• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convergence to a Single Wave in the Fisher-KPP Equation?

    2017-07-02 07:18:56JamesNOLENJeanMichelROQUEJOFFRELenyaRYZHIK
    關(guān)鍵詞:冷啟動水氣坡向

    James NOLEN Jean-Michel ROQUEJOFFRE Lenya RYZHIK

    (Dedicated to Haim Brezis,with admiration and respect)

    1 Introduction

    We consider the Fisher-KPP equation

    with an initial condition u(0,x)=u0(x)which is a compact perturbation of a step function,in the sense that there exist x1and x2,so that u0(x)=1 for all x≤x1,and u0(x)=0 for all x≥x2.

    思同之侍講也,國子博士遼西衛(wèi)冀隆為服氏之學,上書難《杜氏春秋》六十三事。思同復(fù)駁冀隆乖錯者十一條?;ハ嗍欠?,積成十卷。詔下國學集諸儒考之,事未竟而思同卒。卒后,魏郡姚文安、樂陵秦道靜復(fù)述思同意。冀隆亦尋物故,浮陽劉休和又持冀隆說。至今未能裁正焉。

    Each solution φ(ξ)of(1.2)is a shift of a fixed profile φ?(ξ): φ(ξ)= φ?(ξ+s),with some fixed s ∈ R.The profile φ?(ξ)satisfies the asymptotics

    with two universal constantsω0>0,k∈ R.

    The large time behaviour of the solutions of this problem has a long history,starting with a striking paper of Fisher[10],which identifies the spreading velocity c?=2 via numerical computations and other arguments.In the same year,the pioneering KPP paper[15]proved that the solution of(1.1),starting from a step function:u0(x)=1 for x≤0,u0(x)=0 for x>0,converges toφ?in the following sense:There is a function

    such that

    Theorem 1.1(see[5–6])There is a constant x∞,depending on u0,such that

    Models with temporal variation in the branching process have also been considered.In[9],Fang and Zeitouni studied the extremal particle of such a spatially homogeneous BBM where the branching particles satisfy

    A natural question is to prove Theorem 1.1 with purely PDE arguments.In that spirit,a weaker version,precise up to the O(1)term(but valid also for a much more difficult case of the periodic in space coefficients),is the main result of[11–12],

    Here,we will give a simple and robust proof of Theorem 1.1.These ideas are further developed to study the refined asymptotics of the solutions in[21].

    2 Probabilistic Links and Some Related M odels

    We regard(3.3)as a perturbation of this equation,and expect that v(t,x)→ exφ(x?x∞)as t→ ∞ for some x∞∈R.

    Lemma 4.2There exists a constantα∞>0 with the following property.For anyγ>0 and allε>0,we can find Tε,so that for all t>Tεwe have

    with the initial dataTherefore,Theorem 1.1 is about the median location of the maximal particle XNt.Building on the work of Lalley and Sellke[16],recent probabilistic analyses(see[1–3,7–8])of this particle system have identified a decorated Poissontype point process which is the limit of the particle distribution “seen from the tip”:There is a random variable Z>0,such that the point process defined by the shifted particleswith

    has a well-defined limit process as t→∞.Furthermore,Z is the limit of the martingale

    and

    As we have mentioned,the logarithmic term in Theorem 1.1 arises also in inhomogeneous variants of this model.For example,consider the Fisher-KPP equation in a periodic medium

    (5)在智能電網(wǎng)的繼電保護系統(tǒng)當中,其中的自適應(yīng)控制技術(shù)主要就是根據(jù)電力系統(tǒng)的電力故障狀態(tài)和運行方式的變化來對定值、性能以及保護特性進行相應(yīng)的改變的技術(shù)。自適應(yīng)繼電保護是一種比較新型的繼電保護技術(shù),它能夠讓繼電保護技術(shù)對于電力系統(tǒng)的多種變化,在很短的時間內(nèi)就能夠完全適應(yīng),不僅讓智能電網(wǎng)繼電保護的可靠性得到了加強,讓系統(tǒng)的保護作用得到了明顯的改善,讓能夠顯著讓經(jīng)濟效益得到提高。

    where λ?>0 is the rate of exponential decay(as x → ∞)of the minimal front Uc?,which depends on μ(x)but not on s or on u0.This implies the convergence of u(t,x? σs(t))to a closed subset of the family of minimal fronts.It is an open problem to determine whether convergence to a single front holds,not to mention the rate of this convergence.Whenμ(x)>0 everywhere,the solution u of the related model may be interpreted in terms of the extremal particle in a BBM with a spatially-varying branching rate(see[12]).

    TrustSVD協(xié)同過濾算法對于冷啟動問題做了較大改善[6,7],本文的DPTrustSVD算法也不會因為引入了差分隱私保護而明顯破壞算法對冷啟動問題的改善程度.圖5~圖8給出了從冷啟動角度,本文的DPTrustSVD與無隱私保護的TrustSVD和無社會化關(guān)系的DPSVD在兩個數(shù)據(jù)集上的預(yù)測準確率的比較情況.

    Theorem 1.1 was proved through elaborate probabilistic arguments.Bramson also gave necessary and sufficient conditions on the decay of the initial data to zero(as x→ +∞)in order that the solution converges to φ?(x)in some moving frame.Lau[17]also proved those necessary and sufficient conditions(for a more general nonlinear term)using a PDE approach based on the decrease in the number of the intersection points for a pair of solutions of the parabolic Cauchy problem.The asymptotics ofσ∞(t)were not identified by that approach.

    Although it is established that low educational level is associated with low participation rates in CRC screening programs, the results of this study indicate that those with high educational level exhibited less compliance as compared to those of low-intermediate one.

