• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal design of the aerodynamic parameters for a supersonic twodimensional guided artillery projectile

    2017-07-01 20:50:08KeLingZhengHungJingminZhng
    Defence Technology 2017年3期

    Ke Ling,Zheng Hung,Jing-min Zhng

    aXi'an Institute of Electromechanical Information Technology,Norinco Group,No.99 Jixiang Road,Xi'an 710065,Shaanxi,China

    bNo.208 Research Institute of China Ordnance Industries,1023 Changping,Beijing 102202,China

    Optimal design of the aerodynamic parameters for a supersonic twodimensional guided artillery projectile

    Ke Lianga,*,Zheng Huanga,Jing-min Zhangb

    aXi'an Institute of Electromechanical Information Technology,Norinco Group,No.99 Jixiang Road,Xi'an 710065,Shaanxi,China

    bNo.208 Research Institute of China Ordnance Industries,1023 Changping,Beijing 102202,China

    A R T I C L E I N F O

    Article history:

    Two-dimensional guided projectile

    Aerodynamic parameters

    Canard pro file

    Numerical simulation

    Optimal design

    An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction.The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability.The optimal design algorithm is developed to decide the pro files both of the steering and spinning canards, and their de flection angles are also simulated to meet the needs of trajectory correction capabilities. Finally,the aerodynamic ef ficiency of the speci fic canards is discussed according to the CFD simulations. Results that obtained here can be further applied to the exterior ballistics design.

    ?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    As improving artillery projectile accuracy is obviously bene ficial for the fire ef ficiency,nowadays the precision-guided munitions are of interest to the Army as a means of both reducing collateral damage and increasing the chance of desired effect with the first round fired[1,2].

    In this paper,some fundamental studies on the structural and aerodynamic features for the guided projectile in the preliminary design of its exterior ballistics were discussed.There were many previous works that were contributed to the methods involved in this paper.Theodoulis et al.introduced the guidance and control modules for a class of spin-stabilized fin-controlled projectiles[[3-6],and the complete nonlinear dynamical model is developed and analyzed.Chang et al.analyzed the impact of the spin-rate on the forward section ofthe trajectory,their results indicated thatthe spin-rate property is in fluenced by the canards actuation[7-9].As the dual-spin guided projectiles are fundamentally less stable than the conventionalballistic spin-stabilized projectiles,Wernert et al. modelled and analyzed the stability conditions of the guided projectiles[10,11].Hamel,Youn,Sahu and et al.studied the aerodynamic characteristics of different kinds of trajectory correction projectiles[12-14].Those studies gave us the ideas to design, modeland analyze the complicated dynamics of the guidance and controlsystem ofthe guided projectile.In particular,they provided some helpful references to investigate the aerodynamic characteristics in the preliminary design.

    The purpose ofthis work is to design the controlcanards for the dual-spin two-dimensional guided projectile.An optimal design method was developed in this paper to obtain the aerodynamic parameters of the control canards for trajectory correction.Numerical simulations were performed to study the aerodynamic ef ficiency of the guided projectile with control canards.

    2.Model and method

    2.1.Model of the 2-D guided artillery projectile

    The two-dimensional guided projectile in this study includes a conventional 155 mm projectile body and a nose guidance component which is used for trajectory correction.The design model the two-dimensional guided projectile is shown in Fig.1. There are two pairs of canards fixed on the nose component of the projectile.The first pair of canards,called the steering canards,is mounted in the same direction on the nose componentto create liftforce.Meanwhile,the second pair of canards,named the spin canards,is differentially canted in a manner to create a suf ficient amount of moment to rotate the head component in an opposite direction of the projectile spin.

    2.2.Optimal design method

    In design of the Two-dimensional guided projectile,it is absolutely essential that the aerodynamic parameters for different canard wings'structures are analyzed and optimized.Therefore, the optimal aerodynamic con figuration can be obtained,and as well as the required correction forces and moments can be guaranteed.In detailed design,severaldesigned parameters,such as the wing area,the pro file,the aspectratio,the sweepback angle and the taper ratio,are indispensable for in fluencing the aerodynamic con figuration of the projectile.

    The general guideline of the wing area design is to provide the necessary trajectory correction ability as much as possible in the limited shape space.As the changes of aerodynamic con figuration are comparatively limited due to the restraints both from the shape of the projectile and the lift force of the canard wing,the study of the trajectory correction ability is focused on the calculations of additional force and additional moment about the projectile with corrective canards.By adding the additionalforces and moments to the equations ofmotion[15],the trajectory correction abilities with respect to the different wing areas can be investigated.

