• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact-disrupted gunshot residue:A sub-micron analysis using a novel collection protocol

    2017-07-01 20:50:05Spathis
    Defence Technology 2017年3期

    V.Spathis

    School of Physical Sciences,University of Kent,Canterbury,Kent CT2 7NZ,United Kingdom

    Impact-disrupted gunshot residue:A sub-micron analysis using a novel collection protocol

    V.Spathis

    School of Physical Sciences,University of Kent,Canterbury,Kent CT2 7NZ,United Kingdom

    A R T I C L E I N F O

    Article history:

    Gunshot residue

    Impact-disrupted gunshot residue

    Sub-micron

    Scanning electron microscopy

    Cold field emission SEM

    FEG-SEM

    X-flash

    Energy dispersive X-ray spectrometry

    The analysis of gunshot residue(GSR)has played an integral role within the legal system in relation to shooting cases.With a characteristic elemental composition of lead,antimony,barium,and a typically discriminative spheroidal morphology,the presence and distribution of GSR can aid in firearm investigations.In this experiment,three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range.The samples were analysed using a Field Emission Gun Scanning Electron Microscope(FEG-SEM)in conjunction with an X-flash Energy Dispersive X-ray(EDX)detector,allowing for GSR particle analyses of composition and structure at the sub-micron level.The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary signi ficantly,and at certain distances from the firearm particles with an irregular morphology were discerned,forming“impactdisrupted”GSR particles,henceforth colloquially referred to as“splats”.Upon further analysis,trends with regards to the formation of these splat particles were distinguished.An increase in splat frequency was observed starting at 10 cm from the firearm,with 147 mm-2splat density,reaching a maximal flux at 40 cm(451 mm-2),followed by a gradual decrease to the maximum range sampled.Moreover,the structural morphology of the splats changes throughout the sampling range.At the distances closest to the firearm,molten-looking particles were formed,demonstrating the metallic residues were in a liquid state when their flight path was disrupted.However,at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm,the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact,forming more structured as well as disaggregated splats.The relative compositions of the characteristic elements that are present in GSR also change in the different splat morphologies sampled, which may contribute to the particles'physical structures.Two distinct populations of splats were also observed:circular and elongated,which suggest the residues hit the substrate at different angles.The difference in the splat impact angle can be ascribed to the position of the residues within the firearm discharge plume;particles get caught up in the vortex that is created by the discharge gases behind the projectile as it leaves the barrel,thereby affecting their directionality and flight time.This reasoning could also justify the existence of both spheroidal and splat particles at certain distances.The novel sampling and analytical techniques used in this experiment have provided previously unknown information in relation to GSR structure and formation which could have greater implications to its current analysis amongst laboratories and law enforcement agencies worldwide.

    ?2017 The Author.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    When a cartridge-based weapon is fired,both gaseous and solid residues consisting of organic and inorganic particles from the ammunition are produced and expelled from the barrel[1-3].Once these residues are in flight they cool very rapidly producing GSR, which is identi fied by its characteristic inorganic elemental composition of lead,antimony and barium[4].The analysis of GSR provides important evidence in firearms incidents,making the quality of its analysis crucial.Therefore,it was established that SEM-EDX analysis was the idealtechnique to do so due to its nondestructive ability to analyse samples and being able to providemorphological and elementalcomposition data in a short amount of time[5,6].Although GSR has a characteristic elementalcomposition,the origin of those particles cannot be concluded based on that alone.It has been acknowledged that to establish a particle is in fact GSR,the compositional data must be coupled with a characteristic spheroidal morphology to distinguish it from environmentalaggregates such as residue from fireworks or vehicle brake pads[7-11].In this experiment,the morphology and elemental composition ofrim fire ammunition GSR is examined.Although the concept of coalescence of molten droplets to form GSR is not unknown[12]the novel sampling and analytical techniques used in this experiment demonstrate that particles may not always have suf ficient time to coolinto spheroidalresidues,in particular at low velocities.

