• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    2017-07-01 20:50:13Corriveau
    Defence Technology 2017年3期

    D.Corriveau

    Defence R&D Canada,2459 De La Bravoure Rd.,Quebec QC G3J 1X5,Canada

    Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    D.Corriveau*

    Defence R&D Canada,2459 De La Bravoure Rd.,Quebec QC G3J 1X5,Canada

    A R T I C L E I N F O

    Article history:

    Aerodynamics

    Ballistics

    Trajectory

    BALCO

    NABK

    Ballistic computer

    Sniper system

    In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel(NABK)for the Canadian snipers,DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom(6-DOF)trajectory simulations for a set of relevant vignettes for the snipers,and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel(NABK)adapted to simulate small-arm ammunition trajectories.To conduct this study,DRDC Valcartier Research Centre used BALCO v1.0b.This paper presents(1)the process and the methodology employed to carry out the sniper direct fire solution study,(2)the modeling and the simulation of the sniper projectile,the approach used in calculating the firing solutions,and the results of direct fire simulations for the sniper vignettes,and(3)an analysis of firing solutions obtained with the BALCO engine versus those of NABK.The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.

    Crown Copyright?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The development of the NABK started in the nineties in what is now called the NATO Land Capability Group 3 Sub-Group 2. Members of this group elected for a standard,generic,and layered set of software modules for ballistic processing[1].The Ada computer language was selected given its wide acceptance and embedded application capability.The NABK was first released in 1995 for use in artillery and mortar technical fire control applications.It is currently used by more than ten NATO countries as the main ballistic engine for the artillery and mortar applications.The NABK is also planned for use by navalapplications as wellas in the next generation of fire support systems including guided artillery, mortars and direct fire applications such as fighting vehicles and tanks.

    Although the NABK has been a very successful ballistic engine for various types of weapon systems and for the development of firing tables[2][3],the small arms fire control for individual and crew served weapons ballistic solution is one area where the NABK is not well suited due to the unique requirements of the domain. Historically,fire controlsystems for smallarms presented a unique environment and requirements to the developer of technical fire controlsystems.Smallarms fire controlsystems are typically small in size which limited the available computer resources;CPUs are of lower power with correspondingly less processing capabilities;the amount of random access memory may also be limited.Operating systems used in small arms fire control systems are typically embedded real-time systems.This limits the choice of computer programming languages and compilers that support these systems and also places real-time requirements on the applications thatrun under the hardware and operating system.However,with the constant miniaturization of electronic components and the continually increasing computer power,the factors preventing the use of the NABK for small-arms fire control system have progressively been eliminated.

    With today's smartphone platform,it was demonstrated by the Canadian snipers that the computer power of these devices was suf ficientto run the NABK and instantly generate a ballistic solution for the snipers.Fig.1 shows the Canadian snipers NABK ballistic computer kit with the various sensor connectors and power pack.

    In this paper,the work performed to validate the use of NABK as a ballistic engine for the Canadian snipers ballistic computer is presented.Comparisons between the trajectory predicted by NABK and BALCO are presented for a typical 7.62 mm sniper projectile.Various engagement scenarios are investigated to con firm that NABK performs well for different environmental conditions and firing directions.The comparison of the results obtained from the two ballistic engines are made and discussed.

    2.NABK in brief

    The NATO Armament Ballistic Kernelis a 4-DOF modi fied point mass model.This is a compromise between a simple point mass model and a computationally intensive 6-DOF model.NABK is based on the mathematical model de fined by the NATO STANAG 4355[4]:The Modi fied Point Mass and Point Mass Equations of Motion.In the modi fied point mass model,the effects due to the spin rate ofa projectile are included contrary to a simple pointmass model.Thus,the equilibrium yaw angle in both the lateral and trajectory plane is taken into accountfor calculation ofthe driftand drag.The 4-DOF modi fied point mass model is the algorithm implemented in trajectory simulation programs NABK.The trajectory integration is carried out using the Runge-Kutta-Fehlberg integration scheme.This is a fourth order numerical integration scheme.The projectile and the environment can be described with various levels of detailusing the following models:

    ·Earth:flat(fixed gravity),spherical(STANAG 4355)or ellipsoidal (WGS84)Earth model;

    ·Atmosphere:standard atmosphere(ISO 2533-1975)or userde fined atmosphere,including a 1D or 3D wind field;

    ·Aerodynamics:axisymmetric projectiles,isolated control surfaces,aerodynamic coef ficients described by polynomials;

    ·Inertia data:symmetric matrix of inertia;

    ·Base-burn and rocket assistance models(STANAG 4355);

