• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trajectory optimization of a de flectable nose missile

    2017-07-01 20:50:08ZhiyongZhngQizhongTngXiohuiSunZhihuChen
    Defence Technology 2017年3期

    Zhi-yong Zhng,Qi-zhong Tng,Xio-hui Sun,*,Zhi-hu Chen

    aNational Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    bNorth China System Engineering Institute,Beijing 100089,China

    Trajectory optimization of a de flectable nose missile

    Zhi-yong Zhanga,Qi-zhong Tangb,Xiao-hui Suna,*,Zhi-hua Chena

    aNational Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    bNorth China System Engineering Institute,Beijing 100089,China

    A R T I C L E I N F O

    Article history:

    De flectable nose missile

    Numerical simulation

    Maximum range

    Maneuverability

    Genetic algorithm

    The de flectable nose missile has a longer range by de flecting its nose to improve its aerodynamic feature. Based on detached eddy simulation(DES),the supersonic flow fields of a missile with de flectable nose are simulated numerically and its aerodynamic force coef ficients are calculated under the condition of the de flection angles vary from 0°to 8°,angles of attack,0°-8°,and mach numbers,2 to 5.Coupling these aerodynamic coef ficients with the plumb plane ballistic equations,the extended flight range has been calculated.Furthermore,the genetic algorithm(GA)is employed for the solution ofmaximum range of the de flected missile.

    ?2017 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Flight control of missiles is historically realized by tail-fins or canards.Tail-fin controls are located at the rear of the body,well behind the center of gravity.While canard controls are installed in the warhead[1],and are in fluenced by the head oblique shock.The location ofthe canards in the expansion region along the nose may result in undesirable aerodynamic and thermodynamic effects occurring in the high dynamic pressure environment[2].

    In 1946,Goddard proposed another control device,the de flectable nose,to controlmissile flight[3].Through the changing of angles between the missile nose and the body axis,the de flectable nose missile can generate the required control force by air.It has the advantages ofsimple structure,smalladditionalresistance, little in fluence on the flow field of tail and high maneuverability. NASA performed wind tunnel tests on missiles with de flectable nose control[4,5]and investigated the feasibility ofbent-nose conic shapes as hypersonic aerocapture vehicles for planetary missions [6].Current studies on the de flectable nose missile are most concentrated in aerodynamic characteristics and dynamic control. Through controlling the head angle of attack,Liang achieved the goals of real-time correction of the trajectory and improved its hitting precision[7].Gao et al.established a control system based on the concept of de flectable nose and veri fied its ef ficiency in hypervelocity flight[8].Wang et al.,based on N-S equation and k-3 turbulent model,simulated the aerodynamic characteristics of models at different angles ofattack and Mach numbers,and found that,for low angles ofattack,the liftto drag ratio increases with the increase of the angles of attack[9].

    Based on previous research,in this paper,we firstly simulates the flow fields of the missile with the de flection angles among 0°-8°,angles ofattack from 0°to 8°,and the Mach number from 2 to 5.Then,the aerodynamic forces are calculated based on the numerical results,and are applied to the plumb plane ballistic equations to investigate the flight stability of the de flectable nose missile.Finally GA is adopted to obtain the maximum range.

    2.Numerical methods

    2.1.Simulation method

    Governing equations employed in this paper is Navier-Stokes equations,as shown below

    Since the resistance of missiles caused by the gas viscosity increase at supersonic speeds[10],the surface boundary layer is necessary to be considered in numerical calculation.Large eddy simulation(LES)and direct numerical simulation(DNS)can accurately describe the flow structure of missile.But on the boundary layer,the demand for the grid number and the amount of calculation are relatively large.Reynolds average Navier-Stockes(RANS) has less amount of calculation but cannot accurately simulate the transient flow of turbulence.Therefore detached eddy simulation (DES)is adopted,which uses the RANS for approaching the boundary layer to reduce the demand for the grid number and LES is for the main flow.

    In order to effectively catch shock waves near the warhead and tail,two-order AUSM scheme is employed to discrete the convection term.In computational fluid equations,two-order center scheme is used for viscosity term and third-order Runge-Kutta method is employed to discrete the time derivative terms.