    They proved that ifκis increasing,and f is of the Fisher-KPP type,the shift is algebraic and not logarithmic in time:There exists C>0,such that

    In[20],we proved the asymptotics

    Here,β<0 is the first zero of the Airy function.Maillard and Zeitouni[18]refined the asymptotics further,proving a logarithmic correction to(2.3),and convergence of u(T)to a traveling wave.

    3 Strategy of the Proof of Theorem 1.1

    3.1 Why converge to a traveling wave?

    We first provide an informal argument for the convergence of the solution of the initial value problem to a traveling wave.Consider the Cauchy problem(1.1),starting at t=1 for the convenience of the notation

    納入標準:①在本院已被確診為壺腹周圍癌;②患者的PS評分≤2(若評分>2,則表示患者不能自由走動及生活不能完全自理);③患者知情并同意參與本研究。

    and proceed with a standard sequence of changes of variables.We first go into the moving frame

    leading to

    Next,we take out the exponential factor:Set

    so that v satisfies

    We postpone the proof of this lemma for the moment,and show how it is used.A consequence of Lemma 4.2 is that the problem for the moment is to understand,for a givenα>0,the behavior of the solutions of

    Observe that for any shift x∞∈ R,the function V(x)=exφ(x?x∞)is a steady solution of

    followed by a change of the unknown

    3.2 The self-similar variables

    We note that for x→ +∞,the term e?xv2in(3.3)is negligible,while for x→ ?∞ the same term will create a large absorption and force the solution to be close to zero.For this reason,the linear Dirichlet problem

    This transformation strengthens the reason why the Dirichlet problem(3.4)appears naturally:For

    the last term in the left-hand side of(3.6)becomes exponentially large,which forces w to be almost 0 in this region.On the other hand,for

    this term is very small,so it should not play any role in the dynamics of w in that region.The transition region has width of the order

    3.3 The choice of the shift

    Also,through this change of variables,we can see how a particular translation of the wave will be chosen.Considering(3.4)in the self-similar variables,one can show(see[11,14])that,asτ→+∞,we have

    with someα∞>0.Therefore,taking(3.4)as an approximation to(3.3),we should expect that

    Comparing this with(3.8),we infer that

    范警官和霍鐵一起來到工作室,這里一直保持著剛才霍鐵他們?nèi)齻€人離開時的樣子。正如霍鐵所說,這間工作室里不要說六七米長的木板,就是寬度足夠兩只腳在上面行走的一米長的木板也沒有。

    (2)噴淋水量、噴淋設(shè)備結(jié)構(gòu)、設(shè)備的傳熱傳質(zhì)效率等影響因素。其中關(guān)鍵的因素是水氣比,即噴淋水量與氣體流量的比值[9]。水氣比小,水與氣之間的接觸少,傳質(zhì)傳熱條件變差。水氣比大,氮氣和空氣量一定,水過多既造成浪費又容易發(fā)生氣體帶水事故[10]。

    We conclude this section with some remarks about the generality of the argument.Although we assume,for simplicity,that the reaction term in(1.1)is quadratic,our proof also works for a more general reaction term.Specifically,the function u?u2in(1.1)may be replaced by a C2function f:[0,1]→R satisfying f(0)=0=f(1),f?(0)>0,f?(1)<0,and f?(s)≤ f?(0)for all s∈[0,1].In particular,these assumptions imply that there is C>0,such that 0≤f?(0)s?f(s)≤Cs2for all s∈[0,1].Without loss of generality,we may suppose that f?(0)=1.Then,if g(u)=u?f(u),the equation(3.3)for v becomes

    and the equation(3.6)for w becomes

    where 0≤g(s)≤Cs2and g?(s)≥0.Then all of the arguments below(and in[11])work in this more general setting.Finally,the arguments also apply to fronts arising from compactly supported initial data u0≥0(not just perturbations of the step-function).In that case,one obtains two fronts propagating in opposite directions.Combined with[11],our arguments here imply that Theorem 1.1 holds for both fronts.That is,the fronts moving to±∞are at positionswith

    where the shiftsandmay diff er and depend on the initial data.

    Recall thatφ?(x)is the traveling wave profile.We look for a function ζ(t)in(4.5)such that

    4 Convergence to a Single Wave as a Consequence of the Diff usive Scale Convergence

    Lemma 4.1The solution of(3.2)with u(1,x)=u0(x)satisfies

    both uniformly in t>1.

    Proposition 4.1Forwe have

    The main new step is to establish the following.

    satisfies the Fisher-KPP equation

    with xγ=tγ.

    between branching events,rather than following a standard Brownian motion.In terms of PDE,their study corresponds to the model

    for t>Tε,with the initial conditionIn particular,we will show thatconverge,as t→ +∞,to a pair of steady solutions,separated only by an order O(ε)-translation.Note that the function v(t,x)=exuα(t,x)solves

    微生物物種資源極為豐富,是地球生物多樣性的重要組成部分〔1〕。微生物的空間分布格局受到眾多驅(qū)動因子的影響,主要包括當代環(huán)境條件(溫度、降水、光照、土壤養(yǎng)分、pH)和歷史因素(地理阻隔、物理屏障、擴散限制等)〔2-3〕,而溫度、降水等環(huán)境因子與山地微生物物種豐富度有著密不可分的聯(lián)系。研究人員發(fā)現(xiàn)坡向?qū)ν寥赖臏囟?、含水量等理化性質(zhì)均有影響〔4〕。不同坡向上的水分和光照強度存在差異,從而影響土壤微生物的生長和分布格局〔5〕。現(xiàn)階段有關(guān)坡向?qū)ν寥牢⑸锓植几窬钟绊懙难芯窟€較少。

    In view of the expansion(1.3),we should have,with someω0>0,

    which implies,for

    *通信作者:林嵐 (1971— ),女,福建漳州人,教授,博士,主要從事休閑及旅游地理研究,(E-mail)linlancn@163.com。

    and thus

    The equation for the functionψis

    有24件作品配有外框,其中9件作品帶玻璃鏡片。另有22件作品僅有內(nèi)框。其余9件作品無框,其中有2件作品畫心剝落嚴重,由兩片玻璃夾住保存(圖2)。

    ProofThe issue is whether the Dirichlet boundary conditions would be stronger than the force in the right side of(4.7).Since the principal Dirichlet eigenvalue for the Laplacian in,investigating(4.7)is,heuristically,equivalent to solving the ODE

    The coefficient(1?2γ)is chosen simply for convenience and can bereplaced by another constant.

