• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    2017-07-01 20:50:13Corriveau
    Defence Technology 2017年3期

    D.Corriveau

    Defence R&D Canada,2459 De La Bravoure Rd.,Quebec QC G3J 1X5,Canada

    Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    D.Corriveau*

    Defence R&D Canada,2459 De La Bravoure Rd.,Quebec QC G3J 1X5,Canada

    A R T I C L E I N F O

    Article history:

    Aerodynamics

    Ballistics

    Trajectory

    BALCO

    NABK

    Ballistic computer

    Sniper system

    In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel(NABK)for the Canadian snipers,DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom(6-DOF)trajectory simulations for a set of relevant vignettes for the snipers,and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel(NABK)adapted to simulate small-arm ammunition trajectories.To conduct this study,DRDC Valcartier Research Centre used BALCO v1.0b.This paper presents(1)the process and the methodology employed to carry out the sniper direct fire solution study,(2)the modeling and the simulation of the sniper projectile,the approach used in calculating the firing solutions,and the results of direct fire simulations for the sniper vignettes,and(3)an analysis of firing solutions obtained with the BALCO engine versus those of NABK.The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.

    Crown Copyright?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The development of the NABK started in the nineties in what is now called the NATO Land Capability Group 3 Sub-Group 2. Members of this group elected for a standard,generic,and layered set of software modules for ballistic processing[1].The Ada computer language was selected given its wide acceptance and embedded application capability.The NABK was first released in 1995 for use in artillery and mortar technical fire control applications.It is currently used by more than ten NATO countries as the main ballistic engine for the artillery and mortar applications.The NABK is also planned for use by navalapplications as wellas in the next generation of fire support systems including guided artillery, mortars and direct fire applications such as fighting vehicles and tanks.

    Although the NABK has been a very successful ballistic engine for various types of weapon systems and for the development of firing tables[2][3],the small arms fire control for individual and crew served weapons ballistic solution is one area where the NABK is not well suited due to the unique requirements of the domain. Historically,fire controlsystems for smallarms presented a unique environment and requirements to the developer of technical fire controlsystems.Smallarms fire controlsystems are typically small in size which limited the available computer resources;CPUs are of lower power with correspondingly less processing capabilities;the amount of random access memory may also be limited.Operating systems used in small arms fire control systems are typically embedded real-time systems.This limits the choice of computer programming languages and compilers that support these systems and also places real-time requirements on the applications thatrun under the hardware and operating system.However,with the constant miniaturization of electronic components and the continually increasing computer power,the factors preventing the use of the NABK for small-arms fire control system have progressively been eliminated.

    With today's smartphone platform,it was demonstrated by the Canadian snipers that the computer power of these devices was suf ficientto run the NABK and instantly generate a ballistic solution for the snipers.Fig.1 shows the Canadian snipers NABK ballistic computer kit with the various sensor connectors and power pack.

    In this paper,the work performed to validate the use of NABK as a ballistic engine for the Canadian snipers ballistic computer is presented.Comparisons between the trajectory predicted by NABK and BALCO are presented for a typical 7.62 mm sniper projectile.Various engagement scenarios are investigated to con firm that NABK performs well for different environmental conditions and firing directions.The comparison of the results obtained from the two ballistic engines are made and discussed.

    2.NABK in brief

    The NATO Armament Ballistic Kernelis a 4-DOF modi fied point mass model.This is a compromise between a simple point mass model and a computationally intensive 6-DOF model.NABK is based on the mathematical model de fined by the NATO STANAG 4355[4]:The Modi fied Point Mass and Point Mass Equations of Motion.In the modi fied point mass model,the effects due to the spin rate ofa projectile are included contrary to a simple pointmass model.Thus,the equilibrium yaw angle in both the lateral and trajectory plane is taken into accountfor calculation ofthe driftand drag.The 4-DOF modi fied point mass model is the algorithm implemented in trajectory simulation programs NABK.The trajectory integration is carried out using the Runge-Kutta-Fehlberg integration scheme.This is a fourth order numerical integration scheme.The projectile and the environment can be described with various levels of detailusing the following models:

    ·Earth:flat(fixed gravity),spherical(STANAG 4355)or ellipsoidal (WGS84)Earth model;

    ·Atmosphere:standard atmosphere(ISO 2533-1975)or userde fined atmosphere,including a 1D or 3D wind field;

    ·Aerodynamics:axisymmetric projectiles,isolated control surfaces,aerodynamic coef ficients described by polynomials;

    ·Inertia data:symmetric matrix of inertia;

    ·Base-burn and rocket assistance models(STANAG 4355);