    There are two types of pro file that can be divided as the supersonic pro file and the subsonic pro file in application.For the frequently used supersonic pro files,such as diamond shape,lens shape,hexagon and blunt trailing edge,their features are simply shaped airfoils with sharp leading edges to cut down the shock wave.For the subsonic pro files,such as symmetric arc,asymmetric arc and laminar flow,they are usually streamlined with relatively smooth leading edges to enhance the leading-edge suctions and to reduce the atmospheric drags.

    While increasing the aspect ratio,generally,the slope of lift curve will be elevated.For a speci fic length of the wing root,both the span and the aspect ratio will be raised at the same time. However,the span must not exceed the caliber of the artillery.The length ofmean chord willdecrease while the friction willincrease, and the wave drag willalso increase for a low mach number during the supersonic flying.

    The sweepback angle willmainly impactthe resistance property of the projectile.The reasons for using the sweepback angle are to increase the criticalmach number,delay the shock wave,decrease the peak value ofthe drag coef ficient and make the drag coef ficient change smoothly with the increasing of the mach number.The taper ratio has less in fluence on aerodynamics of the projectile when the other geometric parameters had been finalized.

    Changing of any mentioned parameters above will affect its aerodynamic ef ficiency of the 2-D guided projectile.In order to obtain the optimalaerodynamic con figuration,both the constraint of the structural strength and the adjustment of the canard's aerodynamic shape should be considered.In this study,the optimal design algorithm is developed by coupling of the fluid and solid,as shown in Fig.2,which make sure the aerodynamic ef ficiency to be optimized under all the given requirements.

    From Fig.2,there are two types of parameters need to be optimized for selecting the canards,which are structure parameters and aerodynamic parameters.Meanwhile,there are strong connections between these two types of parameters.Firstly,we calculated the structure parameters,such as parameters of the pro file,by using engineering prediction methods,and made those results as the initial inputs of the optimization process.Then,the aerodynamic parameters are simulated and optimized to meet the trajectory correction capability of the guided projectile.During the optimizing process,both the structure parameters and aerodynamic parameters might be redesigned under their boundary conditions.And finally,the local optimal solution can be obtained as well as the canards can be selected.

    After the optimization method is used to obtain the pro files of steering or spinning canards,the relationship between the de flection angle of control surface and the angle of attack can benumerically simulated by CFD method.Then,the aerodynamic efficiency of the designed canards can be analyzed.

    3.Simulations and results

    Increasing of the wing area will be bene fit to improve the trajectory correcting capability of the aerodynamic controlling canards.However,it will be caused not only the loss of firing range but also the flight instability of the spinning projectile.In order to obtain the optimal aerodynamic shape of the canard,its aerodynamic ef ficiency should be simulated and analyzed to optimize the structure of the canards.Both the correction capability and the flightstability for the 2-D guided projectile were considered during the whole simulation process.

    3.1.Selecting for the canard pro file

    In the preliminary design,the engineering prediction methods [16,17]are used to getthe values ofthe aerodynamic characteristics from the determined structure parameters.There are eighttypes of pro files have been evaluated,and their structure speci fic parameters are shown in Table 1.By applying allthe pro files to the guided projectile,their aerodynamic characteristics can be obtained.And these parameters can be used as the initial inputs of the optimization process.The selecting criteria ofthe bestpro file are large liftto-drag ratio,little changes of pressure center and smallde flection angle.

    The requirements of the lifts for the steering canards and the spin moments for the spin canards were estimated from the simulations of the 6-DOF externalballistics model,as seen in Table 2. The values of the lifts and the spin moments with different Mach numbers must meet the capability of trajectory correction for the guided projectile on its entire ballistic trajectory.Therefore,it can be the finalcriterion to verify the capability ofthe designed canard.

    According to the capabilities both oflift force and spin moment, the No.8 canard pro file in Table 1 is selected as the best matching pro file to meet the demands of trajectory correction capabilities. Results of the comparison between the requirements and capabilities can be seen in Fig.3 and Fig.4.The required value curves in Figs.3 and 4 are obtained by using the curve fitting method from the data in Table 2.

    Simulation results of the aerodynamic parameters indicate that their capabilities willmeet the design requirements with an eleven degree de flection angle for the pair ofsteering canards and the plus or minus six degrees de flection angles for the spin canards.