    The solution of(4.9)is

    Note that f(t)tends to 0 as t→ +∞ a little faster than t3γ?1as soon as,so the analog of(4.8)holds for the solutions of(4.9).With this idea in mind,we are going to look for a super-solution of(4.7),in the form

    and

    Gathering(4.11)and(4.12),we infer the existence of q>0,such that,for t large enough,

    as soon asεandλare small enough,sinceBecause the right-hand side of(4.7)does not depend on s,the inequality extends to all t≥1 by replacing s by As,with A large enough,and(4.8)follows.

    Let us note that the term e?x(v+ ψ)in(4.7),which results from the quadratic structure of the nonlinearity,is positive.For a more general nonlinearity f(u)replacing u?u2,the monotonicity of g(u)=uf?(0)?f(u)may be used in an analogous way.

    4.1 Proof of Theorem 1.1

    for all x ≤ tγ.From Proposition 4.1,we have

    uniformly in x ∈ (?tγ,tγ)with

    Becauseε>0 is arbitrary,we have

    with x∞=?logα∞,uniformly on compact sets.Together with Lemma 4.1,this concludes the proof of Theorem 1.1.

    5 The Diffusive Scaleand the Proof of Lemma 4.2

    Our analysis starts with(3.6),which we write as

    Here,the operator L is defined as

    Its principal eigenfunction on the half-lineη>0 with the Dirichlet boundary condition atη=0 is

    as Lφ0=0.The operator L has a discrete spectrum inweighted by,its non-zero eigenvalues areλk=k≥1,and the corresponding eigenfunctions are related via

    The principal eigenfunction of the adjoint operator

    isThus,the solution of the unperturbed version of(5.1)on a half-line

    satisfies

    and our task is to generalize this asymptotics to the full problem(5.1)on the whole line.The weightin(5.4)is,of course,by no means optimal.We will prove the following.

    Lemma 5.1Let w(τ,η)be the solution of(3.6)on R,with the initial condition w(0,η)=w0(η)such that w0(η)=0 for allη >M,with some M>0,and w0(η)=O(eη)for η<0.Thereand a function h(τ)such thatand such that we have,for any

    with

    where η+=max(0,η).

    Once again,the weightis not optimal.Lemma 4.2 is an immediate consequence of this result.Indeed,

    hence Lemma 5.1 implies,with xγ=tγ,

    We now take Tεso thatfor all t>Tε.For the second term in the right-hand side of(5.6),we write

    for t>Tεsufficiently large,as soon asγ?< γ.This proves(4.2).Thus,the proof of Lemma 4.2 reduces to proving Lemma 5.1.We will prove the latter by a construction of an upper and lower barrier for w with the correct behaviors.

    5.1 The approximate Dirichlet boundary condition

    Let us come back to why the solution of(5.1)must approximately satisfy the Dirichlet boundary condition atη=0.Recall that w is related to the solution of the original KPP problem via

    The trivial a priori bound 0

    and,in particular,we have

    We also have

    so that

    forγ>0 sufficiently small.Thus,the solution of(5.1)satisfies

    which we will use as an approximate Dirichlet boundary condition atη=0.

    5.2 An upper barrier

    Consider the solution of

    with a compactly supported initial conditionchosen so thatHere,??should be thought of as a small parameter.

    It follows from(5.11)that w(τ,η)is an upper barrier for w(τ,η).That is,we have

    It is convenient to make a change of variables

    where g(η)is a smooth monotonic function such that g(η)=1 for 0 ≤ η<1 and g(η)=0 for η>2.The functionsatisfies

    forτ>0,with a smooth function G(τ,η)supported in 0≤ η ≤ 2,and the initial condition

    which also is compactly supported.

    We will allow(5.14)to run for a large time T,after which time we can treat the right-hand side and the last term in the left-hand side of(5.14)as a small perturbation.A variant of Lemma 2.2 from[11]implies thatfor all T>0,as well as the following estimate.

    Lemma 5.2Considerand G(τ,η)smooth,bounded,and compactly supported in R+.Let p(τ,η)solve

    with the initial condition p0(η)such thatThere existsε0>0 and C>0(depending on p0),such that,for all 0< ε< ε0,we have

    wherefor allτ>0.

    For anyε>0,we may choose T sufficiently large,andso that

    This follows from(5.14).Then,applying Lemma 5.2 forτ>T,we have

    We claim that with a suitable choice ofthe integral term in(5.18)is bounded from below:

    Indeed,multiplying(5.14)byηand integrating gives

    The function G(τ,η)need not have a sign,hence we do not know thatis positive everywhere.However,it follows from(5.14)that the negative part ofis bounded as

    for all τ>0,with the constant C0which does not depend on w0(η)on the interval[2,∞).Thus,we deduce from(5.20)that for allτ>0,we have

    with,onceagain,independent ofTherefore,after possibly increasingwe may ensure that(5.19)holds.

    It follows from(5.18)–(5.19)that there exists a sequenceand a functionsuch that

    and

    uniformly in η on the half-line η ≥ 0.The same bound for the function w(τ,η)itself follows

    also uniformly inηon the half-lineη≥0.

