• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact-disrupted gunshot residue:A sub-micron analysis using a novel collection protocol

    2017-07-01 20:50:05Spathis
    Defence Technology 2017年3期

    V.Spathis

    School of Physical Sciences,University of Kent,Canterbury,Kent CT2 7NZ,United Kingdom

    Impact-disrupted gunshot residue:A sub-micron analysis using a novel collection protocol

    V.Spathis

    School of Physical Sciences,University of Kent,Canterbury,Kent CT2 7NZ,United Kingdom

    A R T I C L E I N F O

    Article history:

    Gunshot residue

    Impact-disrupted gunshot residue

    Sub-micron

    Scanning electron microscopy

    Cold field emission SEM

    FEG-SEM

    X-flash

    Energy dispersive X-ray spectrometry

    The analysis of gunshot residue(GSR)has played an integral role within the legal system in relation to shooting cases.With a characteristic elemental composition of lead,antimony,barium,and a typically discriminative spheroidal morphology,the presence and distribution of GSR can aid in firearm investigations.In this experiment,three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range.The samples were analysed using a Field Emission Gun Scanning Electron Microscope(FEG-SEM)in conjunction with an X-flash Energy Dispersive X-ray(EDX)detector,allowing for GSR particle analyses of composition and structure at the sub-micron level.The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary signi ficantly,and at certain distances from the firearm particles with an irregular morphology were discerned,forming“impactdisrupted”GSR particles,henceforth colloquially referred to as“splats”.Upon further analysis,trends with regards to the formation of these splat particles were distinguished.An increase in splat frequency was observed starting at 10 cm from the firearm,with 147 mm-2splat density,reaching a maximal flux at 40 cm(451 mm-2),followed by a gradual decrease to the maximum range sampled.Moreover,the structural morphology of the splats changes throughout the sampling range.At the distances closest to the firearm,molten-looking particles were formed,demonstrating the metallic residues were in a liquid state when their flight path was disrupted.However,at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm,the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact,forming more structured as well as disaggregated splats.The relative compositions of the characteristic elements that are present in GSR also change in the different splat morphologies sampled, which may contribute to the particles'physical structures.Two distinct populations of splats were also observed:circular and elongated,which suggest the residues hit the substrate at different angles.The difference in the splat impact angle can be ascribed to the position of the residues within the firearm discharge plume;particles get caught up in the vortex that is created by the discharge gases behind the projectile as it leaves the barrel,thereby affecting their directionality and flight time.This reasoning could also justify the existence of both spheroidal and splat particles at certain distances.The novel sampling and analytical techniques used in this experiment have provided previously unknown information in relation to GSR structure and formation which could have greater implications to its current analysis amongst laboratories and law enforcement agencies worldwide.

    ?2017 The Author.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    When a cartridge-based weapon is fired,both gaseous and solid residues consisting of organic and inorganic particles from the ammunition are produced and expelled from the barrel[1-3].Once these residues are in flight they cool very rapidly producing GSR, which is identi fied by its characteristic inorganic elemental composition of lead,antimony and barium[4].The analysis of GSR provides important evidence in firearms incidents,making the quality of its analysis crucial.Therefore,it was established that SEM-EDX analysis was the idealtechnique to do so due to its nondestructive ability to analyse samples and being able to providemorphological and elementalcomposition data in a short amount of time[5,6].Although GSR has a characteristic elementalcomposition,the origin of those particles cannot be concluded based on that alone.It has been acknowledged that to establish a particle is in fact GSR,the compositional data must be coupled with a characteristic spheroidal morphology to distinguish it from environmentalaggregates such as residue from fireworks or vehicle brake pads[7-11].In this experiment,the morphology and elemental composition ofrim fire ammunition GSR is examined.Although the concept of coalescence of molten droplets to form GSR is not unknown[12]the novel sampling and analytical techniques used in this experiment demonstrate that particles may not always have suf ficient time to coolinto spheroidalresidues,in particular at low velocities.