    The plumb plane ballistic equations are employed for the description of flight of the de flected missile and the 4th-order Runge-Kutta method is adopted for the solution.In the flight calculation,the earth is considered as a still sphere and standard atmosphere modelhas been adopted.The aerodynamic forces and moments of the plumb plane equations are inputted from the DES simulation.

    2.2.Computational model

    As shown in Fig.1,the computational model is a typical threedimensional de flectable nose missile(N2dB28F240)[11]with the mass of 15.87 kg,diameter of 56.2356 mm.

    Fig.2 displays grid partition in x axis section near the tail.OBlock is built and re fined near the boundary layer,and the grid nodes become sparse sequently with its increased distance from the wall.Finally,the number of computationalgrids is about three million after the gird convergence tests.In addition,the left boundary is considered as the incoming flow and all other boundaries are out flow pressure field and the missile surface is considered as nonslip.The details are seen in the reference[10].

    3.Results and discussions

    Based on the requirement of parameters for solving the plumb plane ballistic equations,the flow fields of a missile,with the de flection angle varying amongβ=0°-8°,angles of attack, α=0°-8°,and the Mach numbers Ma=2-5,have been simulated numerically.

    3.1.Aerodynamic characteristics of the de flection missile

    Fig.3 presents the typicalpressure contours on the surface and around the missile,at angle of attackα=0°and nose de flection angle ofβ=0°,4°and 8°,respectively.It is nondimensionalized with the characteristic value ofthe pressure P0=73429.16 pa.Itcan clearly be seen that,for the case of(a)α=0°,β=0°,the flow field structure is almost symmetricalwith respect to the axis of missile. At the nose,the oblique shock appears,and the pressure increases signi ficantly around the head and decreases rapidly just behind the shoulder due to the expansion waves.In the middle of the missile there are no shock and expansion waves.The pressure is basically stable.But at the front of the tail,the flow is strongly compressed due to the block oftailfoils,and strong oblique shock waves appear, however,there is a low pressure recirculation region at the bottom of the missile.

    For the cases of(b)β=4°and(c)β=8°,the structure ofthe flow field is not symmetrical about the XZ plane.The strength of the shock wave on the windward is much higher than that on the leeward,on the contrary,the expansion wave near the shoulder is much weakened on the windward(Fig.3(b-c)).This is because when the nose de flects upward,the compression ofthe flow on the windward is enhanced and the turning angle around the shoulder increases to make the flow expand quicker than thatofthe leeward. The structure ofthe flow field in the rear ofthe missile is almostthe same for allthe cases,but the intensity of the oblique shock of tail foils(Fig.3(b-c))is weaker than the non de flectable case(Fig.3(a)), therefore,the induced drag is smaller.

    The high pressure region formed below the nose causes an additional lift over the forebody surface and makes the pressure center move forward,and also a change in aerodynamic coef ficients.Fig.4 exhibits the relationship between aerodynamic coef ficients of the missile and angle of attacks,in which the solid line represents numerical simulation values and the dotted line indicates the experimental values of Ref.[2].It is clear that both experimentaland numericalresults agree wellwith each other.The drag and lift coef ficients increase with the increase of angle of attack and the de flection angle,but the increase gradient of lift is larger.This is because the de flected nose makes the pressure on the windward side increases while that on the leeward side decreases (Fig.3).The pressure difference causes the increase of the force projected on both x and y axes.The main reason of the extended range of the de flected nose missile is caused by its pitching moment coef ficient.

    On the other hand,with the increase of attack of angle,the pitching moment decreases and becomes negative at some points, it shows that the missile is longitudinally stable during flight.But for large attack of angles and the de flection angles,the differences between lift coef ficients of experiments and numerical simulation become large(Fig.4(b)),therefore,in this paper,the attack ofangles during flight should be kept smaller than 8°.

    Fig.5 illustrates the relationship between aerodynamic coef ficients ofthe missile and Mach number with the nose de flection β=4°,angle of attackα=0°,4°,and 8°.It can be seen that,for supersonic flow,with the increase of Mach number,the drag coef ficient decreases,the lift is basically stable.The pitching moment increases slowly forα=0°,4°,and the smaller its attack of angle,the larger its value.