    5.3 A lower barrier

    A lower barrier for w(τ,η)is devised as follows.First,note that the upper barrier for w(τ,η)we have constructed above implies that

    as soon as

    withand Cγ>0 is chosen sufficiently large.Thus,a lower barriercan be defined as the solution of

    with an initial conditionThis time it is convenient to make the change of variables

    so that

    We could now try to use an abstract stable manifold theorem to prove that

    That is,remains uniformly bounded away from 0.However,to keep this paper self contained,we give a direct proof of(5.27).We look for a sub-solution to(5.26)in the form

    where

    with the functions ζ(τ)and q(τ)satisfying

    In other words,we wish to deviseas in(5.28)–(5.29),such that

    and

    with

    Notice that the choice of F(τ)in(5.28)has eliminated a low order term involvingFor convenience,let us define

    which appears in(5.26).Because Lφ0=0 and

    we find that

    Let us write this as

    Our goal is to choose ζ(τ)and q(τ),such that(5.29)holds and the right-hand side of(5.32)is non-positive after a certain timeτ0,possibly quite large.However,and this is an important point,this time τ0will not depend on the initial condition w0(η).

    for allτ≥ τ0,η ≥ 0.

    Therefore,on the intervalη ∈ [η1,∞)and for τ≥ τ0,(5.32)is bounded by

    assuming q(τ)>0 andHence,if q(τ)andζ(τ)are chosen to satisfy the differential inequality

    then we will have

    provided thatas presumed in(5.29).Still assuminga sufficient condition for(5.34)to be satisfied is

    Hence,we choose

    Note that q(τ)satisfies the assumptions on q in(5.29).

    Let us now deal with the range η∈ [0,η1].The functionis bounded on R and it is bounded away from 0 on[0,η1].Define

    As h(τ)<0 for τ≥ τ0,on the interval[0,η1],we can bound(5.32)by

    Forη ∈ [1,η1],whereη?1<1,we have

    To make this non-positive,we chooseζto satisfy

    where the last equalilty comes from(5.36).Assumingwe have ζ(τ)<ζ(τ0),so a sufficient condition for(5.39)to hold when τ≥τ0is simply

    For η near 0,the dominant term in(5.37)isDefine

    Therefore,if we can arrange that,then for η∈ [0,1],we have,so

    In this case,

    which is non-positive forτ≥ τ0,due to(5.39).In summary,we will have L(τ)p ≤ 0 in the intervalη ∈ [0,η1]and τ≥ τ0ifζsatisfies(5.40)andfor τ≥ τ0.In view of this,we let ζ(τ)have the form

    Thus,(5.40)holds if

    Hence it suffices that

    holds;this may be achieved with a2,a3>0 ifτ0is large enough.Then we may take a2large enough,so thatholds forτ≥ τ0;this condition translates to

    This also is attainable withand a3>0 if τ0is chosen large enough.This completes the construction of the subsolutionin(5.28).

    Let us come back to our subsolutionFrom the strong maximum principle,we know thatandHence,there is λ0>0,such that

    where p is given by(5.28)withζand q defined above,and we have forτ≥τ0,

    This,by(5.29),bounds the quantity I(τ)uniformly from below,so that(5.29)holds with a constant c0>0 that depends on the initial condition w0.

    Therefore,just as in the study of the upper barrier,we obtain the uniform convergence of(possibly a subsequence of)on the half-lineto a functionwhich satisfies

    and such that

    5.4 Convergence of w(τ,η):Proof of Lemma 5.1

    Let X be the space of bounded uniformly continuous functions u(η),such thatis bounded and uniformly continuous on R+.We deduce from the convergence of the upper and lower barriers for w(τ,η)(and ensuing uniform bounds for w)that there exists a sequencesuch that w(τn,·)itself converges to a limit W∞∈ X,such that W∞≡ 0 on R?,and W∞(η)>0 for allη>0.Our next step is to bootstrap the convergence along a sub-sequence,and show that the limit of w(τ,η)asτ→ +∞ exists in the space X.First,observe that the above convergence implies that the shifted functions wn(τ,η)=w(τ+ τn,η)converge in X,uniformly on compact time intervals,as n → +∞ to the solution w∞(τ,η)of the linear problem

    In addition,there exists α∞>0,such that w∞(τ,η)converges toin the topology of X asτ→+∞.Thus,for anyε>0,we may choose Tεlarge enough,so that

    Given Tε,we can find Nεsufficiently large so that

    In particular,we have

    We may now construct the upper and lower barriers for the function w(τ+ τNε+Tε,η +exactly as we have done before.It follows,once again from Lemma 5.2 applied to these barriers that any limit pointφ∞of w(τ,·)in X asτ→ +∞ satisfies

    Asε>0 is arbitrary,we conclude that w(τ,η)convergesin X asTaking into account Lemma 5.2 once again,applied to the upper and lower barriers for w(τ,η)constructed starting from any timeτ>0,we have proved Lemma 5.1,which implies Lemma 4.2.

    AcknowledgementsLenya Ryzhik and Jean-Michel Roquejoffre thank the Labex CIMI for a PDE-probability quarter in Toulouse,in Winter 2014,out of which the idea of this paper grew and which provided a stimulating scientific environment for this project.

    [1]A?dékon,E.,Berestycki,J.,Brunet,é.and Shi,Z.,Branching Brownian motion seen from its tip,Probab.Theory Relat.Fields,157,2013,405–451.

    [2]Arguin,L.-P.,Bovier,A.and Kistler,N.,Poissonian statistics in the extremal process of branching Brownian motion,Ann.Appl.Probab.,22,2012,1693–1711.

    [3]Arguin,L.-P.,Bovier,A.and Kistler,N.,The extremal process of branching Brownian motion,Probab.Theory Relat.Fields,157,2013,535–574.

