猛烈的视频| 日韩欧美免费精品| 美女 人体艺术 gogo| 国产探花在线观看一区二区| 亚洲中文字幕日韩| avwww免费| 久久6这里有精品| 又爽又黄无遮挡网站| 亚洲午夜理论影院| 免费在线观看影片大全网站| 久久精品国产清高在天天线| 性插视频无遮挡在线免费观看| 91麻豆av在线| 国产精品乱码一区二三区的特点| av在线观看视频网站免费| 精品久久久久久久久av| 1024手机看黄色片| av在线老鸭窝| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 男女视频在线观看网站免费| 老司机福利观看| 国产精品乱码一区二三区的特点| 久久人人精品亚洲av| 舔av片在线| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 亚洲专区中文字幕在线| 九九热线精品视视频播放| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 男女啪啪激烈高潮av片| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 十八禁国产超污无遮挡网站| 在线观看免费视频日本深夜| 搡女人真爽免费视频火全软件 | av国产免费在线观看| 黄色视频,在线免费观看| 日韩 亚洲 欧美在线| 国产欧美日韩精品一区二区| 身体一侧抽搐| 五月玫瑰六月丁香| 免费观看的影片在线观看| av在线老鸭窝| 999久久久精品免费观看国产| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 日本-黄色视频高清免费观看| 亚州av有码| 国产亚洲精品久久久com| 欧美一级a爱片免费观看看| 我的老师免费观看完整版| 国产黄a三级三级三级人| 欧美色视频一区免费| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| 成人无遮挡网站| 精品一区二区三区av网在线观看| 夜夜看夜夜爽夜夜摸| 长腿黑丝高跟| 精品无人区乱码1区二区| 特级一级黄色大片| 五月伊人婷婷丁香| 男女之事视频高清在线观看| 精品午夜福利视频在线观看一区| 国产精品一区二区三区四区免费观看 | 欧美最黄视频在线播放免费| 国产乱人视频| a级毛片a级免费在线| 国产日本99.免费观看| 欧美绝顶高潮抽搐喷水| 3wmmmm亚洲av在线观看| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3| 999久久久精品免费观看国产| 国产国拍精品亚洲av在线观看| 一进一出抽搐动态| 色综合婷婷激情| 2021天堂中文幕一二区在线观| 欧美性感艳星| 老司机福利观看| 国产老妇女一区| 88av欧美| 亚洲人与动物交配视频| 在线国产一区二区在线| 日韩欧美国产一区二区入口| 成人特级av手机在线观看| 热99re8久久精品国产| 成人精品一区二区免费| 又粗又爽又猛毛片免费看| 国产成人福利小说| 成人性生交大片免费视频hd| 小蜜桃在线观看免费完整版高清| 日韩欧美国产一区二区入口| a级毛片免费高清观看在线播放| 在线免费十八禁| 午夜日韩欧美国产| 日韩欧美国产一区二区入口| 男女边吃奶边做爰视频| 简卡轻食公司| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 国产av不卡久久| 国产欧美日韩一区二区精品| 国产色婷婷99| 一进一出抽搐gif免费好疼| 精品久久久久久久久av| 又粗又爽又猛毛片免费看| 免费电影在线观看免费观看| 亚洲精品久久国产高清桃花| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 男插女下体视频免费在线播放| 亚洲av成人精品一区久久| 精品一区二区三区视频在线观看免费| 97超视频在线观看视频| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 国产一区二区三区av在线 | 亚洲人与动物交配视频| 18+在线观看网站| av中文乱码字幕在线| 男女视频在线观看网站免费| 内地一区二区视频在线| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件 | 一级黄色大片毛片| 精品乱码久久久久久99久播| 国产淫片久久久久久久久| av专区在线播放| 无遮挡黄片免费观看| 亚洲精品影视一区二区三区av| 老女人水多毛片| 91久久精品电影网| 久久久久久大精品| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 免费高清视频大片| 三级毛片av免费| 色综合色国产| 免费电影在线观看免费观看| 国产美女午夜福利| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 日本一二三区视频观看| 99久久精品一区二区三区| 日本五十路高清| 一个人观看的视频www高清免费观看| 国产色婷婷99| 3wmmmm亚洲av在线观看| 别揉我奶头~嗯~啊~动态视频| 婷婷亚洲欧美| 琪琪午夜伦伦电影理论片6080| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 色精品久久人妻99蜜桃| 色综合婷婷激情| 日日撸夜夜添| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 身体一侧抽搐| 久久久久久久精品吃奶| 