    Table 1 Landing state of de flected missile with different de flection angle.

    3.2.Trajectory optimization of the de flected nose missile

    To simulate the flight trajectory,we take above de flected nose missile as the example.Substitute the calculated aerodynamic coef ficients into the 6 DOF ballistic equations to simulate the trajectories of the missile numerically with different de flection angles. We set the de flection starts at the end point of the boost phase,at this time,t≈100s,the body velocity is 1689 m/s,pitch angle is about 50°and angle of attack is almost zero.

    Table 1 displays the landing state of de flected missile after de flecting the nose atthe highestpointofthe trajectory.Fig.6 is the missile trajectory with different de flection anglesβ=0°,3°and 5°. By comparison it is found the range increases progressively with the increase of de flection angleβ.Whenβ=5°,the growth rate is signi ficantly increased.Itillustrates the de flectable nose controlcan signi ficantly enhance the range ofthe missile but the landing Mach number and pitch angle both decrease.In addition,ifβis over 6°, the angle of attack willexceed 8°.Therefore this condition willnot be considered.

    Typical pro files of angle of attack and pitching moment coef ficient are displayed in Fig.7.It is clear that the variation of pitching moment is opposite to that of the angle of attack,and acts as the righting moment and keeps the body stable.When the angle of attack increases,the pitching moment decreases,they reach at the extremum values at the same time,then,they vary contrarily again. Both the angle of attack and pitching moment have the same oscillation cycle.

    Figs.8 and 9 shows the curves of attack ofangle and lift-to-drag ratio during the flight with different de flection angleβ=0°,3°and 5°.Itis clear thatboth attack ofangle and lift-to-drag ratio have the same variation tendency with different de flection angles.When β=0°,the lift-to-drag ratio are almost equal to 0°during all the flightdue to the very smallangles ofattack.Whenβ=3°or 5°,after the highest point of trajectory,the angle of attack is greater than 0°and the lift coef ficient increases.From Fig.9,the lift-to-drag ratios of the de flected nose missile are large.This is why the range ofde flected nose missile is longer than thatofnormalmissile.

    However,the de flected nose makes the pressure center move forward with the increased fluctuation ofangle of attack and leads to the decrease of flight stability.

    We use the projection of overload to the velocity coordinate system(Ox3y3)to discuss the overload.Nx3is the tangential overload and Ny3refers to the normal overload.In fact,a large tangential overload means a large tangential acceleration and the velocity of the missile is changed quickly.Moreover,if the missile has a large normaloverload,it is quicker to modify the direction of the flight.Therefore,the larger the overload of the missile is,the better its maneuverability becomes.As displayed in Fig.10,with the increase of the de flection angle,the tangentialoverload decreases, but its normal overload increases.Since the growth rate of thenormal overload is far larger than the reduction rate of the tangential overload, the de flected missile has better maneuverability.

    Table 2 Results of the optimization.

    To investigate the superiority ofthe de flected missile,two cases, the normal and the de flected missiles,are considered to optimize its trajectory.The former is to search an optimallaunch angle for a maximum range.The latter is to search the optimal launch angle and the variation of de flecting angle with time to maximize the range.Since the relationship between objective function and variables is nonlinear,and the objective function is discontinuous,an optimization algorithm which can adapt to the nonlinearity and discontinuity is needed.

    Genetic algorithm is ideal for the optimization of our range problems and as it is a probabilistic search algorithm,each case is calculated 5 times to achieve the minimum fitness value as expressed in Eq.(1),where R is the range ofthe missile.In addition, the population size and the number of generations are taken to be 50 and 500,respectively.And the cross-over probability and mutation probability are chosen to be 0.7 and 0.1,respectively.

    Table 2 shows the results ofoptimization.The range ofde flected missile increases from 156863m to 190840m,its extended range is 21.66%higher than that of the normal missile,therefore,the de flected nose missile is obviously advantageous in extending the flight range.

    4.Conclusions

    By combining computational fluid dynamics and plumb plane ballistic motion equations,the aerodynamic characteristics, extended range and maneuverability of a de flected missile are investigated.The optimized ranges of both normal and de flected missiles are obtained with the use of genetic algorithm.Following conclusions are concluded.