    [4]Berestycki,H.and Hamel,F.,Front propagation in periodic excitable media,Comm.Pure Appl.Math.,55,2002,949–1032.

    [5]Bramson,M.D.,Maximal displacement of branching Brownian motion,Comm.Pure Appl.Math.,31,1978,531–581.

    [6]Bramson,M.D.,Convergence of solutions of the Kolmogorov equation to travelling waves,Mem.Amer.Math.Soc.,44,1983.

    [7]Brunet,E.and Derrida,B.,A branching random walk seen from the tip,Journal of Statistical Physics,143,2011,420–446.

    [8]Brunet,E.and Derrida,B.,Statistics at the tip of a branching random walk and the delay of traveling waves,Eur.Phys.Lett.,87,60010,2009.

    [9]Fang,M.and Zeitouni,O.,Slowdown for time inhomogeneous branching Brownian motion,J.Stat.Phys.,149,2012,1–9.

    [10]Fisher,R.A.,The wave of advance of advantageous genes,Ann.Eugenics,7,1937,353–369.

    [11]Hamel,F.,Nolen,J.,Roquejoffre,J.-M.and Ryzhik,L.,A short proof of the logarithmic Bramson correction in Fisher-KPP equations,Netw.Het.Media,8,2013,275–289.

    [12]Hamel,F.,Nolen,J.,Roquejoffre,J.-M.,and Ryzhik,L.,The logarithmic time delay of KPP fronts in a periodic medium,J.Europ.Math.Soc.,18,2016,465–505.

    [13]Hamel,F.and Roques,L.,Uniqueness and stability properties of monostable pulsating fronts,J.Europ.Math.Soc.,13,2011,345–390.

    [14]Henderson,C.,Population stabilization in branching Brownian motion with absorption and drift,Comm.Math.Sci.,14,2016,973–985.

    [15]Kolmogorov,A.N.,Petrovskii,I.G.and Piskunov,N.S.,étude de l’équation de la diffusion avec croissance de la quantité de matière et son applicationà un problème biologique,Bull.Univ.état Moscou,Sér.Inter.A,1,1937,1–26.

    [16]Lalley,S.P.and Sellke,T.,A conditional limit theorem for the frontier of a branching Brownian motion,Annals of Probability,15,1987,1052–1061.

    [17]Lau,K.-S.,On the nonlinear diffusion equation of Kolmogorov,Petrovskii and Piskunov,J.Diff.Eqs.,59,1985,44–70.

    [18]Maillard,P.and Zeitouni,O.,Slowdown in branching Brownian motion with inhomogeneous variance,Ann.IHP Prob.Stat.,to appear.

    [19]McKean,H.P.,Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,Comm.Pure Appl.Math.,28,1975,323–331.

    [20]Nolen,J.,Roquejoffre,J.-M.and Ryzhik,L.,Power-like delay in time inhomogeneous Fisher-KPP equations,Comm.Partial Diff.Equations,40,2015,475–505.

    [21]Nolen,J.,Roquejoffre,J.-M.and Ryzhik,L.,Refined large-time asymptotics for the Fisher-KPP equation,2016,preprint.ar Xiv:1607.08802

    [22]Roberts,M.,A simple path to asymptotics for the frontier of a branching Brownian motion,Ann.Prob.,41,2013,3518–3541.

    [23]Roquejoffre,J.-M.,Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders,Ann.Inst.H.Poincaré Anal.Non Linéaire,14,1997,499–552.