    ·5-DoF for fin stabilized rocket

    3.BALCO in brief

    BALCO is a 6/7-DoF trajectory simulation program based on the mathematical model de fined by the NATO Standardization Recommendation 4618[5][6].The primary goal of BALCO is to compute high-fidelity trajectories for both conventional and precision-guided projectiles.The 6-DoF model is used to describe the motion of single rigid bodies.The 7-DoF model allows the description ofa projectile which consists oftwo coaxialrigid bodies that can spin independently.Actuators such as isolated control surfaces(e.g.fins or canards),thrusters or internal rollcontrol devices can optionally be attached to the rigid body.Controlling the state of these actuators offers a controlauthority on the trajectory. The 6/7-DoF equations of motion can be expressed in three differentframes,namely,body-fixed,zero rolland zero spin frames, depending on the contextofthe study.The trajectory integration is carried out using an accurate seventh-order Runge-Kutta scheme. The projectile,the environment and the optional guidance,navigation and controlcapabilities can be described with various levels of detailusing the following models:

    ·Earth:flat(fixed gravity),spherical(STANAG 4355)or ellipsoidal (WGS84)Earth model;

    ·Atmosphere:standard atmosphere(ISO 2533-1975)or userde fined atmosphere,including a 1D or 3D wind field;

    ·Aerodynamics:axisymmetric or non-axisymmetric projectiles, isolated controlsurfaces,aerodynamic coef ficients described by multidimensional look-up tables or polynomials;

    ·Inertia data:symmetric or asymmetric matrix of inertia,userde fined timedependent inertia;

    ·Thrusters:user-de fined time-dependent 3D vector thrusts;

    ·Base-burn and rocket assistance models(STANAG 4355);

    ·Embedded actuators(open-or closed-loop flight control):isolated controlsurfaces,thrusters and internalrolling moment for dual-spin bodies;

    ·Guidance,navigation and control models implemented as external functions using a common communication interface (closed-loop flight control).

    4.Sniper ammunition model

    The sniper ammunition of used for this project is the NATO 7.62×51 mm,OTBT(Open Tip Boat Tail),168 gr,Match,which is simply referred to in this paper as the C175.The aerodynamic model for this round was developed using PRODAS(Fig.2)combined with some experimental firing radar traces.

    The aerodynamic coef ficients generated in PRODAS that are actualinputs to the BALCO modeland NABK modelare as follows: CD0,CD2,CD4,CLα0,CLα3,CMα,C Mq,C lp,C Nq,C Ypαand C M pα.

    The coef ficients CD0,CD2and CD4are used to calculate to total drag coef ficient taking into account the projectile's yaw as follows

    whereδ=sinαt.αtis the totalangle of attack.

    The lift force coef ficient CLαis often nonlinear as the yaw level varies.This behaviour is captured using the following relationship

    The pitching moment is directly related to the lift force.For small caliber projectiles,the pitching moment is usually positive. Therefore,ifthe nose ofthe projectile rises above the trajectory,the pitching momentwillactas to increase the yaw angle.The pitching moment relates to the pitching moment coef ficient as follows

    The pitch damping moment arises from the attenuation of pitching motion of a projectile due to the air resistance.The pitch damping moment relates to the pitch damping moment coef ficient as follows:

    where qtis the totalangular velocity.

    Similarly,the pitch damping force relates to the pitch damping force coef ficient as follows

    The spin damping moment opposes the spin of the projectile.It relates to the spin damping coef ficient as follows

    The Magnus force arises fromthe unequalpressures distribution on either side of a spinning body.This is the result of the viscous interaction between the spinning projectile body and the fluid.The Magnus force relates to the Magnus force coef ficient as follows

    Similarly,the Magnus moment is a function of the Magnus moment coef ficient given as

    5.Direct fire simulation comparison study

    In order to compare the direct fire solution of NABK with that obtained from the 6-DOF trajectory simulation code BALCO a set of 20 vignettes was developed.These vignettes represent typical firing conditions that could be encountered around the world by the snipers.The vignette locations are shown in the map presented in Fig.3.

    The vignettes spread locations all over the world,as shown as squares on the simple map of Fig.3.The vignettes also cover a relatively large range ofair temperatures(from-40°C to 49°C),air pressure(from 98.1 kPa to 103.6 kPa),relative humidity(from 0 to 100%),wind speed(from 0 to 30 km/h),gun altitude(from 0 to 3600 m),gun range(from 300 to 1200 m),angles of sight (from-533 to 355 mils),and propellant temperature(from-20°C to 70°C).The vignettes data are presented in Table 1 to Table 3.

    A vignette is a simulation scenario composed of de fining elements.Typically,one finds the following parameters in a vignette: geo-location and altitude of the shooter,shooter-target range, altitude of target,temperature and barometric pressure at the shooter location,relative humidity at the shooter position,wind speed and direction,ri fle azimuth from the North,and shootertarget slant angle.

    Simulation involves numerically running a model of the projectile,namely solving the equations of motion over time,preferably in the BALCO environment,under the conditions of interest, and then collecting the results,such as projectile position and velocity versus time,to cite a few.

    Brie fly,the projectile modelis characterized by the usual aerodynamic parameters[7].The parameters are obtained with PRODAS,leveraging the knowledge of the geometry of the projectile. Furthermore,some radar traces were used to re fine the aerodynamic model.The PRODAS aerodynamic model is implemented in BALCO.The 6-DOF numericalsimulations are run in BALCO.The trajectory of the projectile is obtained through the solution of the equations of motion;namely,a solution to a number ofdifferential equations calculated with classical Runge-Kutta methods.