    1)The coupling of DES and plumb plane ballistic equations can be used to investigate numerically the flow characteristics and aerodynamic forces of the supersonic de flected missiles.

    2)The de flected missile has larger lift,drag and pitching moment coef ficients,but the pressure center moves forward,therefore its flightstability is decreased.With the increase ofthe de flected angle,its ability to change the flight direction is obviously improved.

    3)The de flected missile flies at high angle ofattack with its lift-todrag ratio far larger than that of the normalmissile and it has a longer range.Through the genetic algorithm,the de flectable nose control can make the maximum range increase 21.66%.

    [1]Hemidi A,Henry F,Leclaire S,et al.CFD analysis of a supersonic air ejector. Part I:experimental validation of single-phase and two-phase operation.Appl Therm Eng 2009;29(8):1523-31.

    [2]Landers MG,Hall LH,Auman LM,et al.De flectable nose and canard controls for a fin-stabilized missile at supersonic and hypersonic speeds.AIAA 2003. 3805.

    [3]Goddard,Robert H.“Apparatus for steering aircraft.”U.S.Patent No.2,594,766. 29 Apr.1952.

    [4]Winovich W,Higdon N S.Evaluation of Some Aerodynamic Controls for a Low-Aspect-Ratio Missile[J].NACA RM A58D17b,1958.

    [5]Riley D R.Some effects of nose de flection and number of tail fins on the aerodynamic characteristics in pitch and sideslip of a wingless missile at a Mach number of 3.11[J].NASA TM X-270,1960.

    [6]Miller III CG,Gnoffo PA.Pressure distributions and shock shapes for a bentnose biconic at incidence.AIAA J 1982;20(8):1150-2.

    [7]Liang Z.The exterior ballistic study of trajectory correction shell with controlled angle of attack at the shell head.J North China Inst Technol 2001;22(6):403-7.

    [8]Yuan Gao,Liangxian Gu,Chunlin Gong.Investigation in a de flectable nose control scheme.J Missiles,Rockets,Missiles Guid 2006;26(1):890-2.

    [9]Fei Wang,Guo-dong Wu,Zhi-jun Wang,et al.Numerical calculation of aerodynamic characteristics of shell with attack angle at the shell head. J North China Inst Technol 2005;26(3):177-9.

    [10]Yu-jie Guo,Zhi-hua Chen,Jun-li Han.The flow fields and aerodynamic characteristics of the de flected nose missile at different angles of attack.J Aerosp Power 2014;29(9):2079-84.

    [11]Shoesmith B,Birch T,Mifsud M,et al.CFD analysis of a supersonic missile with de flectable nose control[C]//Proceedings of the 2003 AIAA 3rd Flow Control Conference.San Francisco:AIAA.2006,3200.

    18 December 2016

    *Corresponding author.

    E-mail addresses:Zhangzhi900720@163.com(Z.-y.Zhang),tang_qz@163.com (Q.-z.Tang),huizi123717@163.com(X.-h.Sun),chenzh@njust.edu.cn(Z.-h.Chen).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2017.05.001

    2214-9147/?2017 The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received in revised form 3 May 2017