    2.Materials and method

    2.1.Experimental setup

    In this experiment,six silicon collection substrates sized approximately 15 mm×20 mm were set up perpendicular to the firearm and 7 cm below the firing line atbench level.The collection substrates were kept upright and in place with the use of plastic spine bars that were fixed onto the bench,allowing the substrates to be at a consistent height and perpendicular to the firearm for maximum residue collection.Prior to the experiment,these silicon substrates were cleaned for 5min in an ultrasonic bath using HPLCgrade acetone and left to dry,placed in their individual containers and were only taken out for the test firing in a closed room using gloves.This ensured that they remained as uncontaminated as possible,and residues found on them during the analyticalprocess were a product of the firing and not prior contaminants.These substrates were arranged in a straight line down the centre of the firing line at distances of 10 cm,20 cm,40 cm,60 cm,80 cm and 100 cm.Three consecutive shots were fired using 0.22′376 m s-1CCIMinimag full metal jacketed(FMJ)rim fire ammunition with a Browning Buckmark long ri fle pistol.

    2.2.Analyticalmethod

    The silicon samples were collected immediately after the test firing and mounted on double sided carbon adhesive tape on aluminium stubs,allowing for SEM analysis.They were then analysed using a HitachiS-4700 cold field emission SEMequipped with a Bruker X-flash 5060f flat quad energy dispersive X-ray detector [13],which allowed for the examination of particle structural morphology(Fig.1)and elementalcomposition(Fig.2)at the submicron level.The morphology of the particles was examined using an accelerating voltage of 1.5 kV,which provided a more elaborate insight into the surface topography of a particle as the electron beam does not penetrate deep into the sample[14].However, during the elemental composition acquisition process,the voltage was changed to 20 kV.This gave a poorer image of the particle(as the electron beam is more penetrating and thus surface features are rendered invisible)but the higher accelerating voltage is required to stimulate X-ray emission from metallic elements comprising the particle.

    3.Results

    Upon FEG-SEM analysis of the samples,it appeared that the frequency at which particles were present on each silicon substrate varied signi ficantly.It was determined that the majority of the residues collected had an irregular morphology rather than their frequently encountered spheroidalshape.This was done by setting up a‘Particle Mapping Job’on the FEG-SEMusing the Bruker Esprit software which allowed for image and X-ray data to be acquired overa customisable area.Approximately halfthe surface area ofthe sample was analysed using this automated method at 20 kV.The results were then reviewed and the particles were then manually examined,as well as the rest of the sample,using a random selection process.Within these particles,there were two populations distinguished,normal incidence and angled splats(Fig.3).Consequentto further analysis,this selection ofparticles could be divided further into severalsubcategories(Fig.4 and Fig.5).

    A class of particles shown in Fig.6 was also encountered throughoutallofthe samples.However,as they primarily consisted of organic material with only small amounts of the inorganic‘characteristic’GSR elements,they were excluded from the classification process.The silicon substrates were analysed and a random selection of particles was chosen from each.These particles were then classi fied using the splatclassi fication diagram and archetypes mentioned in Figs.4 and 5.The results are displayed in Table 1.

    A selection of splats from each class was analysed using EDX (Fig.7).The elementaldata was collated and is displayed in Table 2. The relative proportions ofthe‘characteristic’GSR elements in each class was also plotted to show elemental composition change per classi fication type(Fig.8).

    Table 1 Table showing the number of particles per silicon substrate and their corresponding classi fications.

    Although copper does not come under the ASTM guide for characteristic GSR elements,it was present in the vast majority of particles analysed(in conjunction with Pb,Sb and Ba)and was therefore included to ensure more accurate relative particle compositions.