    3.2.CFD numerical simulation

    UG is used to construct the three dimensionalmodelofthe 2-D guided projectile,and the Pointwise software also used for the CFD meshing.As seen in Fig.5,the boundaries of the computational domains for the external flow fields are setup with reference to the length of projectile.They are ten times of the length in the X direction,and four times of the length in the Y direction and Z direction.The meshing details at the head and tail of the projectile can be seen in Fig.6.The amount of total grids in this CFD simulation is around 9 million units.To insure the convergence of the results,the grid quality has been checked,and itshows the nice grid qualities with very low cellsquish and skewness.

    As shown in Fig.6,the coordinate system is de fined as follows: The origin ofthe coordinate is fixed atthe head ofthe projectile,the X axis is pointing to the projectile tail along its body,the Z axis is pointing to the direction of the normalforce which is verticalwith respect to the steering canards,and the Y axis is vertical with respect to the pair of the spin canards.

    The points of reference in the calculation are described as follows:The reference point to calculate the center of pressure coefficient,the center of Magnus pressure coef ficient,pitching moment coef ficient and yawing moment coef ficient is the apex of the head; the reference point to calculate pitch-damping moment coef ficient is the center of mass.

    Some other speci fic values that involved in the simulation can be found as below.Noted that the reference area is determined based on the projectile caliber.

    Reference area:S=0.01897 m2;

    Reference length:l=0.9365 m;

    Mach number:Ma=0.6,0.7,0.8,0.9,1,1.1,1.2,1.5,1.8,2,2.5,3;

    Angle of attack:α=0°,2°,4°,6°,8°.

    3.3.Calculating formulas

    The formulas for calculating the aerodynamic parameters are summarized in this section,and can be seen as bellow[16,18].

    Table 1 Structure parameters for eight types of pro files.

    Table 2 Requirements of the lift and spin moment.

    3.4.Aerodynamics coef ficients results

    FLUENT is used to calculate the aerodynamics coef ficients ofthe guided projectile that with the preferred canards.Results for different attack angles(α=0°,2°,4°,6°,8°)are shown from Figs.7-11.

    In Figs.7-11,it was shown that how the de flection angle affects with the normal force of the projectile under the speci fic attack angles and Mach numbers.From these results,the ef ficiency of the canards can be approximately evaluated when the de flection angle and the normalforce have a linear relationship.

    3.5.Ef ficiency analysis of the canards

    The aerodynamic ef ficiency of the control canards is analyzed from the results shown in Figs.7-11.When the Mach number is greater than one(Ma>1),the normalforce coef ficientofthe whole projectile is increasing linearly during the de flection angle of the steering canards growth.It is indicated that the aerodynamic ef ficiency of the canards had changed linearly in this supersonic segment.

    When the Mach number is equal to one(Ma=1),the normal force coef ficient is shown irregular alterations with respect to the changes ofboth the de flection angle ofcanards and the attack angle ofprojectile.The aerodynamic ef ficiency ofcanards is in fluenced by the angle of attack.For detailed discussion,(1)when a=0°and Ma=1,the normal force coef ficient is raising linearly as the de flection angleδ<15°;(2)whenα=2°and Ma=1,the normal force coef ficient is raising linearly as the de flection angleδ<15°; (3)whenα=4°and Ma=1,the normalforce coef ficient is raisinglinearly as the de flection angleδ<12°;(4)whenα=6°and Ma=1, the normal force coef ficient is raising linearly as the de flection angleδ<10°;(5)whenα=8°and Ma=1,the normal force coef ficient is raising linearly as the de flection angleδ<8°.

    When the Mach number is less than one(Ma<1),the normal force coef ficient is also demonstrated irregular variations by changing from both the de flection angle of canards and the attack angle ofprojectile.In this subsonic flightphase,the linear segments of the aerodynamic ef ficiency of canards are shortened during the angle ofattack growth.For further discussion,(1)whenα=0°and Ma<1,the normal force coef ficient is increased linearly while δ<12°;(2)whenα=2°and Ma<1,the normalforce coef ficient isincreased linearly whileδ<10°;(3)whenα=4°and Ma<1,the normalforce coef ficient is increased linearly whileδ<8°;(4)when α=6°and Ma<1,the normalforce coef ficientis increased linearly whileδ<4°;(5)whenα=8°and Ma<1,the normal force coefficient is weakened to be negative.

    4.Conclusions

    This study has shown some fundamental works in the preliminary design of exterior ballistics.An optimization method is developed to obtain the applicable aerodynamic parameters of the controlling canards for a 2-Dguided artillery projectile.The optimal canard pro file is designed to make the guidance component meet the needs oftrajectory correction capabilities.And on this basis the ef ficiency of the canards is simulated and analyzed.The results of the aerodynamic parameters obtained in this study could be the valuable inputs for the further design of exterior ballistics.