    猜你喜歡
    冷啟動水氣坡向
    輕型汽油車實際行駛排放試驗中冷啟動排放的評估
    遼中區(qū)患病草魚體內(nèi)嗜水氣單胞菌分離、鑒定與致病力測定
    海上邊水氣藏利用試井資料確定水侵狀況研究
    海洋石油(2021年3期)2021-11-05 07:42:26
    基于學習興趣的冷啟動推薦模型
    客聯(lián)(2021年2期)2021-09-10 07:22:44
    DEM地表坡向變率的向量幾何計算法
    測繪學報(2019年11期)2019-11-20 01:31:42
    青藏高原東緣高寒草甸坡向梯度上植物光合生理特征研究
    土壤與作物(2015年3期)2015-12-08 00:46:55
    軍事技能“冷啟動”式訓練理念初探
    醫(yī)院感染嗜水氣單胞菌的臨床治療分析
    基于分形幾何的裂縫型底水氣藏產(chǎn)能模型
    坡向和坡位對小流域梯田土壤有機碳、氮變化的影響
    午夜久久久久精精品| 男女那种视频在线观看| 特级一级黄色大片| 亚洲av中文av极速乱 | 99久国产av精品| 成人精品一区二区免费| av在线蜜桃| 精品国产三级普通话版| 久久亚洲真实| 黄色丝袜av网址大全| 中国美白少妇内射xxxbb| av.在线天堂| 亚洲自拍偷在线| 欧美日韩中文字幕国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产综合懂色| 成年版毛片免费区| 亚洲avbb在线观看| 午夜福利在线观看免费完整高清在 | 精品人妻熟女av久视频| 欧美一级a爱片免费观看看| 变态另类成人亚洲欧美熟女| 香蕉av资源在线| 99久久无色码亚洲精品果冻| 国内久久婷婷六月综合欲色啪| 搞女人的毛片| 少妇人妻一区二区三区视频| 国产精品精品国产色婷婷| bbb黄色大片| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 少妇被粗大猛烈的视频| 在线观看美女被高潮喷水网站| 久久久国产成人免费| 十八禁国产超污无遮挡网站| 三级国产精品欧美在线观看| 有码 亚洲区| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 欧美日韩瑟瑟在线播放| 精品人妻视频免费看| 亚洲最大成人av| 久久久国产成人免费| 国内精品久久久久精免费| 全区人妻精品视频| 十八禁网站免费在线| 国产亚洲精品久久久com| 级片在线观看| 不卡一级毛片| 国国产精品蜜臀av免费| 性欧美人与动物交配| av中文乱码字幕在线| 亚洲精品粉嫩美女一区| 麻豆成人午夜福利视频| 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 不卡一级毛片| 国产亚洲欧美98| 日韩一区二区视频免费看| 免费在线观看影片大全网站| 91久久精品国产一区二区三区| 能在线免费观看的黄片| 国产亚洲精品av在线| 久久久午夜欧美精品| 成人特级av手机在线观看| 亚洲成人久久爱视频| 高清毛片免费观看视频网站| 天堂网av新在线| 永久网站在线| 少妇的逼好多水| 久久九九热精品免费| 久久人妻av系列| 国产视频一区二区在线看| 精品一区二区免费观看| a在线观看视频网站| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 久久中文看片网| 18禁裸乳无遮挡免费网站照片| 中文字幕人妻熟人妻熟丝袜美| 麻豆成人av在线观看| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 国产精品永久免费网站| 成人毛片a级毛片在线播放| 午夜福利欧美成人| 国产精品自产拍在线观看55亚洲| 国产成人av教育| 99久久九九国产精品国产免费| 一级a爱片免费观看的视频| a级毛片免费高清观看在线播放| 国内精品久久久久精免费| 一个人看视频在线观看www免费| 伦精品一区二区三区| 亚洲成人免费电影在线观看| 嫩草影视91久久| 少妇人妻一区二区三区视频| 长腿黑丝高跟| 免费大片18禁| 国产精品一区www在线观看 | 日本五十路高清| 日日撸夜夜添| 美女xxoo啪啪120秒动态图| 成人无遮挡网站| 天天躁日日操中文字幕| 日本欧美国产在线视频| 干丝袜人妻中文字幕| 黄色欧美视频在线观看| 国产精品99久久久久久久久| 国产高清视频在线播放一区| 精品乱码久久久久久99久播| 亚洲成人久久爱视频| 在线播放无遮挡| 日本与韩国留学比较| 一个人免费在线观看电影| 日韩欧美在线乱码| 国产精品一区二区三区四区免费观看 | 久久午夜亚洲精品久久| 少妇的逼水好多| 国产精品福利在线免费观看| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 大型黄色视频在线免费观看| 国产精品久久久久久av不卡| 中文字幕人妻熟人妻熟丝袜美| 国产女主播在线喷水免费视频网站 | 日韩国内少妇激情av| 亚洲精品成人久久久久久| 91久久精品国产一区二区成人| 亚洲图色成人| 97碰自拍视频| 日韩av在线大香蕉| 最近最新中文字幕大全电影3| 亚洲第一区二区三区不卡| 久久人人爽人人爽人人片va| 啦啦啦啦在线视频资源| 在线天堂最新版资源| 色哟哟·www| 国产日本99.免费观看| 日韩国内少妇激情av| 国产精品久久久久久精品电影| 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 天天躁日日操中文字幕| 国产在线男女| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 自拍偷自拍亚洲精品老妇| 亚洲黑人精品在线| 联通29元200g的流量卡| 少妇丰满av| 久久久久九九精品影院| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 九九爱精品视频在线观看| 不卡一级毛片| 国产精品久久电影中文字幕| 不卡一级毛片| 久久6这里有精品| 中文字幕人妻熟人妻熟丝袜美| 成人av一区二区三区在线看| 亚洲av熟女| 久久国产精品人妻蜜桃| 午夜影院日韩av| 久久6这里有精品| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 少妇猛男粗大的猛烈进出视频 | 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 午夜福利高清视频| 黄色视频,在线免费观看| 国产久久久一区二区三区| 欧美日韩黄片免| 久久久精品欧美日韩精品| 亚洲精品乱码久久久v下载方式| 亚洲电影在线观看av| 亚洲无线在线观看| 久久精品国产鲁丝片午夜精品 | 女的被弄到高潮叫床怎么办 | 两人在一起打扑克的视频| 黄色日韩在线| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 成人av一区二区三区在线看| 嫩草影院入口| 免费人成视频x8x8入口观看| 99热这里只有是精品50| 久久人人精品亚洲av| 精品久久久久久久末码| 99久久精品一区二区三区| 免费看a级黄色片| 亚洲五月天丁香| 窝窝影院91人妻| 最好的美女福利视频网| 赤兔流量卡办理| 黄片wwwwww| 久久九九热精品免费| av在线亚洲专区| 丰满的人妻完整版| 夜夜夜夜夜久久久久| 国产高清不卡午夜福利| 淫秽高清视频在线观看| 又黄又爽又刺激的免费视频.