    2.Materials and method

    2.1.Experimental setup

    In this experiment,six silicon collection substrates sized approximately 15 mm×20 mm were set up perpendicular to the firearm and 7 cm below the firing line atbench level.The collection substrates were kept upright and in place with the use of plastic spine bars that were fixed onto the bench,allowing the substrates to be at a consistent height and perpendicular to the firearm for maximum residue collection.Prior to the experiment,these silicon substrates were cleaned for 5min in an ultrasonic bath using HPLCgrade acetone and left to dry,placed in their individual containers and were only taken out for the test firing in a closed room using gloves.This ensured that they remained as uncontaminated as possible,and residues found on them during the analyticalprocess were a product of the firing and not prior contaminants.These substrates were arranged in a straight line down the centre of the firing line at distances of 10 cm,20 cm,40 cm,60 cm,80 cm and 100 cm.Three consecutive shots were fired using 0.22′376 m s-1CCIMinimag full metal jacketed(FMJ)rim fire ammunition with a Browning Buckmark long ri fle pistol.

    2.2.Analyticalmethod

    The silicon samples were collected immediately after the test firing and mounted on double sided carbon adhesive tape on aluminium stubs,allowing for SEM analysis.They were then analysed using a HitachiS-4700 cold field emission SEMequipped with a Bruker X-flash 5060f flat quad energy dispersive X-ray detector [13],which allowed for the examination of particle structural morphology(Fig.1)and elementalcomposition(Fig.2)at the submicron level.The morphology of the particles was examined using an accelerating voltage of 1.5 kV,which provided a more elaborate insight into the surface topography of a particle as the electron beam does not penetrate deep into the sample[14].However, during the elemental composition acquisition process,the voltage was changed to 20 kV.This gave a poorer image of the particle(as the electron beam is more penetrating and thus surface features are rendered invisible)but the higher accelerating voltage is required to stimulate X-ray emission from metallic elements comprising the particle.

    3.Results

    Upon FEG-SEM analysis of the samples,it appeared that the frequency at which particles were present on each silicon substrate varied signi ficantly.It was determined that the majority of the residues collected had an irregular morphology rather than their frequently encountered spheroidalshape.This was done by setting up a‘Particle Mapping Job’on the FEG-SEMusing the Bruker Esprit software which allowed for image and X-ray data to be acquired overa customisable area.Approximately halfthe surface area ofthe sample was analysed using this automated method at 20 kV.The results were then reviewed and the particles were then manually examined,as well as the rest of the sample,using a random selection process.Within these particles,there were two populations distinguished,normal incidence and angled splats(Fig.3).Consequentto further analysis,this selection ofparticles could be divided further into severalsubcategories(Fig.4 and Fig.5).

    A class of particles shown in Fig.6 was also encountered throughoutallofthe samples.However,as they primarily consisted of organic material with only small amounts of the inorganic‘characteristic’GSR elements,they were excluded from the classification process.The silicon substrates were analysed and a random selection of particles was chosen from each.These particles were then classi fied using the splatclassi fication diagram and archetypes mentioned in Figs.4 and 5.The results are displayed in Table 1.

    A selection of splats from each class was analysed using EDX (Fig.7).The elementaldata was collated and is displayed in Table 2. The relative proportions ofthe‘characteristic’GSR elements in each class was also plotted to show elemental composition change per classi fication type(Fig.8).

    Table 1 Table showing the number of particles per silicon substrate and their corresponding classi fications.

    Although copper does not come under the ASTM guide for characteristic GSR elements,it was present in the vast majority of particles analysed(in conjunction with Pb,Sb and Ba)and was therefore included to ensure more accurate relative particle compositions.