    4.Discussion

    4.1.Morphological analysis

    The results from the morphologicalexamination of the impact disrupted GSR indicate that there is a clear pattern in class type as a function of distance.As it can be seen from Table 1,at the distances closest to the firearm a high number of class 2 and class 5 particles are observed,with minor contributions to the other classes.However,around the centre of the sampling range,at approximately 40 cm from the firearm,the residues analysed primarily fallwithin classes 1,3 and 4.Here,the firearm discharge plume is at its maximum dispersion for this speci fic firearm and ammunition combination.This was established by having previously carried out a test firing with the same firearm and ammunition combination where a 25 cm×25 cm piece of cotton fabric was setup at 10 cm intervals from the firearm up to a maximum of 100 cm.A single shot was fired through each piece of fabric and the Modi fied Griess and Sodium Rhodizonate tests were carried out to revealthe nitrite and lead residue dispersion pattern on the fabric[15].These data suggestthatalthough these residues appear further away from the firearm,they have nothad suf ficienttime to cool in-flight,resulting in their liquid and molten forms.This is contradicted by the fact that residues closer to the firearm inhabit a more solid structure despite being only 10 cm or 20 cm away. Therefore,this exhibits thatthere are two differentdirectionalities to the firearm discharge plume,each ofwhich may be subject to a different temperature or velocity.As is demonstrated in Fig.9, when the projectile leaves the barrel,it creates an expanding vortex behind it.The vortex keeps expanding until it reaches maximum dispersion,after which it starts to diminish.However, although the particles get trapped in that vortex,the majority of them stilldo not have suf ficient time to cooldespite the increased flighttime.This suggests thatthe residues found atthese distances are either experiencing a higher temperature effect or are travelling at a higher velocity than the particles found closer to the firearm.The travelling of particles in the firearm discharge plume is also responsible for the different splat angles seen in Fig.3 in section 3.Although some particles maintain a fairly straight flight path resulting in normalincidence splats,others gettrapped in the vortex that is created,resulting in a change in their directionality, and therefore impacting the substrate at an angle.Moreover,the sphericalparticles thatwere found atthese distances were smaller than 3μm.This information supports the aforementioned hypothesis as small,spheroidalparticles would have had the chance to cool because of their small volume.To first order,the relative particle cooling time is a function of the volume of a particle,and thus is 8 times faster for a particle with half the diameter.On the other hand,the larger particles would not have had the chance to coolbecause oftheir added size,resulting in their disruption upon impact.In consequence,this means that the residues found closer to the firearm are present as a result of the lower velocity stream of particles that leaves the muzzle,labelled‘A’.This is reinforced by the factthatatthe distances farthestfrom the firearm,there is a gradual increase in more semi-congealed and solidi fied residues, as well as the characteristic spherical GSR.

    4.2.Elemental composition analysis

    Upon examination ofthe elementalcomposition ofthe different particle classes,it can be seen that the more liquid the appearance of the particle,the higher the lead content of said particle appears to be.Conversely,as it can be seen in Fig.8 in section 4.2,the barium content seems to increase as the particles become more solidi fied.Antimony and copper both show a slight decrease as the residues become more structured and solid.However,as multiple particles throughoutthe sampling range were analysed,itappeared thatthese particles are fairly antimony-poor and upon EDX analysis of the cartridge case,projectile and primer,it was determined the ammunition itself contained no antimony.In fact,the presence of antimony in the samples was due to the projectile itself.Some anomalous particles have in fluenced these results,leading to larger than average error.Nevertheless,a change in the compositional ratios in these particles could in fluence their structural morphology,therefore,suggesting that the ratio of the elemental composition may also in fluence a particle's structure,inconjunction with in-flight cooling time.

    Table 2 Table showing the relative proportions of‘characteristic’elements present in GSR±1 standard deviation.

    5.Conclusions

    The study that was carried out has given new insights into the formation of GSR and its analysis.The use of a FEG-SEMwith an X-flash flat quad detector has allowed for in depth particle analysis of a higher spatial resolution at sub-micron magni fications.This,in turn,has led to a deeper understanding of particle morphology, showcasing new impact disrupted GSR structures that were previously unknown.Similarly,the ability to determine the elemental composition of speci fic features within particles measuring less than 1μm in diameter,creates new possibilities into the standard of GSR analyses.This information may have a greatimplication on the automated analysis of GSR in laboratories and law agencies.Particles collected that may have previously been discarded due to theirlack of all three’characteristic’GSR elements may in fact be a segment ofa greater splat structure,leading to the re-evaluation of sample collection protocols and analysis world wide.

    Acknowledgements

    The author would like to thank Dr Mark Price for his vitalsupport and encouragement during this process as well as Mr Mark Johnson for his time and resource contribution to this experiment.

    This research did not receive any speci fic grant from funding agencies in the public,commercial,or not-for-pro fit sectors.

    [1]Schwoeble AJ,Exline DL.Current methods in forensic gunshot residue analysis.Boca Raton,London,New York,Washington D.C:CRC Press;2000.