国产av麻豆久久久久久久| avwww免费| 三级毛片av免费| 小说图片视频综合网站| 亚洲最大成人av| 老女人水多毛片| 亚洲成人中文字幕在线播放| 最近在线观看免费完整版| 日韩精品中文字幕看吧| 有码 亚洲区| 国产精品永久免费网站| 成人国产一区最新在线观看| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区| 午夜a级毛片| 亚洲美女视频黄频| 麻豆av噜噜一区二区三区| 999久久久精品免费观看国产| 久久久久久久精品吃奶| 国产亚洲精品av在线| 亚洲自偷自拍三级| 久久精品国产亚洲av天美| 国产 一区精品| 国产精品一区www在线观看 | 俄罗斯特黄特色一大片| 成人一区二区视频在线观看| 午夜a级毛片| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 欧美黑人巨大hd| 国产精品亚洲美女久久久| 色哟哟·www| 在线免费观看不下载黄p国产 | 亚洲五月天丁香| 老司机深夜福利视频在线观看| 国产国拍精品亚洲av在线观看| 级片在线观看| 精品久久久久久久久亚洲 | 大型黄色视频在线免费观看| 禁无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色小视频在线观看| 日韩欧美在线乱码| 国产国拍精品亚洲av在线观看| 级片在线观看| 男人舔女人下体高潮全视频| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| 俺也久久电影网| h日本视频在线播放| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看| 国产成人福利小说| 亚洲在线自拍视频| 久久精品国产清高在天天线| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 久久久国产成人精品二区| 97碰自拍视频| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 最后的刺客免费高清国语| 国产黄片美女视频| 日日干狠狠操夜夜爽| 尾随美女入室| 91久久精品国产一区二区三区| 免费人成在线观看视频色| 高清日韩中文字幕在线| 在线播放国产精品三级| 搡女人真爽免费视频火全软件 | 嫩草影院入口| 婷婷亚洲欧美| 欧美成人性av电影在线观看| 尾随美女入室| av在线天堂中文字幕| 中文字幕av在线有码专区| 麻豆国产97在线/欧美| 国产精品电影一区二区三区| 99在线人妻在线中文字幕| 99精品在免费线老司机午夜| 国产精品人妻久久久影院| 中文在线观看免费www的网站| 国产蜜桃级精品一区二区三区| 99热这里只有精品一区| 久久亚洲精品不卡| 亚洲不卡免费看| 国产主播在线观看一区二区| 女人被狂操c到高潮| 日本五十路高清| 乱系列少妇在线播放| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 亚洲中文字幕一区二区三区有码在线看| 久久久色成人| 成人毛片a级毛片在线播放| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 简卡轻食公司| 亚洲 国产 在线| 国产成人av教育| 日韩欧美 国产精品| 午夜爱爱视频在线播放| 成人av一区二区三区在线看| 1024手机看黄色片| 91午夜精品亚洲一区二区三区 | 一区二区三区激情视频| 男插女下体视频免费在线播放| 成年女人看的毛片在线观看| 久久九九热精品免费| 不卡一级毛片| 能在线免费观看的黄片| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 欧美bdsm另类| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级国产av玫瑰| 免费在线观看日本一区| 露出奶头的视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩卡通动漫| 看十八女毛片水多多多| 中国美女看黄片| av在线蜜桃| aaaaa片日本免费| 美女大奶头视频| 亚洲图色成人| 国产精品人妻久久久影院| 国产激情偷乱视频一区二区| 俄罗斯特黄特色一大片| 国产毛片a区久久久久| 久久久久九九精品影院| 国产精品综合久久久久久久免费| 在线看三级毛片| 国产不卡一卡二| 久久人妻av系列| 国国产精品蜜臀av免费| 内射极品少妇av片p| 97热精品久久久久久| 三级国产精品欧美在线观看| xxxwww97欧美| 波多野结衣高清作品| 免费无遮挡裸体视频| 亚洲欧美激情综合另类| 国产成年人精品一区二区| 亚洲国产精品合色在线| 非洲黑人性xxxx精品又粗又长| 97超视频在线观看视频| 黄色一级大片看看| 亚洲欧美激情综合另类| 天堂动漫精品| 婷婷精品国产亚洲av| 麻豆av噜噜一区二区三区| 国产成年人精品一区二区| 少妇的逼水好多| 69人妻影院| 日本黄色视频三级网站网址| 51国产日韩欧美| 国产一区二区三区av在线 | 国产男人的电影天堂91| 午夜视频国产福利| 欧美成人性av电影在线观看| 国产老妇女一区| 亚洲人与动物交配视频| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 亚洲18禁久久av| 日日摸夜夜添夜夜添av毛片 | 99久久九九国产精品国产免费| 在线观看午夜福利视频| 成人毛片a级毛片在线播放| 干丝袜人妻中文字幕| 色综合亚洲欧美另类图片|