    ·5-DoF for fin stabilized rocket

    3.BALCO in brief

    BALCO is a 6/7-DoF trajectory simulation program based on the mathematical model de fined by the NATO Standardization Recommendation 4618[5][6].The primary goal of BALCO is to compute high-fidelity trajectories for both conventional and precision-guided projectiles.The 6-DoF model is used to describe the motion of single rigid bodies.The 7-DoF model allows the description ofa projectile which consists oftwo coaxialrigid bodies that can spin independently.Actuators such as isolated control surfaces(e.g.fins or canards),thrusters or internal rollcontrol devices can optionally be attached to the rigid body.Controlling the state of these actuators offers a controlauthority on the trajectory. The 6/7-DoF equations of motion can be expressed in three differentframes,namely,body-fixed,zero rolland zero spin frames, depending on the contextofthe study.The trajectory integration is carried out using an accurate seventh-order Runge-Kutta scheme. The projectile,the environment and the optional guidance,navigation and controlcapabilities can be described with various levels of detailusing the following models:

    ·Earth:flat(fixed gravity),spherical(STANAG 4355)or ellipsoidal (WGS84)Earth model;

    ·Atmosphere:standard atmosphere(ISO 2533-1975)or userde fined atmosphere,including a 1D or 3D wind field;

    ·Aerodynamics:axisymmetric or non-axisymmetric projectiles, isolated controlsurfaces,aerodynamic coef ficients described by multidimensional look-up tables or polynomials;

    ·Inertia data:symmetric or asymmetric matrix of inertia,userde fined timedependent inertia;

    ·Thrusters:user-de fined time-dependent 3D vector thrusts;

    ·Base-burn and rocket assistance models(STANAG 4355);

    ·Embedded actuators(open-or closed-loop flight control):isolated controlsurfaces,thrusters and internalrolling moment for dual-spin bodies;

    ·Guidance,navigation and control models implemented as external functions using a common communication interface (closed-loop flight control).

    4.Sniper ammunition model

    The sniper ammunition of used for this project is the NATO 7.62×51 mm,OTBT(Open Tip Boat Tail),168 gr,Match,which is simply referred to in this paper as the C175.The aerodynamic model for this round was developed using PRODAS(Fig.2)combined with some experimental firing radar traces.

    The aerodynamic coef ficients generated in PRODAS that are actualinputs to the BALCO modeland NABK modelare as follows: CD0,CD2,CD4,CLα0,CLα3,CMα,C Mq,C lp,C Nq,C Ypαand C M pα.

    The coef ficients CD0,CD2and CD4are used to calculate to total drag coef ficient taking into account the projectile's yaw as follows

    whereδ=sinαt.αtis the totalangle of attack.

    The lift force coef ficient CLαis often nonlinear as the yaw level varies.This behaviour is captured using the following relationship

    The pitching moment is directly related to the lift force.For small caliber projectiles,the pitching moment is usually positive. Therefore,ifthe nose ofthe projectile rises above the trajectory,the pitching momentwillactas to increase the yaw angle.The pitching moment relates to the pitching moment coef ficient as follows

    The pitch damping moment arises from the attenuation of pitching motion of a projectile due to the air resistance.The pitch damping moment relates to the pitch damping moment coef ficient as follows:

    where qtis the totalangular velocity.

    Similarly,the pitch damping force relates to the pitch damping force coef ficient as follows

    The spin damping moment opposes the spin of the projectile.It relates to the spin damping coef ficient as follows

    The Magnus force arises fromthe unequalpressures distribution on either side of a spinning body.This is the result of the viscous interaction between the spinning projectile body and the fluid.The Magnus force relates to the Magnus force coef ficient as follows

    Similarly,the Magnus moment is a function of the Magnus moment coef ficient given as

    5.Direct fire simulation comparison study

    In order to compare the direct fire solution of NABK with that obtained from the 6-DOF trajectory simulation code BALCO a set of 20 vignettes was developed.These vignettes represent typical firing conditions that could be encountered around the world by the snipers.The vignette locations are shown in the map presented in Fig.3.

    The vignettes spread locations all over the world,as shown as squares on the simple map of Fig.3.The vignettes also cover a relatively large range ofair temperatures(from-40°C to 49°C),air pressure(from 98.1 kPa to 103.6 kPa),relative humidity(from 0 to 100%),wind speed(from 0 to 30 km/h),gun altitude(from 0 to 3600 m),gun range(from 300 to 1200 m),angles of sight (from-533 to 355 mils),and propellant temperature(from-20°C to 70°C).The vignettes data are presented in Table 1 to Table 3.

    A vignette is a simulation scenario composed of de fining elements.Typically,one finds the following parameters in a vignette: geo-location and altitude of the shooter,shooter-target range, altitude of target,temperature and barometric pressure at the shooter location,relative humidity at the shooter position,wind speed and direction,ri fle azimuth from the North,and shootertarget slant angle.

    Simulation involves numerically running a model of the projectile,namely solving the equations of motion over time,preferably in the BALCO environment,under the conditions of interest, and then collecting the results,such as projectile position and velocity versus time,to cite a few.