    [2]Wallace JS.Chemical analysis of firearms,ammunition and gunshot residue. CRC Press;2008.

    [3]Dalby O,Butler D,Birkett JW.Analysis of gunshot residue and associated materials-a review.J Forensic Sci 2010;55:924-43.

    [4]ASTM E1588-10e1.Standard guide for GSR analysis by scanning electron microscopy/energy dispersive X-ray spectrometry.West Conshohocken,PA: American Society for Testing and Materials;2010.

    [5]Bro˙zek-Mucha Z.Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive X-ray spectrometry.Microsc Microanal2011;17(6):972-82.

    [6]Steffen S,Otto M,Niewoehner L,Barth M,Bro˙zek-Mucha Z,Biegstraaten J, Horvath R.Chemometric classi fication of gunshot residue based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection.Spectrochim Acta B 2007;62:1028-36.

    [7]Wolten GM,Nesbitt RS,Calloway AR,Loper GL.Particle analysis for the detection of gunshot residue II:occupational and environmental particles. JForensic Sci 1979;24(2):423-30.

    [8]Mosher PV,McVicar MJ,Randall ED,Sild EH.Gunshot residue-similar particles produced by fireworks.J Can Soc Forensic Sci 1998;31(3):157-68.

    [9]Cardinetti B,Ciampini C,D'Onofrio C,Orlando G,Gravina L,Ferrari F,Di Tullio D,Torresi L.X-ray mapping technique:a preliminary study in discriminating gunshot residue particles from aggregates of environmental occupational origin.Forensic Sci Int 2004;143(1):1-19.

    [10]Garofano L,Capra M,Ferrari F,Bizzaro GP,Di Tullio D,Dell’Olio M,Ghitti A. Gunshot residue.Further studies on particles of environmental and occupational origin.Forensic Sci Int 1999;103(1):1-21.

    [11]llker Kara,Yasin Sarikavakc,Sefer Bora Lisesivdinb,Mehmet Kasapb.Evaluation of morphological and chemical differences of gunshot residues in different ammunitions using SEM/EDS technique.Environ Forensics 2016;17(1):68-79.

    [12]Basu S.Formation of gunshot residues.JForensic SciJFSCA 1982;27(1):72-91.

    [13]Aoudjehane H.C.et al,Tissint Martian Meteorite:a fresh look at the interior, surface and atmosphere of Mars,Science,Vol.338,6108,785-788

    [14]Goldstein J,Newbury D,Joy D,Lyman C,Echlin P,Lifshin E,Sawyer L, Michael J.Scanning electron microscopy and X-ray microanalysis.3rd ed. Springer;2003.

    [15]Firearm Examiner Guide.http://projects.nfstc.org/firearms/module12/fir_ m12_t05_03_j.htm.last accessed December 2016.

    30 January 2017

    E-mail address:v.spathi@kent.ac.uk.

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2017.03.007

    2214-9147/?2017 The Author.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received in revised form 19 March 2017