    4.Discussion

    4.1.Morphological analysis

    The results from the morphologicalexamination of the impact disrupted GSR indicate that there is a clear pattern in class type as a function of distance.As it can be seen from Table 1,at the distances closest to the firearm a high number of class 2 and class 5 particles are observed,with minor contributions to the other classes.However,around the centre of the sampling range,at approximately 40 cm from the firearm,the residues analysed primarily fallwithin classes 1,3 and 4.Here,the firearm discharge plume is at its maximum dispersion for this speci fic firearm and ammunition combination.This was established by having previously carried out a test firing with the same firearm and ammunition combination where a 25 cm×25 cm piece of cotton fabric was setup at 10 cm intervals from the firearm up to a maximum of 100 cm.A single shot was fired through each piece of fabric and the Modi fied Griess and Sodium Rhodizonate tests were carried out to revealthe nitrite and lead residue dispersion pattern on the fabric[15].These data suggestthatalthough these residues appear further away from the firearm,they have nothad suf ficienttime to cool in-flight,resulting in their liquid and molten forms.This is contradicted by the fact that residues closer to the firearm inhabit a more solid structure despite being only 10 cm or 20 cm away. Therefore,this exhibits thatthere are two differentdirectionalities to the firearm discharge plume,each ofwhich may be subject to a different temperature or velocity.As is demonstrated in Fig.9, when the projectile leaves the barrel,it creates an expanding vortex behind it.The vortex keeps expanding until it reaches maximum dispersion,after which it starts to diminish.However, although the particles get trapped in that vortex,the majority of them stilldo not have suf ficient time to cooldespite the increased flighttime.This suggests thatthe residues found atthese distances are either experiencing a higher temperature effect or are travelling at a higher velocity than the particles found closer to the firearm.The travelling of particles in the firearm discharge plume is also responsible for the different splat angles seen in Fig.3 in section 3.Although some particles maintain a fairly straight flight path resulting in normalincidence splats,others gettrapped in the vortex that is created,resulting in a change in their directionality, and therefore impacting the substrate at an angle.Moreover,the sphericalparticles thatwere found atthese distances were smaller than 3μm.This information supports the aforementioned hypothesis as small,spheroidalparticles would have had the chance to cool because of their small volume.To first order,the relative particle cooling time is a function of the volume of a particle,and thus is 8 times faster for a particle with half the diameter.On the other hand,the larger particles would not have had the chance to coolbecause oftheir added size,resulting in their disruption upon impact.In consequence,this means that the residues found closer to the firearm are present as a result of the lower velocity stream of particles that leaves the muzzle,labelled‘A’.This is reinforced by the factthatatthe distances farthestfrom the firearm,there is a gradual increase in more semi-congealed and solidi fied residues, as well as the characteristic spherical GSR.

    4.2.Elemental composition analysis

    Upon examination ofthe elementalcomposition ofthe different particle classes,it can be seen that the more liquid the appearance of the particle,the higher the lead content of said particle appears to be.Conversely,as it can be seen in Fig.8 in section 4.2,the barium content seems to increase as the particles become more solidi fied.Antimony and copper both show a slight decrease as the residues become more structured and solid.However,as multiple particles throughoutthe sampling range were analysed,itappeared thatthese particles are fairly antimony-poor and upon EDX analysis of the cartridge case,projectile and primer,it was determined the ammunition itself contained no antimony.In fact,the presence of antimony in the samples was due to the projectile itself.Some anomalous particles have in fluenced these results,leading to larger than average error.Nevertheless,a change in the compositional ratios in these particles could in fluence their structural morphology,therefore,suggesting that the ratio of the elemental composition may also in fluence a particle's structure,inconjunction with in-flight cooling time.

    Table 2 Table showing the relative proportions of‘characteristic’elements present in GSR±1 standard deviation.

    5.Conclusions

    The study that was carried out has given new insights into the formation of GSR and its analysis.The use of a FEG-SEMwith an X-flash flat quad detector has allowed for in depth particle analysis of a higher spatial resolution at sub-micron magni fications.This,in turn,has led to a deeper understanding of particle morphology, showcasing new impact disrupted GSR structures that were previously unknown.Similarly,the ability to determine the elemental composition of speci fic features within particles measuring less than 1μm in diameter,creates new possibilities into the standard of GSR analyses.This information may have a greatimplication on the automated analysis of GSR in laboratories and law agencies.Particles collected that may have previously been discarded due to theirlack of all three’characteristic’GSR elements may in fact be a segment ofa greater splat structure,leading to the re-evaluation of sample collection protocols and analysis world wide.

    Acknowledgements

    The author would like to thank Dr Mark Price for his vitalsupport and encouragement during this process as well as Mr Mark Johnson for his time and resource contribution to this experiment.

    This research did not receive any speci fic grant from funding agencies in the public,commercial,or not-for-pro fit sectors.

    [1]Schwoeble AJ,Exline DL.Current methods in forensic gunshot residue analysis.Boca Raton,London,New York,Washington D.C:CRC Press;2000.

    [2]Wallace JS.Chemical analysis of firearms,ammunition and gunshot residue. CRC Press;2008.

    [3]Dalby O,Butler D,Birkett JW.Analysis of gunshot residue and associated materials-a review.J Forensic Sci 2010;55:924-43.

    [4]ASTM E1588-10e1.Standard guide for GSR analysis by scanning electron microscopy/energy dispersive X-ray spectrometry.West Conshohocken,PA: American Society for Testing and Materials;2010.

    [5]Bro˙zek-Mucha Z.Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive X-ray spectrometry.Microsc Microanal2011;17(6):972-82.