    Brie fly,the projectile modelis characterized by the usual aerodynamic parameters[7].The parameters are obtained with PRODAS,leveraging the knowledge of the geometry of the projectile. Furthermore,some radar traces were used to re fine the aerodynamic model.The PRODAS aerodynamic model is implemented in BALCO.The 6-DOF numericalsimulations are run in BALCO.The trajectory of the projectile is obtained through the solution of the equations of motion;namely,a solution to a number ofdifferential equations calculated with classical Runge-Kutta methods.

    Table 1 Original vignettes 1 to 7.

    Table 2 Originalvignettes 8 to 15.

    Table 3 Original vignettes 16 to 20.

    As a minimum the following results were collected on the ri fle and projectile:quadrant elevation(QE),super elevation(SE),time of flight,velocity at impact,transonic entry distance,maximum ordinate,azimuth of fire(with and without Coriolis effect,and with and without wind),and drift angle(due to projectile spin,Coriolis effect,and wind,and due to a combination of those factors).These parameters are de fined in the report and their values obtained for the various vignettes are presented.

    The following elements are of particular importance for the sniper:super elevation,drift angle,and range to transonic entry. And as such,these variables are collected during the simulations.

    6.Approach

    The steps in the DRDC simulation study are shown in Fig.5.The six steps are carried out for each vignette.Then,results of the simulations are collected,metrics are calculated,and differences between NABK and BALCO are quanti fied and analysed.

    Once the projectile data is entered for a vignette,the information is valid and fixed for all vignettes.The vignette speci fic information on geometry,meteorologicalconditions,wind parameters, and geo location are extracted from the Excel table,and entered into the BALCO input script file.Using the tabular data associated with a vignette,one fills out the BALCO input file as follows:

    ·$ISO_Atmosphere_Correction_Data is entered as the triplet altitude[m],temperature[K],and pressure[Pa],

    ·$Wind_Data is entered as components in a Cartesian frame, with one component along x1(down-range),followed by a component along x2(vertical,always zero here),and finally a component along x3(cross-range),

    ·$Longitude_Latitude_Azimuth is entered as longitude(deg)and latitude(deg),complying with the sign convention used in this study,and as azimuth(deg)of fire(speci fically,the azimuth from the North entry of the vignette table data),in this order,

    ·$Initial_Position is entered as down range(m)of zero,height (m)above sea level as given in the vignette table,and cross range(m)of zero,in this order,as the position of the shooter (gun).

    Targetlocation is determined from the geometry ofthe vignette, using the vignette information on the slant angle,the height ofthe shooter,and the range to target.Actually,target height from sea levelis critical,as it serves in the evaluation ofthe drift angle.Fig.4 presents a generic geometry and basic calculations to obtain target height(y)from vignette parameters.

    The next step pertains to setting the QE,the initial conditions, the stopping conditions,and the format of the simulation output. Obtaining the QE value,by trial and error,that results in the projectile hitting the target is the iterative part of the approach.Using the tabular data associated with a vignette:

    ·$Initial_Time is set to zero,

    ·$Initial_Velocity is entered as the triplet of magnitude(m/s)of the projectile at firing obtained from the NABK data,followed by the de flection angle set to zero,and the elevation angle(QE)as the estimated value to reach the target,

    ·$Initial_Angular_Position is entered as 0,0,and 0(for aerodynamic roll angle,total angle of attack,and roll angle),

    ·$Initial_Angular_Velocity is entered as the spin rate(rad/s)of the projectile obtained with PRODAS(with NABK supplied projectile velocity magnitude at firing),and followed by zero pitch rate,and zero yaw rate,

    ·Stopping condition is$Trajectory_Limit entered as the range to target value for the vignette,

    ·$Print_Time_Step is entered as the appropriate value that gives enough increment in the output,and may vary from 0.0005 s to 0.01 s depending on the vignette and output results.

    With the aforementioned key parameter values identi fied and set,the simulations of a vignette may be run,as shown in Fig.5.

    As for the trialand error process associated with the QE value,a simulation is first run with the originally guessed QE value.One obvious choice for the firstguess on QE is the NABK QE value,which is available.The projectile location obtained at the downrange target position is then compared with that expected from the geometry ofthe shooter-target,with a computation as shown in Fig.4. Ifthe projectile does notend up at the correct targetaltitude within 2 decimalplaces in units of meters,at the target downrange value location,the QE is set to another value,and the simulation is run again.The process is repeated untila satisfactory projectile altitude at target is obtained.

    Note that several simulations are run for a given vignette and fixed(final)QE value to allow for post-processing calculations that isolate the effects of three variables on the drift angle:Coriolis effect,wind,and bullet spin.

    7.Results

    The results obtained with BALCO and NABK for the sniper vignettes are presented in Table 4 to Table 10.The variables used for performance evaluation and other variables,as required by the snipers,are shown in the tables.The columns are arranged such thatthe NABK and BALCO results are presented side by side for each vignette.

    Other variables of interest found in the results tables are as follows:projectile's time of flight,muzzle velocity(MV),velocity at impact(actually,when projectile is closest to target),transonic entry distance,maximum ordinate,and range to maximum ordinate.Range to maximum ordinate is the distance from the gun position to the horizontal coordinate of the location of the projectile when it reaches its highest altitude.