    Accepted 29 March 2017

    Available online 4 May 2017

    免费高清视频大片| 久久久久九九精品影院| 精品久久久久久成人av| 国产精品亚洲美女久久久| 欧美三级亚洲精品| 日韩欧美一区二区三区在线观看| 91在线精品国自产拍蜜月 | aaaaa片日本免费| 免费在线观看日本一区| 国产精品综合久久久久久久免费| 哪里可以看免费的av片| 熟女人妻精品中文字幕| 看免费av毛片| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 亚洲国产色片| 日日摸夜夜添夜夜添小说| 日本成人三级电影网站| 在线免费观看的www视频| 色播亚洲综合网| 久久草成人影院| 好看av亚洲va欧美ⅴa在| 伊人久久大香线蕉亚洲五| 黄片小视频在线播放| 两个人视频免费观看高清| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 亚洲自拍偷在线| 嫩草影院精品99| 热99re8久久精品国产| 99热精品在线国产| 人人妻,人人澡人人爽秒播| 亚洲国产欧美人成| 老司机午夜十八禁免费视频| 欧美乱色亚洲激情| av国产免费在线观看| 91av网站免费观看| 精品久久久久久成人av| 日韩中文字幕欧美一区二区| 日韩三级视频一区二区三区| 免费在线观看成人毛片| 亚洲自偷自拍图片 自拍| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 美女 人体艺术 gogo| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 综合色av麻豆| 国产成人av教育| 少妇的逼水好多| www.自偷自拍.com| 搡老妇女老女人老熟妇| 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 国产精品香港三级国产av潘金莲| 十八禁人妻一区二区| 亚洲天堂国产精品一区在线| 国产精品久久久久久久电影 | 91久久精品国产一区二区成人 | 最近视频中文字幕2019在线8| 免费大片18禁| 十八禁人妻一区二区| 桃色一区二区三区在线观看| 99久久成人亚洲精品观看| 一区二区三区国产精品乱码| 国产乱人伦免费视频| 大型黄色视频在线免费观看| 国产伦精品一区二区三区视频9 | 热99在线观看视频| 久久久久久大精品| 嫁个100分男人电影在线观看| 日本黄色片子视频| 欧美最黄视频在线播放免费| 一个人看的www免费观看视频| 久久这里只有精品中国| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 我的老师免费观看完整版| 老汉色av国产亚洲站长工具| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 国产又色又爽无遮挡免费看| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 免费观看人在逋| 又爽又黄无遮挡网站| 国产免费男女视频| 宅男免费午夜| 热99re8久久精品国产| 国产熟女xx| 久久久国产欧美日韩av| 两个人视频免费观看高清| 狂野欧美白嫩少妇大欣赏| 精品午夜福利视频在线观看一区| 中文字幕久久专区| 日韩国内少妇激情av| 精品电影一区二区在线| av欧美777| 国产av不卡久久| 偷拍熟女少妇极品色| a在线观看视频网站| 少妇的丰满在线观看| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 又粗又爽又猛毛片免费看| 色综合亚洲欧美另类图片| 观看美女的网站| 久久午夜亚洲精品久久| 国产精品永久免费网站| 99国产精品一区二区三区| 成人av一区二区三区在线看| 国产91精品成人一区二区三区| 亚洲精华国产精华精| 久久热在线av| 亚洲美女黄片视频| 久久久久久久精品吃奶| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 久久久久精品国产欧美久久久| 亚洲中文字幕一区二区三区有码在线看 | 免费电影在线观看免费观看| 国产亚洲欧美在线一区二区| 免费在线观看影片大全网站| 天堂动漫精品| 给我免费播放毛片高清在线观看| 亚洲精品456在线播放app | svipshipincom国产片| 操出白浆在线播放| 黄色片一级片一级黄色片| 欧美日韩亚洲国产一区二区在线观看| 九色国产91popny在线| 色综合婷婷激情| 99热这里只有是精品50| 亚洲精品在线美女| 在线观看一区二区三区| 91av网站免费观看| 精品一区二区三区四区五区乱码| 精品国产乱子伦一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产一区在线观看成人免费| 黄色视频,在线免费观看| 