    [6]Steffen S,Otto M,Niewoehner L,Barth M,Bro˙zek-Mucha Z,Biegstraaten J, Horvath R.Chemometric classi fication of gunshot residue based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection.Spectrochim Acta B 2007;62:1028-36.

    [7]Wolten GM,Nesbitt RS,Calloway AR,Loper GL.Particle analysis for the detection of gunshot residue II:occupational and environmental particles. JForensic Sci 1979;24(2):423-30.

    [8]Mosher PV,McVicar MJ,Randall ED,Sild EH.Gunshot residue-similar particles produced by fireworks.J Can Soc Forensic Sci 1998;31(3):157-68.

    [9]Cardinetti B,Ciampini C,D'Onofrio C,Orlando G,Gravina L,Ferrari F,Di Tullio D,Torresi L.X-ray mapping technique:a preliminary study in discriminating gunshot residue particles from aggregates of environmental occupational origin.Forensic Sci Int 2004;143(1):1-19.

    [10]Garofano L,Capra M,Ferrari F,Bizzaro GP,Di Tullio D,Dell’Olio M,Ghitti A. Gunshot residue.Further studies on particles of environmental and occupational origin.Forensic Sci Int 1999;103(1):1-21.

    [11]llker Kara,Yasin Sarikavakc,Sefer Bora Lisesivdinb,Mehmet Kasapb.Evaluation of morphological and chemical differences of gunshot residues in different ammunitions using SEM/EDS technique.Environ Forensics 2016;17(1):68-79.

    [12]Basu S.Formation of gunshot residues.JForensic SciJFSCA 1982;27(1):72-91.

    [13]Aoudjehane H.C.et al,Tissint Martian Meteorite:a fresh look at the interior, surface and atmosphere of Mars,Science,Vol.338,6108,785-788

    [14]Goldstein J,Newbury D,Joy D,Lyman C,Echlin P,Lifshin E,Sawyer L, Michael J.Scanning electron microscopy and X-ray microanalysis.3rd ed. Springer;2003.

    [15]Firearm Examiner Guide.http://projects.nfstc.org/firearms/module12/fir_ m12_t05_03_j.htm.last accessed December 2016.

    30 January 2017

    E-mail address:v.spathi@kent.ac.uk.

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2017.03.007

    2214-9147/?2017 The Author.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Received in revised form 19 March 2017