    8.NABK versus BALCO trajectory comparisons

    The objective of the veri fication and validation process is to demonstrate the accuracy of NABK solution so that it may be used with con fidence in a ballistic computer for the snipers.According to AIAA guidelines[8],the veri fication process determines if the programming and computational implementation of the conceptual model is correct.It examines the mathematics in the model through comparison with exact analytical results and checks for computer programming errors.As for the validation process,it determines if the computational simulation agrees with physical reality through comparison with experimental results.

    To compare the trajectory algorithms of NABK with that of BALCO,one may state a number ofobservations on the results using Table 11 to Table 14,in particular those tables featuring the differences in key variables.A detailed explanation of the results obtained with NABK is outside the scope of the analysis.

    For each vignette,the difference in NABK and BALCOQE inputs is smaller than or equal to 0.012°.The maximum value of 0.012°is obtained with vignette 19.If one omits vignette 19,the largest difference in QE is smaller than or equalto 0.0098°.The same observations can be made for SE.

    The maximum difference in magnitude of velocity at impact between NABK and BALCO for all vignettes is 2%.The maximum is obtained with vignette 19.If one discards this vignette,the maximum difference falls to 0.6%.

    The relatively large difference in NABK and BALCO QE inputs observed for vignette 19 can be explained in terms of the virtualtemperature.NABK simulations rely on the virtual temperature, which takes into account the relative humidity in the air.For most vignettes,the difference between the air temperature and the virtual temperature was relatively small or non-existent,thereforehad a minor impact on performance of the projectile.However, with vignette 19,one has a scenario with a very high temperature and high levelofhumidity.For vignette 19,the virtualtemperature was 53.6 deg C as compared with 44 deg C for the air temperature.The temperature is used to calculate the flight Mach numbers which in turn are used to extract the aerodynamic coef ficients. Thus for large temperature differences,one expects signi ficant discrepancies in the aerodynamic coef ficients,such as the dragcoef ficient.Furthermore,the difference in temperature is expected to signi ficantly impact velocity at the target with a relatively large separation between the shooter and the target.With vignette 19, the range was relatively long at 800 m.This only exacerbated the difference in projectile performance as obtained with NABK and BALCO.

    Table 4 Results for vignettes 1 and 2.

    Table 5 Results for vignettes 3,4 and 5.

    Table 6 Results for vignettes 6,7 and 8.

    Table 7 Results for vignettes 9,10 and 11.

    Table 8 Results for vignettes 12,13 and 14.

    Table 9 Results for vignettes 15,16 and 17.

    Table 10 Results for vignettes 18,19 and 20.

    Table 11 NABK-BALCO differences in QE,SE.

    The differences in total drift angles obtained with NABK and BALCO for all vignettes are shown in Table 13.The maximum difference is 0.13 mils,or 0.0073°,obtained with vignette 11,and the second largest is 0.09 mils,obtained with vignettes 4 and 5.The average NABK-BALCO difference in totaldrift angle is 0.04 mils.

    In case of projectile drift due to Coriolis effects,wind and bullet spin,the results of the comparison between NABK and BALCO are presented in Table 14.Magnitude of the difference between drift due to Coriolis obtained with NABK and BALCO is the largest for vignette 18(rounded value of 0.009 mils).Magnitude of the difference between drift due to projectile spin obtained with NABK and BALCO is the largest for vignette 2(rounded value of 0.027 mils).Magnitude ofthe difference between driftdue to wind effects obtained with NABK and BALCO is the largest for vignette 11

    (rounded value of 0.137 mils).The average difference NABK-BALCO in projectile drift due to Coriolis effects is 0.0012 mils,that due to projectile spin is 0.0034 mils,and that due to wind is 0.0422 mils (using rounded values for the calculation of the average).On average,wind has the largest impact on drift size among the three factors considered.

    Table 12 NABK-BALCO differences in velocity at impact.

    Table 13 NABK-BALCO differences in total drift angles.

    Table 14 NABK-BALCO differences in drift angles.

    9.Conclusion

    This reportprovides an assessmentofNATOArmaments Ballistic Kernel(NABK)firing solutions for a number of relevant sniper vignettes for the NATO 7.62×51 mm,OTBT,168 gr,Match ammunition.The work presented in this report is the first known validation of NABK data for sniper vignettes.The direct fire trajectory simulation study indicates that the results,mainly about the fire control inputs and the resulting drift,of the 6-degree-of-freedom simulations of the NATO 7.62×51 mm,OTBT,168 gr Match ammunition projectile in BALCO are in close agreement to those obtained with the 4-degree-of-freedom simulations in NABK for allthe vignettes investigated.The largest observed difference between the various parameters compared was 2%for the terminalvelocity in vignette 19.Typicaldifference in terminalvelocity was less than 0.5%.