    Accepted 10 May 2017

    Available online 10 May 2017

    边亲边吃奶的免费视频| 插阴视频在线观看视频| 秋霞在线观看毛片| 最近最新中文字幕大全电影3| 80岁老熟妇乱子伦牲交| 91久久精品电影网| 大片电影免费在线观看免费| 国产亚洲精品久久久com| 中文字幕亚洲精品专区| 国产一区二区三区综合在线观看 | 国产亚洲5aaaaa淫片| 97超视频在线观看视频| 美女内射精品一级片tv| 国产v大片淫在线免费观看| 联通29元200g的流量卡| 国产有黄有色有爽视频| 七月丁香在线播放| 国产免费一区二区三区四区乱码| 久久久久久久久久久丰满| 亚洲性久久影院| av在线蜜桃| av免费观看日本| 久久久精品94久久精品| 久久久久精品性色| 丝袜喷水一区| 国产免费福利视频在线观看| www.色视频.com| 偷拍熟女少妇极品色| 亚洲欧美中文字幕日韩二区| 极品少妇高潮喷水抽搐| 精品国产一区二区三区久久久樱花 | 午夜视频国产福利| 亚洲欧美精品自产自拍| xxx大片免费视频| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av天美| av在线亚洲专区| 亚洲欧美精品自产自拍| 午夜激情久久久久久久| 久久久久网色| 秋霞伦理黄片| 中文天堂在线官网| 久久精品综合一区二区三区| 国产美女午夜福利| 成年女人在线观看亚洲视频 | 国内精品宾馆在线| 97在线人人人人妻| 插逼视频在线观看| 五月玫瑰六月丁香| 亚洲国产色片| 成年av动漫网址| 欧美老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 亚洲精品色激情综合| videossex国产| 欧美日韩亚洲高清精品| 成年版毛片免费区| 国产一区二区三区av在线| 成人漫画全彩无遮挡| 国产黄色视频一区二区在线观看| 免费人成在线观看视频色| 国产精品久久久久久久电影| 777米奇影视久久| 亚洲va在线va天堂va国产| 丝瓜视频免费看黄片| 人妻制服诱惑在线中文字幕| 国内揄拍国产精品人妻在线| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 成人国产av品久久久| 亚洲最大成人av| 五月天丁香电影| 中文字幕人妻熟人妻熟丝袜美| www.av在线官网国产| 亚洲自拍偷在线| 欧美一区二区亚洲| 特大巨黑吊av在线直播| 日韩国内少妇激情av| 亚洲精品自拍成人| 欧美一区二区亚洲| 成人鲁丝片一二三区免费| av在线老鸭窝| 麻豆久久精品国产亚洲av| 搡女人真爽免费视频火全软件| 一二三四中文在线观看免费高清| 91精品国产九色| 午夜免费男女啪啪视频观看| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 久久久久网色| 亚洲av中文字字幕乱码综合| 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 亚洲自拍偷在线| 久久人人爽av亚洲精品天堂 | 亚洲欧美成人精品一区二区| 黄片wwwwww| 啦啦啦中文免费视频观看日本| 建设人人有责人人尽责人人享有的 | 日日啪夜夜爽| 亚洲电影在线观看av| 久久久成人免费电影| 亚洲,一卡二卡三卡| 晚上一个人看的免费电影| 国产黄片美女视频| 成人国产av品久久久| 身体一侧抽搐| 国产精品精品国产色婷婷| 超碰97精品在线观看| 国产探花极品一区二区| av免费在线看不卡| 亚洲精品成人av观看孕妇| 高清视频免费观看一区二区| 久久精品国产自在天天线| 王馨瑶露胸无遮挡在线观看| a级一级毛片免费在线观看| 交换朋友夫妻互换小说| av国产精品久久久久影院| 国产爽快片一区二区三区| 国产男女超爽视频在线观看| 一边亲一边摸免费视频| 美女高潮的动态| 搞女人的毛片| 国产成年人精品一区二区| 午夜爱爱视频在线播放| 亚洲最大成人中文| av免费在线看不卡| 欧美丝袜亚洲另类| 国产熟女欧美一区二区| 欧美国产精品一级二级三级 | 丝袜脚勾引网站| kizo精华| 日日撸夜夜添| 国产美女午夜福利| 久久女婷五月综合色啪小说 | 日日啪夜夜爽| freevideosex欧美| 精品少妇久久久久久888优播| 亚洲久久久久久中文字幕| 老司机影院毛片| 国产男人的电影天堂91| 精品久久久精品久久久| 亚洲精品乱码久久久v下载方式| 男人添女人高潮全过程视频| 日韩一本色道免费dvd| 黄色怎么调成土黄色| 在线免费十八禁| 亚洲人成网站高清观看| 老司机影院毛片| 亚洲美女视频黄频| 精品久久久精品久久久| 久久久a久久爽久久v久久| 精品酒店卫生间| 五月伊人婷婷丁香| 丝袜美腿在线中文| 在线亚洲精品国产二区图片欧美 | 狂野欧美白嫩少妇大欣赏| 一级爰片在线观看| 国产精品一区二区在线观看99| 91aial.com中文字幕在线观看| 男女国产视频网站| 