    While adding of the canards may improve the accuracy of the artillery projectile,the dynamicalstability ofthe spinning projectile willbe affected at the same time.Some basic suggestions from this study are:Firstly,the design of the canards must not destroy the spinning stability of the guided projectile during the entire time of flight;secondly,the accuracy of the guided projectile should be increased by optimizing the structure and aerodynamic parameters,not just by extending the size of the canards.

    [1]Grignon C,Cayzac R,Heddadj S.Improvement of artillery projectile accuracy, 23rd International Symposium on Ballistics,International Ballistics Committee,Tarrgona,Spain,2007,pp.747-754.

    [2]Fresconi F,Cooper G,Celmins I,DeSpirito J,Costello M.Flight Mechanics of a Novel Guided Spin-Stabilized Projectile Concept,AIAA Atmospheric Flight Mechanics Conference,Toronto,ON Canada,2010.

    [3]Theodoulis S,Gassmann V,Werner P,Dritsas L,Kitsios I,Tzes A.Guidance and control design for a class of spin-stabilized fin-controlled projectiles.J Guid Control,Dyn 2013;36(2):517-31.

    [4]S`eve F,Theodoulis S,Wernert P,Zasadzinski M,Boutayeb M.Pitch/Yaw Channels Control Design for a 155mm Projectile with Rotating Canards,using a H∞Loop-Shaping Design Procedure,AIAA Guidance,Navigation,and Control Conference,National Harbor,Maryland,2014.

    [5]Theodoulis S,Gassmann V,Brunner T,Wernert P.Robust Bank-to-Turn Autopilot Design for a Class of 155mm Spin-Stabilized Canard-Guided Projectiles,AIAA Atmospheric Flight Mechanics Conference,Boston,MA,2013.

    [6]Spagni J,Theodoulis S,Wernert P.Flight control for a class of 155 mm spinstabilized projectile with reciprocating canards,AIAA Guidance,Navigation, and Control Conference,Minneapolis,Minnesota,2012.

    [7]Chang SJ,Wang ZY,Liu TZ.Analysis of spin-rate property for dual-spin-stabilized projectiles with canards.JSpacecr Rockets 2014;51(3).985-966.

    [8]Chang S.J.Dynamic response to canard control and gravity for a dual-spin projectile.J Spacecr Rockets 2014;53(3):558-66.

    [9]Wang Y,Cheng J,Yu JY,Wang XM.In fluence of yawing force frequency on angular motion and ballistic characteristics of a dual-spin projectile.Def Technol 2016;12(2):124-8.

    [10]Wernert P.Stability analysis for canard guided dual-spin stabilized projectiles, AIAA Atmospheric Flight Mechanics Conference,Chicago,Illinois,2009.

    [11]Wernert P,Theodoulis S.Modeling and stability analysis for a class of 155 mm spin-stabilized projectiles projectiles with course correction fuse(CCF),AIAA Atmospheric Flight Mechanics Conference,Portland,OR,2011.

    [12]Hamel N,Gagnon E.CFD and parametric study on a 155 mm artillery shell equipped with a roll-decoupled course correction fuze,29th AIAA Applied Aerodynamics Conference,Honolulu,Hawaii,2011.

    [13]Youn E B,Silton S I.Numerical Study on Bending Body Projectile Aerodynamics,34th AIAA Applied Aerodynamics Conference,Washington,D.C., 2016.

    [14]Sahu J.Time-accurate computations of free-flight aerodynamics of spinning projectile with and without flow control,AIAA Atmospheric Flight Mechanics Conference,Keystone,Colorado,2006.

    [15]Costello M,Peterson A.Linear theory of a dual-spin projectile in atmospheric flight.J Guid Control,Dyn 2000;23(5):789-97.

    [16]Anderson D.J.Fundamentals of aerodynamics.3rd ed.New York:McGraw-Hill;2001.

    [17]Lei JM,Wu JS.Engineering prediction methods of aerodynamics characteristics for guided weapon.Beijing:Beijing Institute of Technology Press;2015.

    [18]Han ZP.Exterior ballistics of projectiles and rockets.Beijing:Beijing Institute of Technology Press;2008.

    24 January 2017

    *Corresponding author.

    E-mail addresses:liangke3039@163.com(K.Liang),huangzheng82369@163. com(Z.Huang),zjm_208suo@163.com(J.-m.Zhang).