日韩有码中文字幕| 男女那种视频在线观看| 一级黄色大片毛片| 五月伊人婷婷丁香| 偷拍熟女少妇极品色| 无人区码免费观看不卡| 高潮久久久久久久久久久不卡| 国产视频一区二区在线看| 国产又色又爽无遮挡免费看| 免费看美女性在线毛片视频| bbb黄色大片| 99久久精品一区二区三区| 久久香蕉精品热| 草草在线视频免费看| 日本a在线网址| xxxwww97欧美| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站 | 99久国产av精品| 欧美日韩国产亚洲二区| 日本与韩国留学比较| 91在线精品国自产拍蜜月 | 老鸭窝网址在线观看| 欧美成狂野欧美在线观看| 一本精品99久久精品77| 欧美日韩综合久久久久久 | av国产免费在线观看| 亚洲九九香蕉| 久99久视频精品免费| 国产精品电影一区二区三区| 国产99白浆流出| 亚洲激情在线av| 亚洲五月天丁香| 欧美极品一区二区三区四区| 亚洲无线观看免费| 男人舔女人的私密视频| 琪琪午夜伦伦电影理论片6080| 国产真实乱freesex| 日韩大尺度精品在线看网址| 动漫黄色视频在线观看| 黄片小视频在线播放| 午夜福利在线观看吧| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲美女久久久| 成人国产综合亚洲| 国产成人精品久久二区二区91| 久久这里只有精品19| 亚洲中文日韩欧美视频| 我的老师免费观看完整版| 亚洲美女视频黄频| 免费观看人在逋| 中文字幕精品亚洲无线码一区| 欧美大码av| 久久久久亚洲av毛片大全| 国产精品国产高清国产av| 国产成人精品久久二区二区91| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 成人无遮挡网站| 搡老熟女国产l中国老女人| 九色国产91popny在线| 亚洲aⅴ乱码一区二区在线播放| 嫩草影院精品99| 琪琪午夜伦伦电影理论片6080| 国产91精品成人一区二区三区| 婷婷六月久久综合丁香| 精华霜和精华液先用哪个| av国产免费在线观看| 国产一区二区在线观看日韩 | 亚洲最大成人中文| 免费观看的影片在线观看| 三级国产精品欧美在线观看 | 嫩草影视91久久| 国产黄色小视频在线观看| 精品99又大又爽又粗少妇毛片 | 久久午夜亚洲精品久久| or卡值多少钱| 熟女少妇亚洲综合色aaa.| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 国产99白浆流出| 久久久久久久午夜电影| 久久伊人香网站| 两个人的视频大全免费| av视频在线观看入口| 亚洲av成人精品一区久久| 99国产极品粉嫩在线观看| 91av网站免费观看| 淫妇啪啪啪对白视频| 1000部很黄的大片| 欧美黑人巨大hd| 99热精品在线国产| 九九久久精品国产亚洲av麻豆 | 精品福利观看| 中文字幕熟女人妻在线| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 久久性视频一级片| 国产精品一区二区三区四区免费观看 | 国产精品国产高清国产av| 久久久水蜜桃国产精品网| 亚洲精品456在线播放app | 午夜精品久久久久久毛片777| 亚洲无线观看免费| 亚洲精品美女久久久久99蜜臀| 成人鲁丝片一二三区免费| 久久精品91蜜桃| 亚洲性夜色夜夜综合| 伦理电影免费视频| 91av网一区二区| 成年人黄色毛片网站| 特级一级黄色大片| 99在线人妻在线中文字幕| 色综合欧美亚洲国产小说| av在线蜜桃| 色播亚洲综合网| 成人欧美大片| 免费av毛片视频| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 亚洲欧美一区二区三区黑人| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 色av中文字幕| 日韩人妻高清精品专区| 久久性视频一级片| 婷婷精品国产亚洲av| 久久久久久久午夜电影| 中文字幕久久专区| 黄片小视频在线播放| 精品无人区乱码1区二区| 亚洲av五月六月丁香网| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 九色成人免费人妻av| 精品久久久久久成人av| 色在线成人网| 99久久国产精品久久久| 国产一区二区三区视频了| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 亚洲片人在线观看| 女人被狂操c到高潮| 三级国产精品欧美在线观看 | 一区二区三区激情视频| 日本a在线网址| 国产精品电影一区二区三区| 亚洲,欧美精品.