    Table 1 Original vignettes 1 to 7.

    Table 2 Originalvignettes 8 to 15.

    Table 3 Original vignettes 16 to 20.

    As a minimum the following results were collected on the ri fle and projectile:quadrant elevation(QE),super elevation(SE),time of flight,velocity at impact,transonic entry distance,maximum ordinate,azimuth of fire(with and without Coriolis effect,and with and without wind),and drift angle(due to projectile spin,Coriolis effect,and wind,and due to a combination of those factors).These parameters are de fined in the report and their values obtained for the various vignettes are presented.

    The following elements are of particular importance for the sniper:super elevation,drift angle,and range to transonic entry. And as such,these variables are collected during the simulations.

    6.Approach

    The steps in the DRDC simulation study are shown in Fig.5.The six steps are carried out for each vignette.Then,results of the simulations are collected,metrics are calculated,and differences between NABK and BALCO are quanti fied and analysed.

    Once the projectile data is entered for a vignette,the information is valid and fixed for all vignettes.The vignette speci fic information on geometry,meteorologicalconditions,wind parameters, and geo location are extracted from the Excel table,and entered into the BALCO input script file.Using the tabular data associated with a vignette,one fills out the BALCO input file as follows:

    ·$ISO_Atmosphere_Correction_Data is entered as the triplet altitude[m],temperature[K],and pressure[Pa],

    ·$Wind_Data is entered as components in a Cartesian frame, with one component along x1(down-range),followed by a component along x2(vertical,always zero here),and finally a component along x3(cross-range),

    ·$Longitude_Latitude_Azimuth is entered as longitude(deg)and latitude(deg),complying with the sign convention used in this study,and as azimuth(deg)of fire(speci fically,the azimuth from the North entry of the vignette table data),in this order,

    ·$Initial_Position is entered as down range(m)of zero,height (m)above sea level as given in the vignette table,and cross range(m)of zero,in this order,as the position of the shooter (gun).

    Targetlocation is determined from the geometry ofthe vignette, using the vignette information on the slant angle,the height ofthe shooter,and the range to target.Actually,target height from sea levelis critical,as it serves in the evaluation ofthe drift angle.Fig.4 presents a generic geometry and basic calculations to obtain target height(y)from vignette parameters.

    The next step pertains to setting the QE,the initial conditions, the stopping conditions,and the format of the simulation output. Obtaining the QE value,by trial and error,that results in the projectile hitting the target is the iterative part of the approach.Using the tabular data associated with a vignette:

    ·$Initial_Time is set to zero,

    ·$Initial_Velocity is entered as the triplet of magnitude(m/s)of the projectile at firing obtained from the NABK data,followed by the de flection angle set to zero,and the elevation angle(QE)as the estimated value to reach the target,

    ·$Initial_Angular_Position is entered as 0,0,and 0(for aerodynamic roll angle,total angle of attack,and roll angle),

    ·$Initial_Angular_Velocity is entered as the spin rate(rad/s)of the projectile obtained with PRODAS(with NABK supplied projectile velocity magnitude at firing),and followed by zero pitch rate,and zero yaw rate,

    ·Stopping condition is$Trajectory_Limit entered as the range to target value for the vignette,

    ·$Print_Time_Step is entered as the appropriate value that gives enough increment in the output,and may vary from 0.0005 s to 0.01 s depending on the vignette and output results.

    With the aforementioned key parameter values identi fied and set,the simulations of a vignette may be run,as shown in Fig.5.

    As for the trialand error process associated with the QE value,a simulation is first run with the originally guessed QE value.One obvious choice for the firstguess on QE is the NABK QE value,which is available.The projectile location obtained at the downrange target position is then compared with that expected from the geometry ofthe shooter-target,with a computation as shown in Fig.4. Ifthe projectile does notend up at the correct targetaltitude within 2 decimalplaces in units of meters,at the target downrange value location,the QE is set to another value,and the simulation is run again.The process is repeated untila satisfactory projectile altitude at target is obtained.

    Note that several simulations are run for a given vignette and fixed(final)QE value to allow for post-processing calculations that isolate the effects of three variables on the drift angle:Coriolis effect,wind,and bullet spin.

    7.Results

    The results obtained with BALCO and NABK for the sniper vignettes are presented in Table 4 to Table 10.The variables used for performance evaluation and other variables,as required by the snipers,are shown in the tables.The columns are arranged such thatthe NABK and BALCO results are presented side by side for each vignette.

    Other variables of interest found in the results tables are as follows:projectile's time of flight,muzzle velocity(MV),velocity at impact(actually,when projectile is closest to target),transonic entry distance,maximum ordinate,and range to maximum ordinate.Range to maximum ordinate is the distance from the gun position to the horizontal coordinate of the location of the projectile when it reaches its highest altitude.