超碰97精品在线观看| 国产毛片在线视频| 欧美日韩精品成人综合77777| 在线观看国产h片| 欧美zozozo另类| 国产在线一区二区三区精| 人妻夜夜爽99麻豆av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人aa在线观看| 欧美老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 欧美另类一区| 建设人人有责人人尽责人人享有的 | 高清午夜精品一区二区三区| 久久99热这里只有精品18| 久久99热这里只频精品6学生| 水蜜桃什么品种好| 久久久欧美国产精品| 午夜福利网站1000一区二区三区| 一区二区三区精品91| 少妇猛男粗大的猛烈进出视频 | 日本色播在线视频| 视频中文字幕在线观看| 午夜精品一区二区三区免费看| 精品国产露脸久久av麻豆| 最新中文字幕久久久久| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| www.av在线官网国产| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 成人亚洲欧美一区二区av| 国产成人福利小说| 久久精品久久久久久久性| 国产日韩欧美亚洲二区| 插逼视频在线观看| 欧美激情在线99| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版| av免费在线看不卡| 一级毛片我不卡| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 一级片'在线观看视频| 舔av片在线| 成人鲁丝片一二三区免费| 大香蕉久久网| 中国三级夫妇交换| 国产精品蜜桃在线观看| 99视频精品全部免费 在线| 久久久久久久午夜电影| 香蕉精品网在线| 97超碰精品成人国产| 国产精品秋霞免费鲁丝片| 精品久久久久久久末码| 成年女人在线观看亚洲视频 | 亚洲美女视频黄频| 国产精品女同一区二区软件| 麻豆成人午夜福利视频| 91狼人影院| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 99久久精品一区二区三区| 日韩av不卡免费在线播放| 18禁在线无遮挡免费观看视频| 蜜桃久久精品国产亚洲av| av福利片在线观看| 亚洲av福利一区| 97精品久久久久久久久久精品| 成人午夜精彩视频在线观看| av国产免费在线观看| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 亚洲欧美精品专区久久| 国产男人的电影天堂91| 一级av片app| 搞女人的毛片| 免费不卡的大黄色大毛片视频在线观看| 美女内射精品一级片tv| 免费人成在线观看视频色| 插逼视频在线观看| 日本爱情动作片www.在线观看| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 亚洲av男天堂| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美人成| 97精品久久久久久久久久精品| 国产伦理片在线播放av一区| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 免费少妇av软件| 2022亚洲国产成人精品| 91久久精品国产一区二区成人| av专区在线播放| 亚洲欧美精品专区久久| 国产免费视频播放在线视频| 精品久久久噜噜| 男女边摸边吃奶| 久久99热这里只频精品6学生| 久热久热在线精品观看| 成人免费观看视频高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文乱码字字幕精品一区二区三区| 亚洲精品乱码久久久v下载方式| 边亲边吃奶的免费视频| 国产精品精品国产色婷婷| 国产精品国产三级国产专区5o| kizo精华| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 国产毛片在线视频| 国产精品秋霞免费鲁丝片| 亚洲va在线va天堂va国产| 美女被艹到高潮喷水动态| 免费高清在线观看视频在线观看| 国产av国产精品国产| 赤兔流量卡办理| av播播在线观看一区| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片| 久久久久久久久久人人人人人人| 一边亲一边摸免费视频| 久久久久久久国产电影| 日日啪夜夜撸| 亚洲欧美日韩卡通动漫| 国产日韩欧美在线精品| 亚洲精品乱码久久久久久按摩| 久久韩国三级中文字幕| 久久久欧美国产精品| 777米奇影视久久| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 国产精品爽爽va在线观看网站| 国产黄色视频一区二区在线观看| 人体艺术视频欧美日本| 日韩强制内射视频| 