    Peer review under responsibility of China Ordnance Society

    http://dx.doi.org/10.1016/j.dt.2017.05.003

    2214-9147/?2017 Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received in revised form 30 March 2017

    Accepted 10 May 2017

    Available online 10 May 2017

    国产精品不卡视频一区二区| 亚洲精品亚洲一区二区| 国产一区二区在线av高清观看| 亚洲五月天丁香| 啦啦啦啦在线视频资源| 美女被艹到高潮喷水动态| 在线观看舔阴道视频| 黄色配什么色好看| 日本 欧美在线| 亚洲欧美精品综合久久99| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 亚洲av美国av| 97热精品久久久久久| 亚洲久久久久久中文字幕| 日韩国内少妇激情av| 亚洲精品亚洲一区二区| av在线天堂中文字幕| 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 在线观看免费视频日本深夜| 亚洲av美国av| 简卡轻食公司| 亚洲精品456在线播放app | 男女之事视频高清在线观看| 亚洲自偷自拍三级| 国产国拍精品亚洲av在线观看| 色噜噜av男人的天堂激情| 日日撸夜夜添| 亚洲精品色激情综合| 露出奶头的视频| 丝袜美腿在线中文| 亚洲欧美日韩高清专用| 欧美3d第一页| 老师上课跳d突然被开到最大视频| 国产av麻豆久久久久久久| 伊人久久精品亚洲午夜| 国产视频一区二区在线看| 神马国产精品三级电影在线观看| www日本黄色视频网| 国产免费av片在线观看野外av| 99久久无色码亚洲精品果冻| 高清在线国产一区| 永久网站在线| 精品久久久久久久久av| 在线看三级毛片| 午夜日韩欧美国产| 久久国产乱子免费精品| 成人午夜高清在线视频| 日本在线视频免费播放| 夜夜看夜夜爽夜夜摸| 日日撸夜夜添| 亚洲成人久久爱视频| 成人欧美大片| 亚洲av中文av极速乱 | 欧美高清成人免费视频www| 成人国产一区最新在线观看| 一级毛片久久久久久久久女| 日本三级黄在线观看| 亚洲av二区三区四区| avwww免费| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 内射极品少妇av片p| 久久人人精品亚洲av| 舔av片在线| 非洲黑人性xxxx精品又粗又长| 日韩一区二区视频免费看| 老熟妇仑乱视频hdxx| 国产亚洲91精品色在线| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区 | 亚洲午夜理论影院| 国产一区二区在线观看日韩| 国产精品久久视频播放| 亚洲在线自拍视频| 12—13女人毛片做爰片一| 色哟哟·www| 精品无人区乱码1区二区| 在线播放无遮挡| 午夜影院日韩av| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 美女黄网站色视频| 亚洲四区av| 成人综合一区亚洲| 免费看a级黄色片| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 成人特级黄色片久久久久久久| 亚洲熟妇中文字幕五十中出| 麻豆av噜噜一区二区三区| 国产免费男女视频| 国产精品久久久久久精品电影| 久久午夜福利片| 国产综合懂色| 日韩欧美国产一区二区入口| 观看美女的网站| 久久草成人影院| 黄色一级大片看看| 99久久精品热视频| 麻豆国产av国片精品| 国产欧美日韩精品一区二区| 色在线成人网| 久久6这里有精品| 亚洲avbb在线观看| 国产视频一区二区在线看| 波多野结衣高清作品| 简卡轻食公司| 婷婷亚洲欧美| 亚洲美女视频黄频| 深夜精品福利| 久久久久久久午夜电影| 一个人观看的视频www高清免费观看| 麻豆成人午夜福利视频| 高清在线国产一区| 22中文网久久字幕| 欧美激情在线99| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| 国产国拍精品亚洲av在线观看| 国产中年淑女户外野战色| 午夜视频国产福利| 日本 av在线| www.www免费av| 亚洲三级黄色毛片| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| a级一级毛片免费在线观看| 精品人妻1区二区| 亚洲av一区综合| 久久精品国产亚洲av天美| 不卡一级毛片| 国产高清有码在线观看视频| 黄色丝袜av网址大全| 成人特级黄色片久久久久久久| 非洲黑人性xxxx精品又粗又长| 中国美白少妇内射xxxbb| 日韩欧美精品v在线| 69av精品久久久久久| 如何舔出高潮| 国产视频一区二区在线看| 国产成人福利小说| 亚洲人成网站在线播| 亚洲中文字幕日韩| 久久精品综合一区二区三区| 老司机午夜福利在线观看视频| 日本成人三级电影网站| 嫩草影院精品99| 女的被弄到高潮叫床怎么办 | 午夜老司机福利剧场| 精品久久久久久久久久免费视频| 无遮挡黄片免费观看| 日本爱情动作片www.