| 国产单亲对白刺激| 国产精品久久久久久亚洲av鲁大| 欧美日韩一级在线毛片| 三级国产精品欧美在线观看 | 国产乱人视频| 一夜夜www| 国产又黄又爽又无遮挡在线| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情欧美在线| 国内少妇人妻偷人精品xxx网站 | 最好的美女福利视频网| 一进一出抽搐动态| av在线蜜桃| 免费看十八禁软件| 又黄又爽又免费观看的视频| 国产精品女同一区二区软件 | 最近最新中文字幕大全免费视频| 国产成+人综合+亚洲专区| 波多野结衣高清作品| 精品久久久久久成人av| 亚洲国产看品久久| 两人在一起打扑克的视频| 不卡一级毛片| 桃红色精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 啪啪无遮挡十八禁网站| 国产毛片a区久久久久| 国产精品爽爽va在线观看网站| 男女那种视频在线观看| 免费av毛片视频| 精品日产1卡2卡| 精品人妻1区二区| 最近在线观看免费完整版| 黑人巨大精品欧美一区二区mp4| 一个人免费在线观看电影 | 欧美激情在线99| 久久精品国产综合久久久| 久久精品影院6| av黄色大香蕉| 久久99热这里只有精品18| 免费看日本二区| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 在线观看午夜福利视频| 黄色成人免费大全| 母亲3免费完整高清在线观看| 亚洲一区二区三区不卡视频| 舔av片在线| 亚洲国产精品久久男人天堂| 淫妇啪啪啪对白视频| 99热精品在线国产| 亚洲av片天天在线观看| 一二三四在线观看免费中文在| 偷拍熟女少妇极品色| 国产1区2区3区精品| 亚洲精品色激情综合| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 激情在线观看视频在线高清| 国产精品久久久久久人妻精品电影| 国产精品亚洲美女久久久| 噜噜噜噜噜久久久久久91| 午夜精品一区二区三区免费看| 国产精品免费一区二区三区在线| 国产人伦9x9x在线观看| 他把我摸到了高潮在线观看| 精品久久蜜臀av无| 久久久国产欧美日韩av| 中出人妻视频一区二区| 一级a爱片免费观看的视频| 午夜激情福利司机影院| 每晚都被弄得嗷嗷叫到高潮| 好男人在线观看高清免费视频| 亚洲色图av天堂| 亚洲精品中文字幕一二三四区| 国产成人精品久久二区二区免费| 综合色av麻豆| 欧美高清成人免费视频www| 九九热线精品视视频播放| 午夜免费观看网址| 日韩欧美在线二视频| www日本黄色视频网| 亚洲一区高清亚洲精品| 美女免费视频网站| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| 国产日本99.免费观看| 亚洲 国产 在线| 久久九九热精品免费| 亚洲av五月六月丁香网| 国模一区二区三区四区视频 | 香蕉国产在线看| 久久香蕉精品热| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 一二三四在线观看免费中文在| 中亚洲国语对白在线视频| 欧美日韩瑟瑟在线播放| 亚洲欧美一区二区三区黑人| 国产黄片美女视频| 国模一区二区三区四区视频 | 99热6这里只有精品| 欧美又色又爽又黄视频| 午夜激情福利司机影院| 亚洲自拍偷在线| 久久久久性生活片| 午夜免费成人在线视频| 最新在线观看一区二区三区| 国产野战对白在线观看| 99久久国产精品久久久| 无遮挡黄片免费观看| 国产v大片淫在线免费观看| 国产一区二区在线观看日韩 | 法律面前人人平等表现在哪些方面| 亚洲国产看品久久| 99久国产av精品| 搡老岳熟女国产| 99久国产av精品| 在线观看一区二区三区| 欧美国产日韩亚洲一区| 波多野结衣高清作品| 麻豆一二三区av精品| 精品久久久久久久毛片微露脸| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区91| 变态另类成人亚洲欧美熟女| 两性夫妻黄色片| 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| 亚洲美女黄片视频| 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 精品国内亚洲2022精品成人| 亚洲熟妇熟女久久| 91在线观看av| 国产成人精品无人区| 成年版毛片免费区| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 国产淫片久久久久久久久 | 色综合婷婷激情| 国产一区二区三区在线臀色熟女| 一个人看视频在线观看www免费 | 欧美另类亚洲清纯唯美| 国产私拍福利视频在线观看| 国产又黄又爽又无遮挡在线| 岛国视频午夜一区免费看| 免费观看精品视频网站| 午夜福利免费观看在线| 免费看光身美女| 免费看十八禁软件| 1000部很黄的大片| 日本一二三区视频观看| 免费无遮挡裸体视频| 男女视频在线观看网站免费| 少妇熟女aⅴ在线视频| 日韩欧美免费精品| 