国产精品精品国产色婷婷| 干丝袜人妻中文字幕| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 一本一本综合久久| 日日啪夜夜爽| 久久久久精品久久久久真实原创| 在线免费观看不下载黄p国产| 搞女人的毛片| 久久国产乱子免费精品| av国产久精品久网站免费入址| 99热这里只有是精品50| 日韩人妻高清精品专区| 高清欧美精品videossex| 久久久精品免费免费高清| 亚洲成人精品中文字幕电影| 国模一区二区三区四区视频| 欧美变态另类bdsm刘玥| xxx大片免费视频| 久久精品久久久久久久性| 三级男女做爰猛烈吃奶摸视频| 精品一区二区免费观看| 美女高潮的动态| 亚洲精品久久久久久婷婷小说| 少妇裸体淫交视频免费看高清| 18禁动态无遮挡网站| 久久女婷五月综合色啪小说 | 人妻系列 视频| 18+在线观看网站| 777米奇影视久久| 成人二区视频| 插逼视频在线观看| 午夜免费鲁丝| kizo精华| 国产成人福利小说| 亚洲国产精品国产精品| eeuss影院久久| 久久久久网色| 伊人久久精品亚洲午夜| 一级a做视频免费观看| 国产精品麻豆人妻色哟哟久久| 小蜜桃在线观看免费完整版高清| 国产成人91sexporn| 最近2019中文字幕mv第一页| 色综合色国产| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 免费看a级黄色片| 久久韩国三级中文字幕| 国产成人一区二区在线| 亚洲av一区综合| 成人美女网站在线观看视频| 国产午夜精品久久久久久一区二区三区| 久久午夜福利片| 国产精品.久久久| 久久久国产一区二区| 欧美日韩亚洲高清精品| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 少妇高潮的动态图| 亚洲最大成人av| 高清在线视频一区二区三区| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 国产亚洲5aaaaa淫片| 一区二区三区免费毛片| 人人妻人人澡人人爽人人夜夜| a级毛片免费高清观看在线播放| 香蕉精品网在线| 日韩人妻高清精品专区| 青春草国产在线视频| 18+在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 五月开心婷婷网| 少妇人妻一区二区三区视频| 2021少妇久久久久久久久久久| 欧美日本视频| 国产亚洲91精品色在线| 一二三四中文在线观看免费高清| 丝瓜视频免费看黄片| 2021天堂中文幕一二区在线观| 国产精品三级大全| 日韩一区二区视频免费看| 在线观看一区二区三区| 水蜜桃什么品种好| 在线看a的网站| 在现免费观看毛片| 真实男女啪啪啪动态图| 汤姆久久久久久久影院中文字幕| 欧美zozozo另类| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 国产中年淑女户外野战色| 天堂中文最新版在线下载 | 亚洲国产色片| 一级毛片黄色毛片免费观看视频| 在现免费观看毛片| www.av在线官网国产| 夫妻午夜视频| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 国产亚洲最大av| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| av卡一久久| 免费av不卡在线播放| 免费大片18禁| 成人综合一区亚洲| 久久99热这里只有精品18| 在线观看人妻少妇| 久久精品国产自在天天线| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 亚洲四区av| 国产毛片a区久久久久| a级毛片免费高清观看在线播放| 在线观看一区二区三区激情| 日本与韩国留学比较| av女优亚洲男人天堂| 人妻制服诱惑在线中文字幕| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| 一级毛片久久久久久久久女| 看黄色毛片网站| 最近最新中文字幕免费大全7| 免费黄频网站在线观看国产| 精品国产乱码久久久久久小说| 能在线免费看毛片的网站| 日韩,欧美,国产一区二区三区| 精品久久久久久久久av| 国产综合懂色| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱| 精品久久国产蜜桃| 日韩视频在线欧美| 国产亚洲最大av| 国产精品99久久久久久久久| 成人特级av手机在线观看| 真实男女啪啪啪动态图| 国产黄片视频在线免费观看| 中文在线观看免费www的网站| 97人妻精品一区二区三区麻豆| 国产69精品久久久久777片| 我的老师免费观看完整版| 青春草亚洲视频在线观看| 中文资源天堂在线| 日本猛色少妇xxxxx猛交久久| 亚洲美女搞黄在线观看| 亚洲自拍偷在线| 老司机影院成人| 