在线观看 | 国产精品亚洲一级av第二区| 我要看日韩黄色一级片| 久久久久久久久久久丰满 | 成人午夜高清在线视频| 老女人水多毛片| 精品一区二区三区人妻视频| 狂野欧美激情性xxxx在线观看| 欧美xxxx性猛交bbbb| 国产精品亚洲美女久久久| 精品一区二区免费观看| 国内精品久久久久久久电影| 久久香蕉精品热| 国产精品三级大全| 亚洲久久久久久中文字幕| av在线蜜桃| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 一区二区三区激情视频| 亚洲国产欧美人成| 美女 人体艺术 gogo| 淫妇啪啪啪对白视频| 日韩人妻高清精品专区| 床上黄色一级片| 乱系列少妇在线播放| 亚洲成av人片在线播放无| 3wmmmm亚洲av在线观看| 99精品久久久久人妻精品| 成人永久免费在线观看视频| 亚洲18禁久久av| 在线看三级毛片| 国语自产精品视频在线第100页| 国产精品一区二区三区四区久久| 如何舔出高潮| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久 | 国产蜜桃级精品一区二区三区| 99在线视频只有这里精品首页| 国产成人一区二区在线| 久久久久久久久久黄片| 精品午夜福利视频在线观看一区| 悠悠久久av| 两个人视频免费观看高清| 黄色欧美视频在线观看| 国产高清激情床上av| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 直男gayav资源| 国产高潮美女av| 女人十人毛片免费观看3o分钟| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| 亚洲精品粉嫩美女一区| 观看免费一级毛片| 男人舔女人下体高潮全视频| 三级毛片av免费| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 国产成人a区在线观看| 国产精品无大码| 春色校园在线视频观看| 日本熟妇午夜| 亚洲内射少妇av| 亚洲欧美精品综合久久99| 国产高潮美女av| 两个人视频免费观看高清| av专区在线播放| 亚洲美女视频黄频| 免费在线观看成人毛片| 动漫黄色视频在线观看| 91在线精品国自产拍蜜月| 人妻丰满熟妇av一区二区三区| 日本与韩国留学比较| 国模一区二区三区四区视频| 免费看光身美女| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| 18禁黄网站禁片免费观看直播| 亚洲av免费高清在线观看| 看免费成人av毛片| 国内毛片毛片毛片毛片毛片| av专区在线播放| 国产精品av视频在线免费观看| 简卡轻食公司| 国语自产精品视频在线第100页| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 一进一出抽搐动态| 在线观看免费视频日本深夜| 99国产精品一区二区蜜桃av| 内射极品少妇av片p| 国产成人福利小说| 国产色爽女视频免费观看| 午夜福利18| 国产精品嫩草影院av在线观看 | a级毛片a级免费在线| 日韩欧美在线二视频| 日本五十路高清| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 精品久久久噜噜| 日韩中字成人| 一级黄片播放器| 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 看十八女毛片水多多多| 日本爱情动作片www.在线观看 | 国内少妇人妻偷人精品xxx网站| 欧美黑人巨大hd| 成人精品一区二区免费| 少妇的逼好多水| 午夜久久久久精精品| 亚洲美女黄片视频| 可以在线观看的亚洲视频| 色综合色国产| 我要看日韩黄色一级片| 真人做人爱边吃奶动态| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 日韩欧美国产一区二区入口| 一进一出抽搐动态| 国内少妇人妻偷人精品xxx网站| 高清毛片免费观看视频网站| 欧美日韩综合久久久久久 | 美女被艹到高潮喷水动态| 99久久精品热视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人中文字幕在线播放| 少妇人妻精品综合一区二区 | 免费人成在线观看视频色| 国产精品av视频在线免费观看| 久久99热6这里只有精品| 搡女人真爽免费视频火全软件 | 在线播放国产精品三级| avwww免费| 日本黄色片子视频| av中文乱码字幕在线| 久99久视频精品免费| 国产精品久久久久久久电影| 