| 人人妻,人人澡人人爽秒播| 欧美成人a在线观看| 国产精品野战在线观看| 一区福利在线观看| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 色吧在线观看| 两人在一起打扑克的视频| 看十八女毛片水多多多| 国产一区二区三区在线臀色熟女| 欧美一级a爱片免费观看看| 深夜a级毛片| 真人一进一出gif抽搐免费| 亚洲,欧美,日韩| 国产精品免费一区二区三区在线| 少妇人妻精品综合一区二区 | 色尼玛亚洲综合影院| 久久久久久九九精品二区国产| 一区二区三区四区激情视频 | 日韩欧美国产在线观看| 深夜a级毛片| 亚洲欧美日韩高清专用| 国产精品98久久久久久宅男小说| 制服丝袜大香蕉在线| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 最后的刺客免费高清国语| 久久久久免费精品人妻一区二区| 亚洲18禁久久av| 一级av片app| 999久久久精品免费观看国产| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 亚洲综合色惰| 老司机福利观看| 国产精品伦人一区二区| 热99re8久久精品国产| 色综合色国产| 九九热线精品视视频播放| 国产久久久一区二区三区| av天堂在线播放| 桃红色精品国产亚洲av| 白带黄色成豆腐渣| 欧美一区二区亚洲| 99热精品在线国产| 一区福利在线观看| 性欧美人与动物交配| 日本黄大片高清| 欧美在线一区亚洲| 国产亚洲精品av在线| 久久久久久伊人网av| 成人性生交大片免费视频hd| 亚洲成人免费电影在线观看| 啪啪无遮挡十八禁网站| 欧美人与善性xxx| 国产高清视频在线播放一区| 成人午夜高清在线视频| 搡老熟女国产l中国老女人| 免费高清视频大片| av在线老鸭窝| 午夜日韩欧美国产| 精品国产三级普通话版| 国内精品久久久久久久电影| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| av.在线天堂| 欧美成人性av电影在线观看| 日韩在线高清观看一区二区三区 | 中出人妻视频一区二区| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 国产精品亚洲美女久久久| 十八禁网站免费在线| 欧美国产日韩亚洲一区| 国产 一区精品| 国内久久婷婷六月综合欲色啪| 日韩人妻高清精品专区| 在线免费十八禁| av天堂中文字幕网| 亚洲七黄色美女视频| 国产av在哪里看| 天堂av国产一区二区熟女人妻| 他把我摸到了高潮在线观看| 国产精品伦人一区二区| 又粗又爽又猛毛片免费看| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 国产黄色小视频在线观看| 国产欧美日韩精品一区二区| 午夜福利视频1000在线观看| 小说图片视频综合网站| 嫩草影院新地址| avwww免费| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 国产亚洲av嫩草精品影院| 黄色一级大片看看| 亚洲七黄色美女视频| 国产精品不卡视频一区二区| 变态另类丝袜制服| 淫妇啪啪啪对白视频| 亚洲综合色惰| av黄色大香蕉| 久久久久久久精品吃奶| 免费av观看视频| 国产精品人妻久久久影院| 欧美极品一区二区三区四区| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| 97碰自拍视频| 人妻少妇偷人精品九色| ponron亚洲| 免费观看的影片在线观看| 欧美日韩瑟瑟在线播放| 制服丝袜大香蕉在线| 赤兔流量卡办理| 免费高清视频大片| 免费在线观看日本一区| 97超视频在线观看视频| 国产又黄又爽又无遮挡在线| 男女做爰动态图高潮gif福利片| 欧美3d第一页| 亚洲成人精品中文字幕电影| 久久精品国产亚洲网站| 亚洲专区中文字幕在线| 男人和女人高潮做爰伦理| 在线a可以看的网站| 日本a在线网址| 国产成人一区二区在线| 国产伦人伦偷精品视频| 欧美性感艳星| 亚洲精华国产精华液的使用体验 | 在线免费观看的www视频| 在线播放国产精品三级| 久久久成人免费电影| 国产精品伦人一区二区| 国产一区二区在线观看日韩| 99热这里只有精品一区| 午夜福利欧美成人| 女的被弄到高潮叫床怎么办 | 久久人妻av系列| 精品一区二区免费观看| 级片在线观看| 免费电影在线观看免费观看| 99久国产av精品| 欧美日本亚洲视频在线播放| 美女高潮的动态| av在线观看视频网站免费| 午夜激情福利司机影院| 97碰自拍视频| 夜夜夜夜夜久久久久| 天堂网av新在线| 日日撸夜夜添| 精品久久久久久久久久免费视频| 国产av不卡久久| 精品国内亚洲2022精品成人| 国产精品日韩av在线免费观看| 可以在线观看毛片的网站| 亚洲自偷自拍三级| 99精品在免费线老司机午夜| 国产高清视频在线观看网站| 国产精品野战在线观看| 淫秽高清视频在线观看| 伦精品一区二区三区| 日韩欧美免费精品| 日本熟妇午夜| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影| 免费搜索国产男女视频| 亚洲av二区三区四区| 天美传媒精品一区二区| 少妇高潮的动态图| 在线观看午夜福利视频| 亚洲成人免费电影在线观看| 久久久国产成人免费| 12—13女人毛片做爰片一| 在线免费十八禁| 成人毛片a级毛片在线播放| 久久久国产成人免费| 欧美一区二区精品小视频在线| 乱系列少妇在线播放| 亚洲专区中文字幕在线| 久久99热6这里只有精品| 精品人妻1区二区| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 精品日产1卡2卡| av国产免费在线观看| 老司机午夜福利在线观看视频| 国产 一区精品| 