    8.NABK versus BALCO trajectory comparisons

    The objective of the veri fication and validation process is to demonstrate the accuracy of NABK solution so that it may be used with con fidence in a ballistic computer for the snipers.According to AIAA guidelines[8],the veri fication process determines if the programming and computational implementation of the conceptual model is correct.It examines the mathematics in the model through comparison with exact analytical results and checks for computer programming errors.As for the validation process,it determines if the computational simulation agrees with physical reality through comparison with experimental results.

    To compare the trajectory algorithms of NABK with that of BALCO,one may state a number ofobservations on the results using Table 11 to Table 14,in particular those tables featuring the differences in key variables.A detailed explanation of the results obtained with NABK is outside the scope of the analysis.

    For each vignette,the difference in NABK and BALCOQE inputs is smaller than or equal to 0.012°.The maximum value of 0.012°is obtained with vignette 19.If one omits vignette 19,the largest difference in QE is smaller than or equalto 0.0098°.The same observations can be made for SE.

    The maximum difference in magnitude of velocity at impact between NABK and BALCO for all vignettes is 2%.The maximum is obtained with vignette 19.If one discards this vignette,the maximum difference falls to 0.6%.

    The relatively large difference in NABK and BALCO QE inputs observed for vignette 19 can be explained in terms of the virtualtemperature.NABK simulations rely on the virtual temperature, which takes into account the relative humidity in the air.For most vignettes,the difference between the air temperature and the virtual temperature was relatively small or non-existent,thereforehad a minor impact on performance of the projectile.However, with vignette 19,one has a scenario with a very high temperature and high levelofhumidity.For vignette 19,the virtualtemperature was 53.6 deg C as compared with 44 deg C for the air temperature.The temperature is used to calculate the flight Mach numbers which in turn are used to extract the aerodynamic coef ficients. Thus for large temperature differences,one expects signi ficant discrepancies in the aerodynamic coef ficients,such as the dragcoef ficient.Furthermore,the difference in temperature is expected to signi ficantly impact velocity at the target with a relatively large separation between the shooter and the target.With vignette 19, the range was relatively long at 800 m.This only exacerbated the difference in projectile performance as obtained with NABK and BALCO.

    Table 4 Results for vignettes 1 and 2.

    Table 5 Results for vignettes 3,4 and 5.

    Table 6 Results for vignettes 6,7 and 8.

    Table 7 Results for vignettes 9,10 and 11.

    Table 8 Results for vignettes 12,13 and 14.

    Table 9 Results for vignettes 15,16 and 17.

    Table 10 Results for vignettes 18,19 and 20.

    Table 11 NABK-BALCO differences in QE,SE.

    The differences in total drift angles obtained with NABK and BALCO for all vignettes are shown in Table 13.The maximum difference is 0.13 mils,or 0.0073°,obtained with vignette 11,and the second largest is 0.09 mils,obtained with vignettes 4 and 5.The average NABK-BALCO difference in totaldrift angle is 0.04 mils.

    In case of projectile drift due to Coriolis effects,wind and bullet spin,the results of the comparison between NABK and BALCO are presented in Table 14.Magnitude of the difference between drift due to Coriolis obtained with NABK and BALCO is the largest for vignette 18(rounded value of 0.009 mils).Magnitude of the difference between drift due to projectile spin obtained with NABK and BALCO is the largest for vignette 2(rounded value of 0.027 mils).Magnitude ofthe difference between driftdue to wind effects obtained with NABK and BALCO is the largest for vignette 11

    (rounded value of 0.137 mils).The average difference NABK-BALCO in projectile drift due to Coriolis effects is 0.0012 mils,that due to projectile spin is 0.0034 mils,and that due to wind is 0.0422 mils (using rounded values for the calculation of the average).On average,wind has the largest impact on drift size among the three factors considered.

    Table 12 NABK-BALCO differences in velocity at impact.

    Table 13 NABK-BALCO differences in total drift angles.

    Table 14 NABK-BALCO differences in drift angles.

    9.Conclusion

    This reportprovides an assessmentofNATOArmaments Ballistic Kernel(NABK)firing solutions for a number of relevant sniper vignettes for the NATO 7.62×51 mm,OTBT,168 gr,Match ammunition.The work presented in this report is the first known validation of NABK data for sniper vignettes.The direct fire trajectory simulation study indicates that the results,mainly about the fire control inputs and the resulting drift,of the 6-degree-of-freedom simulations of the NATO 7.62×51 mm,OTBT,168 gr Match ammunition projectile in BALCO are in close agreement to those obtained with the 4-degree-of-freedom simulations in NABK for allthe vignettes investigated.The largest observed difference between the various parameters compared was 2%for the terminalvelocity in vignette 19.Typicaldifference in terminalvelocity was less than 0.5%.