    For the vignettes studied,the fire controlinputs for BALCO and NABK resulted,in practically the same impact point for both trajectory algorithms.Relying on the BALCO-NABK comparison results presented in this paper,it is concluded that NABK is suf ficiently accurate to predict the trajectory of direct fire smallcaliber projectiles.Therefore,the use of NABK for a sniper ballistic computer can be recommended.

    [1]Sowa,A.J.,“NATO Shareable Software Developing Into True Suite Supporting National Operational,Fire Control Systems”in proceedings of the 24th International Symposium on Ballistics,New Orleans,LA,September 22-26,2008.

    [2]Chusilp,P,Charubhun,Weerawut and Ridluan,A.,“Developing Firing Table Software for Artillery Projectiles using Iterative Search and 6-DOF Trajectory Model”,in proceedings of the 2nd TSME International Conference on Mechanical Engineering,Krabi,Thailand,October 19-21,2011.

    [3]Ortac,S.A.,Durak,U.,Kutluay,U.,Kucuk,K.and Candan,C.,“NABK Based Next Generation Ballistic Table Toolkit”,in proceedings of the 23rd International Symposium on Ballistics,Tarragona,Spain,April 16-20,2007.

    [4]The Modi fied Point Mass and Five Degrees of Freedom Trajectory Models.NATO STANAG 4355.Edition 3 2009.

    [5]Wey,P.,Corriveau,D.,Saitz,T.A.,de Ruijter,W.and Str¨omb¨ack,P.,“BALCO 6/7-DoF trajectory Model”in proceedings of the 29th International Symposium on Ballistics,Edinburgh,UK,May 9-13,2016.

    [6]The Six/Seven Degrees of Freedom Guided Projectile Trajectory Model.NATO STANREC 4618.Edition 1 January 2014.

    [7]McCoy RL.Modern Exterior Ballistics-the launch and flight dynamics of symmetric projectiles.Schiffer Military History;1999.

    [8]Guide for the veri fication and validation of computational fluid dynamics simulations.AIAA G-077-1998;1998.

    29 January 2017

    *Corresponding author.

    E-mail address:daniel.corriveau@drdc-rddc.gc.ca.