午夜免费激情av| 一个人看的www免费观看视频| 天美传媒精品一区二区| 18+在线观看网站| 亚洲熟妇熟女久久| 午夜精品一区二区三区免费看| 久久婷婷人人爽人人干人人爱| 性欧美人与动物交配| 又粗又爽又猛毛片免费看| 久久国内精品自在自线图片| 在线天堂最新版资源| 亚洲黑人精品在线| 国产探花极品一区二区| 亚洲av一区综合| 午夜视频国产福利| 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 少妇被粗大猛烈的视频| 免费看日本二区| 99国产极品粉嫩在线观看| 久9热在线精品视频| 亚洲电影在线观看av| 欧美激情在线99| 内射极品少妇av片p| a级毛片a级免费在线| 免费观看精品视频网站| 国产精品人妻久久久影院| 欧美国产日韩亚洲一区| 午夜a级毛片| 欧美中文日本在线观看视频| 日韩欧美精品v在线| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 欧美xxxx性猛交bbbb| 一进一出抽搐gif免费好疼| 日本一二三区视频观看| 熟女电影av网| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 天天躁日日操中文字幕| 99久久九九国产精品国产免费| 偷拍熟女少妇极品色| 人人妻人人看人人澡| 国产成人福利小说| 啦啦啦观看免费观看视频高清| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 床上黄色一级片| 人妻丰满熟妇av一区二区三区| 深夜精品福利| 日日夜夜操网爽| 国产男人的电影天堂91| 日韩一区二区视频免费看| 精品久久久久久久久av| 色综合婷婷激情| 色综合站精品国产| 在线国产一区二区在线| 黄色视频,在线免费观看| 在线播放无遮挡| 嫩草影院精品99| 亚洲午夜理论影院| 免费观看人在逋| 内射极品少妇av片p| 一个人免费在线观看电影| 国产精品亚洲美女久久久| 我要搜黄色片| 色综合色国产| 日韩欧美精品免费久久| 999久久久精品免费观看国产| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 国产亚洲精品久久久com| 亚洲第一区二区三区不卡| 国产亚洲av嫩草精品影院| 国产极品精品免费视频能看的| 男人的好看免费观看在线视频| 欧美日韩综合久久久久久 | 白带黄色成豆腐渣| 亚洲精品久久国产高清桃花| 一区二区三区激情视频| 国产人妻一区二区三区在| 两个人的视频大全免费| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区 | 亚洲av中文av极速乱 | 99久久精品热视频| 国产精品一区二区免费欧美| 久久人人爽人人爽人人片va| 波多野结衣巨乳人妻| 我要看日韩黄色一级片| 亚洲欧美日韩东京热| 久久久久久久精品吃奶| 在线观看66精品国产| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 日韩欧美 国产精品| 人妻少妇偷人精品九色| 日本五十路高清| 成人二区视频| 搡女人真爽免费视频火全软件 | 国产精品人妻久久久久久| 露出奶头的视频| 国产伦在线观看视频一区| 欧美日韩乱码在线| 婷婷精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 成人特级黄色片久久久久久久| 亚洲欧美日韩高清专用| 亚洲精品在线观看二区| 91麻豆av在线| 我的女老师完整版在线观看| 美女被艹到高潮喷水动态| 日韩强制内射视频| 亚洲欧美日韩东京热| 啪啪无遮挡十八禁网站| 国产极品精品免费视频能看的| 国产人妻一区二区三区在| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 亚洲一级一片aⅴ在线观看| 免费在线观看日本一区| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 国模一区二区三区四区视频| 成人av一区二区三区在线看| 国产精品美女特级片免费视频播放器| av中文乱码字幕在线| 中出人妻视频一区二区| 91麻豆精品激情在线观看国产| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 日韩,欧美,国产一区二区三区 | 精品人妻偷拍中文字幕| 男人狂女人下面高潮的视频| 国产精品av视频在线免费观看| 国产色爽女视频免费观看| 亚洲内射少妇av| 搡老熟女国产l中国老女人| 岛国在线免费视频观看| 亚洲电影在线观看av| 精品人妻熟女av久视频| 日本色播在线视频| 午夜久久久久精精品| 国产黄a三级三级三级人| 91在线观看av| 夜夜爽天天搞| 免费在线观看影片大全网站| 欧美3d第一页| 日日撸夜夜添| 中文字幕高清在线视频| 亚洲七黄色美女视频| 国产老妇女一区| 久久久国产成人免费| 