    For the vignettes studied,the fire controlinputs for BALCO and NABK resulted,in practically the same impact point for both trajectory algorithms.Relying on the BALCO-NABK comparison results presented in this paper,it is concluded that NABK is suf ficiently accurate to predict the trajectory of direct fire smallcaliber projectiles.Therefore,the use of NABK for a sniper ballistic computer can be recommended.

    [1]Sowa,A.J.,“NATO Shareable Software Developing Into True Suite Supporting National Operational,Fire Control Systems”in proceedings of the 24th International Symposium on Ballistics,New Orleans,LA,September 22-26,2008.

    [2]Chusilp,P,Charubhun,Weerawut and Ridluan,A.,“Developing Firing Table Software for Artillery Projectiles using Iterative Search and 6-DOF Trajectory Model”,in proceedings of the 2nd TSME International Conference on Mechanical Engineering,Krabi,Thailand,October 19-21,2011.

    [3]Ortac,S.A.,Durak,U.,Kutluay,U.,Kucuk,K.and Candan,C.,“NABK Based Next Generation Ballistic Table Toolkit”,in proceedings of the 23rd International Symposium on Ballistics,Tarragona,Spain,April 16-20,2007.

    [4]The Modi fied Point Mass and Five Degrees of Freedom Trajectory Models.NATO STANAG 4355.Edition 3 2009.

    [5]Wey,P.,Corriveau,D.,Saitz,T.A.,de Ruijter,W.and Str¨omb¨ack,P.,“BALCO 6/7-DoF trajectory Model”in proceedings of the 29th International Symposium on Ballistics,Edinburgh,UK,May 9-13,2016.

    [6]The Six/Seven Degrees of Freedom Guided Projectile Trajectory Model.NATO STANREC 4618.Edition 1 January 2014.

    [7]McCoy RL.Modern Exterior Ballistics-the launch and flight dynamics of symmetric projectiles.Schiffer Military History;1999.

    [8]Guide for the veri fication and validation of computational fluid dynamics simulations.AIAA G-077-1998;1998.

    29 January 2017

    *Corresponding author.

    E-mail address:daniel.corriveau@drdc-rddc.gc.ca.