一进一出抽搐动态| 在线观看66精品国产| 亚洲一级一片aⅴ在线观看| 男女那种视频在线观看| 亚洲内射少妇av| 精品久久久久久久人妻蜜臀av| 国产精品爽爽va在线观看网站| 两个人的视频大全免费| 国产成人av教育| 国产男靠女视频免费网站| 男人狂女人下面高潮的视频| 日本与韩国留学比较| 国产亚洲欧美98| 97人妻精品一区二区三区麻豆| 99久国产av精品| 少妇被粗大猛烈的视频| 在线播放国产精品三级| 美女高潮喷水抽搐中文字幕| a级一级毛片免费在线观看| 亚洲中文字幕日韩| 午夜爱爱视频在线播放| 午夜免费成人在线视频| 亚洲精品456在线播放app | 十八禁国产超污无遮挡网站| 88av欧美| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 国国产精品蜜臀av免费| 一级毛片久久久久久久久女| 欧美激情久久久久久爽电影| 男女视频在线观看网站免费| 欧美精品啪啪一区二区三区| 亚洲黑人精品在线| 亚洲国产色片| 国产一级毛片七仙女欲春2| 真人一进一出gif抽搐免费| 一区二区三区高清视频在线| 桃色一区二区三区在线观看| 精品国产三级普通话版| 1000部很黄的大片| 三级毛片av免费| 人人妻人人澡欧美一区二区| 亚洲男人的天堂狠狠| 国产精品免费一区二区三区在线| 欧美最黄视频在线播放免费| 成人特级av手机在线观看| 日韩欧美在线乱码| 女人十人毛片免费观看3o分钟| 日本成人三级电影网站| 真人一进一出gif抽搐免费| 精品人妻偷拍中文字幕| 欧美一区二区亚洲| 亚洲熟妇熟女久久| 91在线观看av| 欧美zozozo另类| 九九在线视频观看精品| 乱系列少妇在线播放| 无遮挡黄片免费观看| 国产精品久久电影中文字幕| 亚洲国产欧洲综合997久久,| 亚洲精品一区av在线观看| 国产成年人精品一区二区| 亚洲av中文字字幕乱码综合| 免费观看人在逋| 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 亚洲av中文av极速乱 | 我的女老师完整版在线观看| www日本黄色视频网| 日本三级黄在线观看| 免费不卡的大黄色大毛片视频在线观看 | 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清在线视频| 我的老师免费观看完整版| 久久久国产成人免费| 国产精品久久久久久亚洲av鲁大| 色av中文字幕| 久久这里只有精品中国| 真实男女啪啪啪动态图| 亚洲av日韩精品久久久久久密| 国产精品亚洲美女久久久| 亚洲aⅴ乱码一区二区在线播放| 精品不卡国产一区二区三区| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 国产探花在线观看一区二区| 国产av在哪里看| 99久国产av精品| 久久久久久久久大av| 联通29元200g的流量卡| 午夜亚洲福利在线播放| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看 | 精品人妻一区二区三区麻豆 | 内地一区二区视频在线| 亚洲一级一片aⅴ在线观看| 中文字幕高清在线视频| 亚洲欧美日韩卡通动漫| 永久网站在线| 干丝袜人妻中文字幕| 男女做爰动态图高潮gif福利片| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 一级黄色大片毛片| 最近在线观看免费完整版| 波多野结衣高清无吗| 欧美中文日本在线观看视频| 久久久久久伊人网av| 中文字幕av在线有码专区| 一区二区三区四区激情视频 | 又黄又爽又免费观看的视频| 在现免费观看毛片| 婷婷精品国产亚洲av在线| 亚洲国产精品久久男人天堂| 床上黄色一级片| 国产精品一及| 小蜜桃在线观看免费完整版高清| 日日干狠狠操夜夜爽| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 国产精品av视频在线免费观看| 日韩大尺度精品在线看网址| 在线观看美女被高潮喷水网站| 在线观看66精品国产| 国产麻豆成人av免费视频| 亚洲精品成人久久久久久| 久久久久久久亚洲中文字幕| 极品教师在线免费播放| 久久香蕉精品热| 国产精品美女特级片免费视频播放器| 色在线成人网| 久久久久久久亚洲中文字幕| 一个人免费在线观看电影| 国产精品亚洲一级av第二区| videossex国产| 色综合色国产| 亚洲成人久久爱视频| 婷婷色综合大香蕉| 国产精品电影一区二区三区| 嫩草影院新地址| 欧美日韩黄片免| 蜜桃亚洲精品一区二区三区| 十八禁网站免费在线| 久久久久久久久久成人| 日韩欧美国产在线观看| 91久久精品国产一区二区三区| 老熟妇乱子伦视频在线观看| 99精品久久久久人妻精品| 色噜噜av男人的天堂激情| 欧美潮喷喷水| 最近中文字幕高清免费大全6 | 女人十人毛片免费观看3o分钟| 欧美不卡视频在线免费观看| 亚洲精华国产精华精| 午夜福利高清视频| 精品日产1卡2卡| 九九久久精品国产亚洲av麻豆| 日韩欧美国产在线观看| 琪琪午夜伦伦电影理论片6080| 伦理电影大哥的女人| 亚洲人与动物交配视频| 久久亚洲精品不卡| 真人做人爱边吃奶动态| 欧美成人性av电影在线观看| 国内少妇人妻偷人精品xxx网站| 欧洲精品卡2卡3卡4卡5卡区| videossex国产| 色综合色国产| 熟女人妻精品中文字幕| 久久亚洲精品不卡| 波多野结衣巨乳人妻| 欧美成人a在线观看| 欧美+亚洲+日韩+国产| 亚洲图色成人| 国产精品爽爽va在线观看网站| av福利片在线观看| 桃色一区二区三区在线观看| 国产男人的电影天堂91| 国产精品一区二区三区四区免费观看 | 国产精品美女特级片免费视频播放器| 在线观看一区二区三区| 看黄色毛片网站| 男人的好看免费观看在线视频| 日本与韩国留学比较| 又黄又爽又刺激的免费视频.| 日本免费a在线| 亚洲中文字幕一区二区三区有码在线看| 如何舔出高潮| 国产精品三级大全| 欧美日韩综合久久久久久 | 日韩欧美 国产精品| 一卡2卡三卡四卡精品乱码亚洲| 长腿黑丝高跟| 国产精品1区2区在线观看.| x7x7x7水蜜桃| 免费电影在线观看免费观看| 成人永久免费在线观看视频| 午夜精品在线福利| 久久久久精品国产欧美久久久| 色综合站精品国产| 国产黄片美女视频| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 在线看三级毛片| 亚洲av美国av| 国产免费男女视频| 久久午夜亚洲精品久久| 精品国产三级普通话版| 色5月婷婷丁香| 日韩亚洲欧美综合| avwww免费| 国产精品人妻久久久久久| 禁无遮挡网站| 国产一区二区在线观看日韩| 波多野结衣巨乳人妻|