    Peer review under responsibility of China Ordnance Society

    http://dx.doi.org/10.1016/j.dt.2017.04.006

    2214-9147/Crown Copyright?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

    Received in revised form 11 April 2017

    Accepted 24 April 2017

    Available online 27 April 2017

    九草在线视频观看| 亚洲伊人久久精品综合 | 好男人在线观看高清免费视频| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 永久免费av网站大全| 少妇丰满av| 国国产精品蜜臀av免费| 欧美色视频一区免费| 十八禁国产超污无遮挡网站| 又爽又黄无遮挡网站| 少妇的逼水好多| av在线蜜桃| 最新中文字幕久久久久| 丝袜美腿在线中文| 别揉我奶头 嗯啊视频| 国产伦理片在线播放av一区| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| av女优亚洲男人天堂| 中文在线观看免费www的网站| 色综合色国产| 精品一区二区免费观看| 国产精品久久视频播放| 欧美成人午夜免费资源| 色综合色国产| 国产不卡一卡二| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 久久这里有精品视频免费| 大话2 男鬼变身卡| 免费电影在线观看免费观看| 毛片女人毛片| 国产伦精品一区二区三区四那| 欧美精品一区二区大全| 九九热线精品视视频播放| 久久久久网色| 国产成人精品一,二区| 99视频精品全部免费 在线| 99久久精品热视频| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩| 69av精品久久久久久| 欧美成人精品欧美一级黄| 特级一级黄色大片| 日韩精品有码人妻一区| 卡戴珊不雅视频在线播放| 欧美另类亚洲清纯唯美| 插逼视频在线观看| 国产成人精品婷婷| 日韩亚洲欧美综合| 少妇的逼水好多| 日韩精品青青久久久久久| 国产亚洲午夜精品一区二区久久 | 成人午夜高清在线视频| 国产精品久久久久久久久免| 黄色日韩在线| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 亚洲成av人片在线播放无| 亚洲激情五月婷婷啪啪| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 亚洲国产日韩欧美精品在线观看| 美女大奶头视频| 一个人免费在线观看电影| 美女高潮的动态| 91狼人影院| 久久99精品国语久久久| 亚洲aⅴ乱码一区二区在线播放| 午夜福利成人在线免费观看| 精品国产一区二区三区久久久樱花 | 久久99精品国语久久久| 一个人观看的视频www高清免费观看| 亚洲av电影不卡..在线观看| 国语自产精品视频在线第100页| 99久久精品热视频| 国产真实乱freesex| 免费观看精品视频网站| 日产精品乱码卡一卡2卡三| 舔av片在线| 少妇熟女欧美另类| 少妇的逼水好多| 国产av在哪里看| 美女xxoo啪啪120秒动态图| 一级av片app| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影| 午夜老司机福利剧场| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 亚洲av免费在线观看| 国产片特级美女逼逼视频| 国产一区有黄有色的免费视频 | 亚洲av中文av极速乱| 欧美一区二区国产精品久久精品| 男人狂女人下面高潮的视频| 国产毛片a区久久久久| 在线观看一区二区三区| 毛片女人毛片| 国产伦一二天堂av在线观看| 国产一区二区三区av在线| 嫩草影院新地址| av免费在线看不卡| 在线观看美女被高潮喷水网站| 欧美zozozo另类| 国产免费一级a男人的天堂| 高清午夜精品一区二区三区| 国产女主播在线喷水免费视频网站 | 建设人人有责人人尽责人人享有的 | 偷拍熟女少妇极品色| 亚洲精品国产av成人精品| 99热全是精品| 精品久久久久久久久久久久久| 欧美日本视频| 免费观看在线日韩| 日韩欧美精品v在线| 日韩大片免费观看网站 | 网址你懂的国产日韩在线| 亚洲国产精品专区欧美| 99久国产av精品国产电影| 可以在线观看毛片的网站| 午夜福利在线在线| 精品久久久久久久末码| 国产淫语在线视频| av国产免费在线观看| 嫩草影院入口| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 大香蕉97超碰在线| 一个人看视频在线观看www免费| 亚洲欧美成人综合另类久久久 | av播播在线观看一区| 成人午夜高清在线视频| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 国产成人aa在线观看| 中文资源天堂在线| 色吧在线观看| 又爽又黄无遮挡网站| 夫妻性生交免费视频一级片| 日韩强制内射视频| 晚上一个人看的免费电影| 最近中文字幕2019免费版| 天堂√8在线中文| 秋霞在线观看毛片| 国产精品久久久久久久电影| 18禁在线播放成人免费| 高清毛片免费看| 三级国产精品欧美在线观看| 免费观看性生交大片5| 精品久久久久久久久久久久久| 永久免费av网站大全| 一级毛片久久久久久久久女| 久久久精品大字幕| 国产一区二区三区av在线| 欧美成人一区二区免费高清观看| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 中文字幕久久专区| 久久这里只有精品中国| 最近的中文字幕免费完整| 免费看光身美女| 亚洲精品乱久久久久久| 又爽又黄无遮挡网站| 国产老妇女一区| 日本猛色少妇xxxxx猛交久久| 国产视频内射| 最近中文字幕2019免费版| 久久久久久久午夜电影| 99久久成人亚洲精品观看| 纵有疾风起免费观看全集完整版 | 美女cb高潮喷水在线观看| 国产午夜精品一二区理论片| 99久久中文字幕三级久久日本| 亚洲国产色片| 亚洲色图av天堂| 亚洲av福利一区| 久久久国产成人精品二区| .