    Peer review under responsibility of China Ordnance Society

    http://dx.doi.org/10.1016/j.dt.2017.04.006

    2214-9147/Crown Copyright?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

    Received in revised form 11 April 2017

    Accepted 24 April 2017

    Available online 27 April 2017

    十八禁人妻一区二区| 国产精品熟女久久久久浪| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 午夜福利免费观看在线| 国产一区二区在线观看av| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 美女中出高潮动态图| 在线天堂最新版资源| 午夜老司机福利片| 一二三四中文在线观看免费高清| 蜜桃国产av成人99| 国产在线免费精品| 日韩伦理黄色片| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 国产av一区二区精品久久| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 久久精品亚洲熟妇少妇任你| 精品视频人人做人人爽| 男女之事视频高清在线观看 | 大话2 男鬼变身卡| 亚洲综合色网址| 精品卡一卡二卡四卡免费| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 我要看黄色一级片免费的| 人人妻,人人澡人人爽秒播 | 欧美精品一区二区大全| 欧美日韩亚洲国产一区二区在线观看 | 超色免费av| 欧美另类一区| 一区二区三区激情视频| 19禁男女啪啪无遮挡网站| 免费观看a级毛片全部| 制服人妻中文乱码| 麻豆精品久久久久久蜜桃| 人妻 亚洲 视频| 成人毛片60女人毛片免费| 国产一区亚洲一区在线观看| 97人妻天天添夜夜摸| 精品视频人人做人人爽| 十八禁人妻一区二区| 精品一区在线观看国产| 亚洲五月色婷婷综合| 秋霞伦理黄片| 一级片免费观看大全| 一级片'在线观看视频| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 亚洲av电影在线观看一区二区三区| 丝袜脚勾引网站| 美女午夜性视频免费| 亚洲第一区二区三区不卡| 久久精品久久久久久噜噜老黄| av在线播放精品| 国产亚洲一区二区精品| 欧美激情极品国产一区二区三区| 99精品久久久久人妻精品| 久久热在线av| 久久久久久人妻| 性高湖久久久久久久久免费观看| 国产成人免费观看mmmm| 国产 精品1| 亚洲国产精品国产精品| 黑丝袜美女国产一区| 亚洲国产av影院在线观看| 精品卡一卡二卡四卡免费| av在线app专区| 亚洲成色77777| 亚洲国产av新网站| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| 欧美xxⅹ黑人| 777米奇影视久久| 2021少妇久久久久久久久久久| 欧美av亚洲av综合av国产av | 亚洲五月色婷婷综合| 久久亚洲国产成人精品v| 大香蕉久久成人网| 大片免费播放器 马上看| 精品亚洲乱码少妇综合久久| 最近最新中文字幕大全免费视频 | 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| 国产精品 国内视频| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| 捣出白浆h1v1| 日韩大片免费观看网站| 亚洲精品成人av观看孕妇| 黄片小视频在线播放| 久久性视频一级片| 欧美乱码精品一区二区三区| 日韩一区二区视频免费看| 亚洲精品自拍成人| 搡老乐熟女国产| 韩国av在线不卡| 欧美黑人欧美精品刺激| 国产成人91sexporn| 一本大道久久a久久精品| 午夜影院在线不卡| 欧美精品一区二区大全| 亚洲色图综合在线观看| 人人妻,人人澡人人爽秒播 | 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 精品人妻一区二区三区麻豆| 国产成人精品久久久久久| 美女扒开内裤让男人捅视频| 另类精品久久| 99精国产麻豆久久婷婷| 中文字幕最新亚洲高清| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 国产成人a∨麻豆精品| 精品亚洲成国产av| 亚洲精品日韩在线中文字幕| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 大话2 男鬼变身卡| 久久99热这里只频精品6学生| 九九爱精品视频在线观看| 国产熟女欧美一区二区| 欧美国产精品一级二级三级| 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 中国国产av一级| 国产精品国产三级国产专区5o| 国产一区二区三区综合在线观看| 777米奇影视久久| 99热全是精品| 欧美日韩亚洲综合一区二区三区_| 在线观看三级黄色| 日韩中文字幕欧美一区二区 | 日本一区二区免费在线视频| 一本大道久久a久久精品| 欧美黑人精品巨大| 人人妻人人澡人人看| 我要看黄色一级片免费的| 久久久精品免费免费高清| 亚洲精品,欧美精品| 亚洲精品av麻豆狂野| 精品人妻一区二区三区麻豆| 久久免费观看电影| netflix在线观看网站| 国产又爽黄色视频| 免费观看a级毛片全部| av电影中文网址| 两个人免费观看高清视频| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜爱| 午夜福利视频在线观看免费| 亚洲精品自拍成人| 国产在视频线精品| 99re6热这里在线精品视频| 日韩一卡2卡3卡4卡2021年| 国产精品嫩草影院av在线观看| 午夜免费男女啪啪视频观看| 七月丁香在线播放| 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 在线观看www视频免费| 亚洲av日韩精品久久久久久密 | 国产人伦9x9x在线观看| 三上悠亚av全集在线观看| 香蕉丝袜av| 久久久精品94久久精品| 久久久久久久大尺度免费视频| 美女脱内裤让男人舔精品视频| 午夜久久久在线观看| 飞空精品影院首页| 色精品久久人妻99蜜桃| 一级毛片我不卡| 国产av一区二区精品久久| 