国产亚洲精品一区二区www| 综合色av麻豆| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 久久热在线av| 精品电影一区二区在线| 后天国语完整版免费观看| 国产视频一区二区在线看| 69av精品久久久久久| 国内精品一区二区在线观看| 亚洲性夜色夜夜综合| 少妇的逼水好多| 变态另类丝袜制服| 国产视频内射| svipshipincom国产片| 人人妻人人澡欧美一区二区| 可以在线观看的亚洲视频| 国产极品精品免费视频能看的| 久久久久国内视频| 无限看片的www在线观看| АⅤ资源中文在线天堂| 一本精品99久久精品77| 亚洲欧美日韩无卡精品| 可以在线观看的亚洲视频| 国产一区二区三区视频了| 嫁个100分男人电影在线观看| 成年版毛片免费区| 两个人视频免费观看高清| 91九色精品人成在线观看| 亚洲中文av在线| 欧美一级a爱片免费观看看| 国产精品一及| 日本在线视频免费播放| 精华霜和精华液先用哪个| 99久国产av精品| 搡老岳熟女国产| 精品午夜福利视频在线观看一区| 色在线成人网| 成人鲁丝片一二三区免费| 亚洲美女黄片视频| 亚洲成a人片在线一区二区| 国产三级中文精品| 午夜精品久久久久久毛片777| 人妻夜夜爽99麻豆av| www.www免费av| 国产亚洲精品久久久久久毛片| 日本 欧美在线| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 无限看片的www在线观看| 亚洲熟妇中文字幕五十中出| svipshipincom国产片| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| 亚洲成人中文字幕在线播放| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 色视频www国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美98| 美女大奶头视频| 精品久久蜜臀av无| 一a级毛片在线观看| 国产成人啪精品午夜网站| 国内揄拍国产精品人妻在线| 欧美日韩亚洲国产一区二区在线观看| 国产主播在线观看一区二区| www.精华液| 久久精品aⅴ一区二区三区四区| 国内久久婷婷六月综合欲色啪| 香蕉av资源在线| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 偷拍熟女少妇极品色| 国产精品久久久久久久电影 | 级片在线观看| 久久久久久久午夜电影| av福利片在线观看| 免费在线观看成人毛片| 国产91精品成人一区二区三区| 欧美激情久久久久久爽电影| 一边摸一边抽搐一进一小说| 亚洲真实伦在线观看| 欧美大码av| 精品国产乱码久久久久久男人| 亚洲精品在线美女| 色视频www国产| 亚洲av免费在线观看| 搞女人的毛片| 麻豆成人午夜福利视频| 一区福利在线观看| 国产成人精品久久二区二区免费| 这个男人来自地球电影免费观看| 日本与韩国留学比较| 制服人妻中文乱码| 99国产综合亚洲精品| 亚洲人成网站在线播放欧美日韩| 欧美3d第一页| 长腿黑丝高跟| 色老头精品视频在线观看| 麻豆成人午夜福利视频| 久久精品aⅴ一区二区三区四区| 中文字幕av在线有码专区| 老鸭窝网址在线观看| 91字幕亚洲| svipshipincom国产片| 国产一区二区三区在线臀色熟女| 国产精品久久久久久久电影 | 国产毛片a区久久久久| 女警被强在线播放| 久久天堂一区二区三区四区| 久久精品亚洲精品国产色婷小说| 最近在线观看免费完整版| 少妇人妻一区二区三区视频| 国产高清三级在线| 性色av乱码一区二区三区2| 久久香蕉精品热| 桃色一区二区三区在线观看| 日韩欧美三级三区| 欧美乱色亚洲激情| 成人性生交大片免费视频hd| 在线永久观看黄色视频| 国产精品99久久久久久久久| 麻豆成人午夜福利视频| 99久久精品热视频| 国产伦在线观看视频一区| 麻豆国产av国片精品| 国产精品av视频在线免费观看| 久久热在线av| 美女黄网站色视频| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 欧美激情在线99| 成人国产综合亚洲| 99riav亚洲国产免费| 日本黄大片高清| 99热6这里只有精品| 午夜福利欧美成人| 国产 一区 欧美 日韩| 久久久国产精品麻豆| 色综合婷婷激情| 欧美在线一区亚洲| 夜夜看夜夜爽夜夜摸| 国产成人aa在线观看| 午夜福利18| 国产精品 欧美亚洲| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 少妇裸体淫交视频免费看高清| 老司机在亚洲福利影院| 免费看十八禁软件| 国内少妇人妻偷人精品xxx网站 | 精品国产亚洲在线| 国产成人aa在线观看| 国产一区在线观看成人免费| 精品久久久久久久久久久久久|