国产精品久久| 欧美一区二区国产精品久久精品| 国产亚洲av片在线观看秒播厂 | 日本wwww免费看| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站 | 成人毛片a级毛片在线播放| 深爱激情五月婷婷| 精品国内亚洲2022精品成人| 热99在线观看视频| 啦啦啦啦在线视频资源| 日本黄色视频三级网站网址| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 精品国产三级普通话版| 国模一区二区三区四区视频| 日韩视频在线欧美| 久久热精品热| 久久综合国产亚洲精品| 中文字幕久久专区| 99热网站在线观看| 日韩一区二区三区影片| 三级国产精品欧美在线观看| 欧美成人a在线观看| 99久久精品一区二区三区| 国产不卡一卡二| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 国产精品一区www在线观看| 久久久久久久久久成人| 97在线视频观看| 国产精品永久免费网站| 国产午夜精品久久久久久一区二区三区| 一边摸一边抽搐一进一小说| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 内地一区二区视频在线| 国产三级在线视频| 国产黄色视频一区二区在线观看 | 国产老妇伦熟女老妇高清| 亚洲最大成人中文| 国产高清国产精品国产三级 | 变态另类丝袜制服| av线在线观看网站| 国产午夜精品久久久久久一区二区三区| 日本一二三区视频观看| 精品久久久久久久人妻蜜臀av| 少妇丰满av| 在线免费观看不下载黄p国产| 国产精品1区2区在线观看.| 国产视频首页在线观看| 亚洲av成人精品一区久久| 亚洲真实伦在线观看| 一区二区三区免费毛片| 亚洲欧美日韩东京热| 亚洲国产欧洲综合997久久,| av黄色大香蕉| 一本一本综合久久| 亚洲av成人精品一区久久| 大话2 男鬼变身卡| 小蜜桃在线观看免费完整版高清| 亚洲第一区二区三区不卡| 亚洲18禁久久av| 精品一区二区三区视频在线| 秋霞伦理黄片| 中文天堂在线官网| 久久人人爽人人爽人人片va| 97热精品久久久久久| 亚洲美女搞黄在线观看| 岛国毛片在线播放| 热99在线观看视频| 18禁在线无遮挡免费观看视频| 高清在线视频一区二区三区 | 纵有疾风起免费观看全集完整版 | 自拍偷自拍亚洲精品老妇| 噜噜噜噜噜久久久久久91| 人妻系列 视频| 欧美激情国产日韩精品一区| 激情 狠狠 欧美| 国产成人精品一,二区| 精品久久久久久久久亚洲| 热99re8久久精品国产| 国产av码专区亚洲av| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 韩国av在线不卡| 欧美日韩综合久久久久久| 日韩成人av中文字幕在线观看| av专区在线播放| 七月丁香在线播放| 尤物成人国产欧美一区二区三区| 午夜a级毛片| 久久精品国产亚洲网站| 我的老师免费观看完整版| 欧美成人a在线观看| 国产伦在线观看视频一区| 国产av不卡久久| 国产精品永久免费网站| 国产一区二区在线观看日韩| 99久国产av精品| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 欧美+日韩+精品| 国产一区二区亚洲精品在线观看| 精品久久久噜噜| 久久99热这里只有精品18| 一级av片app| 久久久午夜欧美精品| 亚洲av免费高清在线观看| 亚洲色图av天堂| 一个人免费在线观看电影| 人人妻人人看人人澡| 国产成年人精品一区二区| 青春草国产在线视频| 在线观看66精品国产| 人人妻人人澡欧美一区二区| 国产成人精品久久久久久| 免费大片18禁| 99热这里只有精品一区| 如何舔出高潮| 国产精品一区二区在线观看99 | 国产女主播在线喷水免费视频网站 | 国产伦精品一区二区三区视频9| 国产真实乱freesex| 成人高潮视频无遮挡免费网站| 久久亚洲精品不卡| 男人和女人高潮做爰伦理| 大香蕉久久网| 99在线人妻在线中文字幕| 欧美xxxx性猛交bbbb| 免费观看精品视频网站| 日韩欧美精品v在线| 能在线免费看毛片的网站| 中文资源天堂在线| 国产成人91sexporn| 亚洲av免费高清在线观看| 熟妇人妻久久中文字幕3abv| 色综合亚洲欧美另类图片| 男插女下体视频免费在线播放| 久久久久免费精品人妻一区二区| 亚洲综合色惰| 欧美xxxx性猛交bbbb| 小说图片视频综合网站| 听说在线观看完整版免费高清| 国产亚洲av片在线观看秒播厂 | 高清日韩中文字幕在线| 亚洲精品国产av成人精品| 亚洲欧美精品综合久久99| 免费av不卡在线播放| 我要看日韩黄色一级片| 午夜久久久久精精品| 1000部很黄的大片| 国产亚洲91精品色在线| 日本一二三区视频观看| 最近最新中文字幕大全电影3| 亚洲精品成人久久久久久| 精品人妻熟女av久视频| 内射极品少妇av片p| 久久亚洲精品不卡| 狂野欧美白嫩少妇大欣赏| 亚洲经典国产精华液单| 色哟哟·www| 好男人在线观看高清免费视频| 高清视频免费观看一区二区 | 美女内射精品一级片tv| 小蜜桃在线观看免费完整版高清| 国产精品av视频在线免费观看| 人妻系列 视频| 亚洲电影在线观看av| 男女国产视频网站| 大香蕉97超碰在线| 免费看光身美女| 亚洲av成人av| 欧美xxxx黑人xx丫x性爽| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 国产伦精品一区二区三区四那| 热99在线观看视频| 建设人人有责人人尽责人人享有的 | 国产精品一区www在线观看| 日韩在线高清观看一区二区三区| 97超视频在线观看视频| 亚洲国产成人一精品久久久| 男人舔奶头视频| 久久韩国三级中文字幕| 联通29元200g的流量卡| 亚洲成人中文字幕在线播放| 乱系列少妇在线播放| 久久精品91蜜桃| 我要搜黄色片| 国产精品不卡视频一区二区| 中文精品一卡2卡3卡4更新| 欧美高清性xxxxhd video| 三级国产精品欧美在线观看| 午夜亚洲福利在线播放| 久久久精品大字幕| 哪个播放器可以免费观看大片| 亚洲国产精品成人久久小说| 亚洲丝袜综合中文字幕| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 亚洲国产色片| 亚洲久久久久久中文字幕| 日韩人妻高清精品专区| 毛片一级片免费看久久久久| 午夜久久久久精精品| 3wmmmm亚洲av在线观看| 日韩一区二区三区影片| 男人的好看免费观看在线视频| 国产视频内射| 男人狂女人下面高潮的视频| 最近2019中文字幕mv第一页| 久久精品综合一区二区三区| 国产亚洲av嫩草精品影院| 精品无人区乱码1区二区| 国产黄色视频一区二区在线观看 | 少妇的逼水好多| 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看 | 欧美xxxx性猛交bbbb| 美女被艹到高潮喷水动态| 亚洲精品自拍成人| 免费电影在线观看免费观看| 亚洲精品国产av成人精品| 国产精品蜜桃在线观看| 久久久精品大字幕| 色网站视频免费| 久久这里只有精品中国| 