观看av在线不卡| 人妻人人澡人人爽人人| 久久精品国产亚洲av涩爱| 亚洲av男天堂| 国产黄色视频一区二区在线观看| 久久婷婷青草| 欧美精品一区二区大全| 欧美在线黄色| 久久精品国产亚洲av涩爱| 亚洲美女黄色视频免费看| 人人澡人人妻人| 麻豆精品久久久久久蜜桃| 午夜免费观看性视频| 亚洲成人av在线免费| a级毛片在线看网站| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 97在线人人人人妻| 国产高清不卡午夜福利| 精品国产一区二区久久| 国产1区2区3区精品| 久久人人97超碰香蕉20202| av有码第一页| 最黄视频免费看| 久久97久久精品| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡 | 精品亚洲成国产av| 亚洲精品,欧美精品| 欧美乱码精品一区二区三区| 日韩,欧美,国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 青春草国产在线视频| 天天添夜夜摸| xxxhd国产人妻xxx| 欧美变态另类bdsm刘玥| 国产精品人妻久久久影院| 亚洲精品国产区一区二| 天天躁夜夜躁狠狠久久av| 久久国产亚洲av麻豆专区| 久久婷婷青草| 国产精品亚洲av一区麻豆 | 少妇人妻久久综合中文| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| av卡一久久| 国产av一区二区精品久久| 国产一区二区在线观看av| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 久久av网站| 狂野欧美激情性xxxx| 欧美亚洲日本最大视频资源| 麻豆av在线久日| 亚洲国产最新在线播放| 岛国毛片在线播放| 国产精品女同一区二区软件| 考比视频在线观看| 又粗又硬又长又爽又黄的视频| 亚洲专区中文字幕在线 | 三上悠亚av全集在线观看| 一级片免费观看大全| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 成人国语在线视频| 久久久久久人妻| 丝袜人妻中文字幕| 亚洲一区中文字幕在线| 国产av码专区亚洲av| 午夜免费鲁丝| 另类亚洲欧美激情| 日韩av免费高清视频| 男人舔女人的私密视频| 亚洲人成电影观看| 欧美日韩精品网址| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 国产精品久久久久久久久免| 亚洲精品久久久久久婷婷小说| 超碰成人久久| 黑丝袜美女国产一区| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 性色av一级| 成人毛片60女人毛片免费| 午夜日韩欧美国产| 美女高潮到喷水免费观看| av一本久久久久| 国产乱人偷精品视频| 国产精品一国产av| 国产乱来视频区| 亚洲一码二码三码区别大吗| 无限看片的www在线观看| 大香蕉久久网| 久久99热这里只频精品6学生| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 一边摸一边抽搐一进一出视频| 色94色欧美一区二区| 综合色丁香网| 亚洲,欧美,日韩| 亚洲欧洲日产国产| avwww免费| 国产精品亚洲av一区麻豆 | 免费久久久久久久精品成人欧美视频| 少妇精品久久久久久久| 国产精品亚洲av一区麻豆 | 啦啦啦在线观看免费高清www| 亚洲国产精品国产精品| 99精品久久久久人妻精品| 日韩一区二区三区影片| 18在线观看网站| av女优亚洲男人天堂| av.在线天堂| 一二三四中文在线观看免费高清| 国产欧美亚洲国产| 亚洲,一卡二卡三卡| 黄片小视频在线播放| √禁漫天堂资源中文www| 天天影视国产精品| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 精品一区二区三区四区五区乱码 | 波多野结衣av一区二区av| 一区二区av电影网| 男人舔女人的私密视频| 日韩不卡一区二区三区视频在线| 999久久久国产精品视频| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 一级a爱视频在线免费观看| 精品免费久久久久久久清纯 | 国产亚洲精品第一综合不卡| 桃花免费在线播放| 免费黄频网站在线观看国产| 成人国语在线视频| 一级爰片在线观看| xxx大片免费视频| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 亚洲天堂av无毛| 激情视频va一区二区三区| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 中文字幕精品免费在线观看视频| 狠狠婷婷综合久久久久久88av| 9191精品国产免费久久| 叶爱在线成人免费视频播放| 中文字幕高清在线视频| 成人亚洲精品一区在线观看| 国产成人a∨麻豆精品| www.av在线官网国产| 观看美女的网站| 亚洲,欧美精品.| 国产高清国产精品国产三级| 熟女av电影| 男女国产视频网站| 尾随美女入室| 久久久久久久精品精品| 久久精品国产亚洲av涩爱| 黄片播放在线免费| 女人被躁到高潮嗷嗷叫费观| 99精品久久久久人妻精品| 黄色 视频免费看| 成人黄色视频免费在线看| 激情视频va一区二区三区| 免费人妻精品一区二区三区视频| 妹子高潮喷水视频| 欧美日韩一级在线毛片| 999久久久国产精品视频| 欧美日韩一级在线毛片| 日韩制服丝袜自拍偷拍| 七月丁香在线播放| 在线视频色国产色| 亚洲avbb在线观看| 国产欧美日韩一区二区三| 国产高清videossex| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全电影3 | 国产精品爽爽va在线观看网站 | 一边摸一边抽搐一进一出视频| 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 最近最新免费中文字幕在线| 亚洲三区欧美一区| 精品欧美国产一区二区三| 黄色 视频免费看| 久9热在线精品视频| 12—13女人毛片做爰片一| 中文字幕人妻熟女乱码| 久久久久亚洲av毛片大全| 日本vs欧美在线观看视频| 婷婷精品国产亚洲av在线| 两人在一起打扑克的视频| 亚洲少妇的诱惑av| 亚洲第一欧美日韩一区二区三区| 国产高清激情床上av| www.