午夜福利在线在线| 久久精品夜色国产| 国产午夜福利久久久久久| 国产淫片久久久久久久久| 久久久久久久久久人人人人人人| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 丝袜美腿在线中文| 99久久九九国产精品国产免费| 国产精品三级大全| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 日韩强制内射视频| av专区在线播放| 日韩成人av中文字幕在线观看| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| 色视频www国产| 亚洲熟女精品中文字幕| 嘟嘟电影网在线观看| 亚洲精品自拍成人| 国产成人aa在线观看| 成人黄色视频免费在线看| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| 嘟嘟电影网在线观看| 亚洲精品日韩av片在线观看| 欧美 日韩 精品 国产| 一级毛片 在线播放| 久久精品国产a三级三级三级| 国产精品秋霞免费鲁丝片| 韩国av在线不卡| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 亚洲综合精品二区| 国产熟女欧美一区二区| 国产黄片视频在线免费观看| 成人亚洲欧美一区二区av| 校园人妻丝袜中文字幕| 欧美日本视频| 黄色怎么调成土黄色| 久久亚洲国产成人精品v| 我要看日韩黄色一级片| 国产又色又爽无遮挡免| 欧美激情在线99| 久久鲁丝午夜福利片| 国产精品国产三级国产av玫瑰| 亚洲精华国产精华液的使用体验| 高清av免费在线| 成人欧美大片| 欧美zozozo另类| 国产毛片a区久久久久| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 一区二区三区免费毛片| 国产有黄有色有爽视频| 在现免费观看毛片| 深夜a级毛片| 亚洲欧美日韩另类电影网站 | 欧美日本视频| 六月丁香七月| 亚洲色图av天堂| 午夜福利视频精品| 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 天天躁夜夜躁狠狠久久av| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 亚洲精品456在线播放app| 亚洲自偷自拍三级| 国产探花在线观看一区二区| 久久久国产一区二区| videos熟女内射| 久久久久久伊人网av| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| 久久亚洲国产成人精品v| 校园人妻丝袜中文字幕| 可以在线观看毛片的网站| 国产黄片视频在线免费观看| 亚洲国产精品999| 91在线精品国自产拍蜜月| a级一级毛片免费在线观看| 嫩草影院精品99| 亚洲性久久影院| 99热网站在线观看| av在线亚洲专区| 天美传媒精品一区二区| 看十八女毛片水多多多| 深爱激情五月婷婷| 日韩成人伦理影院| 女人十人毛片免费观看3o分钟| 大香蕉久久网| 最近2019中文字幕mv第一页| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的 | 成人一区二区视频在线观看| 日韩强制内射视频| 国产精品不卡视频一区二区| 日本一二三区视频观看| 国产爱豆传媒在线观看| 色视频www国产| 大码成人一级视频| av专区在线播放| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看| 在线观看三级黄色| 国产探花在线观看一区二区| 国产成人精品婷婷| 久久久欧美国产精品| 亚洲综合精品二区| 高清午夜精品一区二区三区| 美女内射精品一级片tv| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 国产一区二区三区av在线| 国产精品久久久久久精品古装| 日韩伦理黄色片| 麻豆精品久久久久久蜜桃| 爱豆传媒免费全集在线观看| 国产色婷婷99| 亚州av有码| 午夜视频国产福利| 国产黄片视频在线免费观看| 国产永久视频网站| 一级黄片播放器| 午夜福利高清视频| 国产人妻一区二区三区在| 精品久久久久久电影网| 中文字幕久久专区| 综合色丁香网| 国产av码专区亚洲av| 熟女人妻精品中文字幕| 亚洲av.av天堂| 在线观看一区二区三区激情| 亚洲aⅴ乱码一区二区在线播放| 高清午夜精品一区二区三区| 蜜桃亚洲精品一区二区三区| 精品久久久久久电影网| 久久久久久久久久成人| 好男人视频免费观看在线| 久久99蜜桃精品久久| 中文字幕免费在线视频6| 精品一区在线观看国产| 午夜免费男女啪啪视频观看| 大香蕉97超碰在线| 亚洲激情五月婷婷啪啪| 日本一本二区三区精品| 久久ye,这里只有精品| 大话2 男鬼变身卡| 丝袜脚勾引网站| 婷婷色麻豆天堂久久|