欧美日本亚洲视频在线播放| 亚洲第一电影网av| 精品久久国产蜜桃| 亚洲欧美日韩东京热| 性色avwww在线观看| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类 | 日韩欧美国产在线观看| 有码 亚洲区| 日日摸夜夜添夜夜添av毛片 | 国产精品99久久久久久久久| av在线天堂中文字幕| 欧美日韩乱码在线| 亚洲精品一卡2卡三卡4卡5卡| 免费观看的影片在线观看| 亚洲 国产 在线| 91麻豆av在线| 欧美黑人欧美精品刺激| 搡老熟女国产l中国老女人| 欧美成人a在线观看| 免费在线观看影片大全网站| 国产精品伦人一区二区| 国产精品国产三级国产av玫瑰| 精品久久久久久久人妻蜜臀av| 69人妻影院| 国产熟女欧美一区二区| 国内精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 中文字幕久久专区| 国产伦人伦偷精品视频| 中文亚洲av片在线观看爽| 日韩 亚洲 欧美在线| 精品久久久久久久久亚洲 | 极品教师在线免费播放| 一级黄色大片毛片| 少妇人妻精品综合一区二区 | 国产高清不卡午夜福利| 给我免费播放毛片高清在线观看| 欧美又色又爽又黄视频| 亚洲第一电影网av| 欧美性猛交黑人性爽| 99久久九九国产精品国产免费| 成年人黄色毛片网站| 最好的美女福利视频网| 午夜久久久久精精品| 综合色av麻豆| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩高清专用| 精华霜和精华液先用哪个| 国产大屁股一区二区在线视频| 琪琪午夜伦伦电影理论片6080| 不卡视频在线观看欧美| 成年人黄色毛片网站| 色在线成人网| 精品久久久久久久久久免费视频| 在线观看美女被高潮喷水网站| 麻豆成人av在线观看| 乱系列少妇在线播放| 少妇被粗大猛烈的视频| 日日夜夜操网爽| 亚洲av熟女| 国产女主播在线喷水免费视频网站 | av黄色大香蕉| 久久久精品欧美日韩精品| 国产高清不卡午夜福利| 久久久久性生活片| 国产免费av片在线观看野外av| 国产在线男女| 嫩草影院入口| 日韩一本色道免费dvd| 中文字幕免费在线视频6| 国产黄a三级三级三级人| 国产毛片a区久久久久| 别揉我奶头~嗯~啊~动态视频| 美女免费视频网站| 亚洲三级黄色毛片| 99国产精品一区二区蜜桃av| 国产爱豆传媒在线观看| 亚洲国产精品久久男人天堂| 综合色av麻豆| 久久香蕉精品热| 美女高潮的动态| 日韩欧美三级三区| 欧美激情国产日韩精品一区| 国产精华一区二区三区| 97碰自拍视频| 午夜福利成人在线免费观看| 美女免费视频网站| 亚洲美女搞黄在线观看 | 老女人水多毛片| 91麻豆精品激情在线观看国产| 国产精品一区二区免费欧美| 欧美性猛交黑人性爽| 国产精品99久久久久久久久| 色播亚洲综合网| 一级黄色大片毛片| 1024手机看黄色片| 午夜福利高清视频| 亚洲成a人片在线一区二区| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看 | 亚洲一级一片aⅴ在线观看| 亚洲欧美激情综合另类| 国产午夜福利久久久久久| 在现免费观看毛片| 看十八女毛片水多多多| 18禁在线播放成人免费| 日韩在线高清观看一区二区三区 | 婷婷丁香在线五月| 草草在线视频免费看| 黄色丝袜av网址大全| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| 国内毛片毛片毛片毛片毛片| 色综合色国产| 男插女下体视频免费在线播放| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 尤物成人国产欧美一区二区三区| 日韩欧美三级三区| 看片在线看免费视频| 欧美日韩乱码在线| 国产精品98久久久久久宅男小说| 亚洲最大成人手机在线| 亚洲av中文av极速乱 | 亚洲成人中文字幕在线播放| 尤物成人国产欧美一区二区三区| 免费大片18禁| 一进一出抽搐gif免费好疼| 国内久久婷婷六月综合欲色啪| 偷拍熟女少妇极品色| 两个人的视频大全免费| 别揉我奶头 嗯啊视频| 亚洲狠狠婷婷综合久久图片| 欧美日韩黄片免| 精品99又大又爽又粗少妇毛片 | 免费av不卡在线播放| 日本撒尿小便嘘嘘汇集6| 深夜精品福利| 精品福利观看| 日本黄色片子视频| 变态另类丝袜制服| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人精品二区| 色哟哟·www| 国产亚洲精品久久久久久毛片| 特大巨黑吊av在线直播| or卡值多少钱| 人妻夜夜爽99麻豆av| 黄色丝袜av网址大全| 嫩草影院新地址| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品50| 亚洲国产精品成人综合色| 国产高潮美女av| 乱码一卡2卡4卡精品| 欧美zozozo另类| 欧美日本亚洲视频在线播放| 国产欧美日韩精品一区二区|