91精品伊人久久大香线蕉| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 国产三级在线视频| 国国产精品蜜臀av免费| 日韩 亚洲 欧美在线| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 亚洲国产欧洲综合997久久,| 日韩高清综合在线| 欧美成人午夜免费资源| 国产白丝娇喘喷水9色精品| 黄片wwwwww| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播| 免费无遮挡裸体视频| 亚洲美女视频黄频| 亚洲av熟女| 99久久成人亚洲精品观看| 国产av码专区亚洲av| 精品一区二区免费观看| 18禁裸乳无遮挡免费网站照片| 国产亚洲av片在线观看秒播厂 | 精品99又大又爽又粗少妇毛片| 国产精品国产高清国产av| 国产精品av视频在线免费观看| 嫩草影院入口| 最近手机中文字幕大全| 黑人高潮一二区| 最近的中文字幕免费完整| 国产伦在线观看视频一区| 久久久久精品久久久久真实原创| 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 国内精品一区二区在线观看| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 91精品国产九色| 亚洲成人av在线免费| 高清av免费在线| 精品无人区乱码1区二区| 国产免费男女视频| 26uuu在线亚洲综合色| 男人的好看免费观看在线视频| 国产欧美日韩精品一区二区| 国产av在哪里看| 一区二区三区四区激情视频| 国产一区有黄有色的免费视频 | 午夜精品国产一区二区电影 | 高清午夜精品一区二区三区| 国产高清视频在线观看网站| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| 永久免费av网站大全| 男女国产视频网站| 99热这里只有是精品在线观看| 伊人久久精品亚洲午夜| 亚洲国产精品专区欧美| 国产69精品久久久久777片| 国产精品一区二区性色av| 日本免费a在线| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 日韩一区二区三区影片| 亚洲中文字幕一区二区三区有码在线看| 深爱激情五月婷婷| 久久久精品大字幕| 婷婷六月久久综合丁香| 国产视频内射| 日韩一本色道免费dvd| 久久午夜福利片| 特级一级黄色大片| 色哟哟·www| 一级爰片在线观看| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 国产极品精品免费视频能看的| 69人妻影院| 国产午夜精品一二区理论片| 丰满人妻一区二区三区视频av| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 一本久久精品| 日韩,欧美,国产一区二区三区 | 男女那种视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看不下载黄p国产| 亚洲国产高清在线一区二区三| 久久韩国三级中文字幕| 国产伦理片在线播放av一区| 亚洲av成人av| 久久久久久久久久久丰满| 国产精品国产三级专区第一集| 一本一本综合久久| 三级经典国产精品| 18禁在线播放成人免费| 一级爰片在线观看| 国产精品,欧美在线| 久久久久久久国产电影| 只有这里有精品99| 在线免费十八禁| 日本免费在线观看一区| 一区二区三区四区激情视频| 赤兔流量卡办理| 最近最新中文字幕免费大全7| 免费看日本二区| 2021天堂中文幕一二区在线观| 国产麻豆成人av免费视频| 成年女人看的毛片在线观看| 18禁在线无遮挡免费观看视频| 国产午夜精品论理片| 淫秽高清视频在线观看| 老师上课跳d突然被开到最大视频| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 纵有疾风起免费观看全集完整版 | 久久久久久久久大av| 免费黄网站久久成人精品| 成人三级黄色视频| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| 国产亚洲精品久久久com| 国产老妇女一区| 国产高清有码在线观看视频| 尾随美女入室| 日韩大片免费观看网站 | 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 精品久久久噜噜| 精品一区二区免费观看| 又爽又黄a免费视频| 日韩中字成人| 久久久久久久国产电影| 婷婷六月久久综合丁香| 99久久人妻综合| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 欧美日韩精品成人综合77777| 国产单亲对白刺激| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 日韩中字成人| 如何舔出高潮| 亚洲精品日韩av片在线观看| 免费在线观看成人毛片| 午夜福利在线在线| 久久久久性生活片| 久久99精品国语久久久| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说 | 直男gayav资源| 日本五十路高清| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 一级黄片播放器| 久久精品人妻少妇| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 一区二区三区高清视频在线| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| av女优亚洲男人天堂| av在线蜜桃| 中文乱码字字幕精品一区二区三区 | 久久6这里有精品| 国产精品乱码一区二三区的特点| 一级毛片久久久久久久久女| 天天一区二区日本电影三级| 91精品伊人久久大香线蕉| 在线观看66精品国产| 久久午夜福利片| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| av在线观看视频网站免费| 欧美3d第一页| 少妇丰满av| 久久精品国产鲁丝片午夜精品| av免费在线看不卡| 国产成人精品一,二区| 亚洲av福利一区| 亚洲三级黄色毛片| 国产高清国产精品国产三级 | 欧美日韩综合久久久久久| 能在线免费看毛片的网站| 久久精品91蜜桃| av女优亚洲男人天堂| 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的 | 男人的好看免费观看在线视频| av.在线天堂| 99在线视频只有这里精品首页| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 久久精品国产自在天天线|