熟女人妻精品国产| 午夜福利,免费看| 久久人人爽av亚洲精品天堂| 欧美黑人欧美精品刺激| 真人做人爱边吃奶动态| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| 国产成人精品无人区| 国产精品国产高清国产av| 亚洲一码二码三码区别大吗| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 搡老岳熟女国产| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 国内精品久久久久精免费| 国产一区二区在线av高清观看| 精品高清国产在线一区| 国产精品av久久久久免费| 不卡av一区二区三区| 免费人成视频x8x8入口观看| 亚洲三区欧美一区| 可以在线观看的亚洲视频| 国产精品影院久久| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黑人精品巨大| 亚洲在线自拍视频| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 日本免费a在线| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 国产亚洲精品久久久久久毛片| 亚洲成av人片免费观看| 此物有八面人人有两片| 久久精品国产99精品国产亚洲性色 | 成在线人永久免费视频| 亚洲一区中文字幕在线| 亚洲五月婷婷丁香| 嫩草影视91久久| 欧美中文日本在线观看视频| av视频免费观看在线观看| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区 | 黄色 视频免费看| 热99re8久久精品国产| 午夜福利18| 欧美成人免费av一区二区三区| av视频免费观看在线观看| 99香蕉大伊视频| 亚洲精品中文字幕在线视频| 亚洲欧美激情综合另类| 亚洲第一av免费看| 国产av一区在线观看免费| 中文字幕人妻丝袜一区二区| 色播在线永久视频| 日韩av在线大香蕉| 不卡一级毛片| 老司机午夜十八禁免费视频| 男人舔女人下体高潮全视频| 精品久久久久久久久久免费视频| or卡值多少钱| 亚洲午夜精品一区,二区,三区| a在线观看视频网站| 午夜视频精品福利| 中文字幕色久视频| 欧美老熟妇乱子伦牲交| 丁香六月欧美| 狠狠狠狠99中文字幕| 在线观看免费视频日本深夜| 一进一出抽搐动态| 中文字幕人成人乱码亚洲影| 亚洲情色 制服丝袜| 久久久久久久午夜电影| 岛国在线观看网站| 成年人黄色毛片网站| www.自偷自拍.com| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 免费一级毛片在线播放高清视频 | 亚洲熟女毛片儿| 18禁黄网站禁片午夜丰满| 美女大奶头视频| 中文字幕最新亚洲高清| 久久久久久大精品| 午夜激情av网站| 真人一进一出gif抽搐免费| 天天躁夜夜躁狠狠躁躁| 老司机福利观看| 99热只有精品国产| 咕卡用的链子| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 91在线观看av| av超薄肉色丝袜交足视频| 悠悠久久av| 国产精品亚洲av一区麻豆| 免费av毛片视频| 真人做人爱边吃奶动态| 色播亚洲综合网| 亚洲一区二区三区色噜噜| 两人在一起打扑克的视频| 国产av一区二区精品久久| 窝窝影院91人妻| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| e午夜精品久久久久久久| 国产免费av片在线观看野外av| 亚洲精品av麻豆狂野| 久久精品国产亚洲av高清一级| 亚洲 欧美 日韩 在线 免费| 亚洲成a人片在线一区二区| 午夜福利一区二区在线看| 黄色毛片三级朝国网站| 亚洲九九香蕉| 国产亚洲精品久久久久久毛片| 精品国产一区二区久久| 久热这里只有精品99| 一级毛片精品| 免费搜索国产男女视频| 天天躁夜夜躁狠狠躁躁| 午夜久久久在线观看| 黄色视频不卡| 亚洲一区中文字幕在线| 欧美日韩一级在线毛片| 一区福利在线观看| 久久国产亚洲av麻豆专区| 久久久久久久精品吃奶| 纯流量卡能插随身wifi吗| 亚洲av电影不卡..在线观看| 在线天堂中文资源库| 亚洲最大成人中文| 久久午夜亚洲精品久久| 国产在线观看jvid| 啦啦啦观看免费观看视频高清 | 精品一区二区三区视频在线观看免费| 欧美丝袜亚洲另类 | 50天的宝宝边吃奶边哭怎么回事| 久久人妻熟女aⅴ| 在线观看www视频免费| 在线av久久热| 国产成年人精品一区二区| 又黄又粗又硬又大视频| 欧美乱妇无乱码| 美女大奶头视频| 精品国产乱子伦一区二区三区| 51午夜福利影视在线观看| 在线观看www视频免费| 女人被狂操c到高潮| 亚洲男人天堂网一区| 成人永久免费在线观看视频| 欧美成狂野欧美在线观看| 在线视频色国产色| 免费观看精品视频网站| 日韩av在线大香蕉| 嫩草影视91久久| 黄色丝袜av网址大全| 黑丝袜美女国产一区| 欧美成人午夜精品| 性欧美人与动物交配| 欧美黑人欧美精品刺激| 精品久久久久久久毛片微露脸| 午夜激情av网站| 国产麻豆69| 日韩欧美一区二区三区在线观看| 精品国产国语对白av| 又大又爽又粗| 日韩成人在线观看一区二区三区| 午夜免费鲁丝| 免费搜索国产男女视频| 乱人伦中国视频| 亚洲精品国产色婷婷电影| 国产精品av久久久久免费| 精品一区二区三区视频在线观看免费| 亚洲欧美精品综合久久99| 黄色视频不卡| 亚洲欧美精品综合一区二区三区| 日本vs欧美在线观看视频| 免费在线观看完整版高清| 天天一区二区日本电影三级 | 国产真人三级小视频在线观看| 成人欧美大片| 视频在线观看一区二区三区| av中文乱码字幕在线| 黄片播放在线免费| 99国产精品一区二区蜜桃av| 亚洲av成人不卡在线观看播放网| 亚洲第一电影网av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产高清在线一区二区三 | 视频区欧美日本亚洲| 在线观看66精品国产| 十分钟在线观看高清视频www| www.999成人在线观看| 免费无遮挡裸体视频| 日本vs欧美在线观看视频| 国产精品二区激情视频| 手机成人av网站| 国产精品秋霞免费鲁丝片| 午夜福利,免费看| 成人国产综合亚洲| 老司机午夜十八禁免费视频| 99精品欧美一区二区三区四区| 一边摸一边抽搐一进一出视频| 国产麻豆69| 国产精品二区激情视频| 国产乱人伦免费视频| 国产av精品麻豆| 精品一区二区三区视频在线观看免费| 亚洲av电影不卡..在线观看| 淫秽高清视频在线观看| 妹子高潮喷水视频| www.精华液| 香蕉丝袜av| 日本免费一区二区三区高清不卡 | 亚洲av电影在线进入| 欧美日韩黄片免| 日本在线视频免费播放| 黄频高清免费视频| 纯流量卡能插随身wifi吗|