    Accepted 29 March 2017

    Available online 4 May 2017

    黄色视频,在线免费观看| av天堂中文字幕网| 校园春色视频在线观看| 男人和女人高潮做爰伦理| 欧美成人一区二区免费高清观看| 久久精品久久久久久噜噜老黄 | 精品久久国产蜜桃| 99久久久亚洲精品蜜臀av| 伊人久久精品亚洲午夜| 韩国av一区二区三区四区| 中文在线观看免费www的网站| 免费看av在线观看网站| 真人一进一出gif抽搐免费| 俄罗斯特黄特色一大片| 国产国拍精品亚洲av在线观看| 婷婷六月久久综合丁香| 午夜免费成人在线视频| 日韩精品青青久久久久久| 成人毛片a级毛片在线播放| 国内精品一区二区在线观看| 国产 一区 欧美 日韩| 免费黄网站久久成人精品| 国产人妻一区二区三区在| 亚州av有码| 亚洲精品成人久久久久久| 午夜福利高清视频| 久久精品国产亚洲av涩爱 | 夜夜夜夜夜久久久久| 99久久精品国产国产毛片| 麻豆国产97在线/欧美| 日本精品一区二区三区蜜桃| 在线观看免费视频日本深夜| 男人舔奶头视频| 日本 av在线| 国产一区二区在线av高清观看| 色综合站精品国产| 欧美成人性av电影在线观看| 97热精品久久久久久| 少妇人妻精品综合一区二区 | 又爽又黄无遮挡网站| 夜夜夜夜夜久久久久| 亚洲精品456在线播放app | 国产成人一区二区在线| 99久久成人亚洲精品观看| 久久九九热精品免费| 免费人成视频x8x8入口观看| 亚洲最大成人av| 国产精品三级大全| 亚洲av.av天堂| 色噜噜av男人的天堂激情| 99国产极品粉嫩在线观看| 欧美精品啪啪一区二区三区| 国产精品亚洲美女久久久| 麻豆一二三区av精品| 午夜福利成人在线免费观看| 国内久久婷婷六月综合欲色啪| 午夜激情欧美在线| 禁无遮挡网站| 一本一本综合久久| 欧美性猛交黑人性爽| 亚洲av日韩精品久久久久久密| 亚洲av.av天堂| 欧美精品国产亚洲| 黄色女人牲交| 一a级毛片在线观看| 日本免费一区二区三区高清不卡| 大型黄色视频在线免费观看| 夜夜看夜夜爽夜夜摸| 亚洲经典国产精华液单| 三级男女做爰猛烈吃奶摸视频| 国内精品久久久久久久电影| 九九热线精品视视频播放| 免费看美女性在线毛片视频| 欧美成人性av电影在线观看| 久久久色成人| 亚洲人成伊人成综合网2020| 国产在视频线在精品| 在线国产一区二区在线| 国产精品野战在线观看| 日韩,欧美,国产一区二区三区 | 免费一级毛片在线播放高清视频| 国产在视频线在精品| 午夜视频国产福利| 欧美一区二区精品小视频在线| 亚洲国产欧美人成| 一级av片app| 欧美绝顶高潮抽搐喷水| 99久久中文字幕三级久久日本| 高清毛片免费观看视频网站| av专区在线播放| 亚洲专区中文字幕在线| 免费看美女性在线毛片视频| 91精品国产九色| 看免费成人av毛片| 亚洲av.av天堂| 美女cb高潮喷水在线观看| av在线老鸭窝| 成人国产一区最新在线观看| 亚洲av一区综合| 色av中文字幕| 成年女人看的毛片在线观看| 乱人视频在线观看| 国产精品永久免费网站| 人妻夜夜爽99麻豆av| 麻豆国产97在线/欧美| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 国产不卡一卡二| 91久久精品国产一区二区成人| 黄色丝袜av网址大全| 欧美三级亚洲精品| 九九热线精品视视频播放| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 久久99热这里只有精品18| 俺也久久电影网| 男女那种视频在线观看| 日本与韩国留学比较| 岛国在线免费视频观看| 日本一本二区三区精品| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 国产黄片美女视频| 国产精品三级大全| 又爽又黄无遮挡网站| 成年版毛片免费区| 久久精品国产清高在天天线| 亚洲最大成人手机在线| 人人妻人人看人人澡| 国产一区二区三区av在线 | 18禁在线播放成人免费| 色尼玛亚洲综合影院| 在线天堂最新版资源| 哪里可以看免费的av片| 国产精品伦人一区二区| 夜夜看夜夜爽夜夜摸| 亚洲精品粉嫩美女一区| 成人亚洲精品av一区二区| 在线观看66精品国产| 长腿黑丝高跟| 蜜桃亚洲精品一区二区三区| 不卡一级毛片| 校园人妻丝袜中文字幕| 国产在视频线在精品| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 级片在线观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 一a级毛片在线观看| 桃红色精品国产亚洲av| 亚洲无线观看免费| 国产91精品成人一区二区三区| 久9热在线精品视频| 色综合婷婷激情| 五月伊人婷婷丁香| 简卡轻食公司| 老熟妇乱子伦视频在线观看| 精品久久久久久久久av| 午夜福利成人在线免费观看| 午夜福利在线观看免费完整高清在 | 免费看光身美女| 久久久久久伊人网av| 在线免费十八禁| 国产亚洲精品av在线| 午夜a级毛片| 国产亚洲av嫩草精品影院| 国产亚洲精品综合一区在线观看| 国产免费av片在线观看野外av| 1024手机看黄色片| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 欧美中文日本在线观看视频| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 啦啦啦啦在线视频资源| 亚洲在线自拍视频| 久久久精品大字幕| 欧美精品啪啪一区二区三区| 国产女主播在线喷水免费视频网站 | 干丝袜人妻中文字幕| 国产探花在线观看一区二区| 亚洲欧美日韩东京热| 久久久午夜欧美精品| 日本精品一区二区三区蜜桃| 成人无遮挡网站| 热99re8久久精品国产| 尤物成人国产欧美一区二区三区| 国产一区二区三区视频了| 国产精品女同一区二区软件 | 国产高清激情床上av| 在线免费十八禁| 欧美+日韩+精品| 国产91精品成人一区二区三区| 午夜激情欧美在线| 日本-黄色视频高清免费观看| 亚洲av日韩精品久久久久久密| 精品99又大又爽又粗少妇毛片 | 欧美丝袜亚洲另类 | 国产淫片久久久久久久久| 搡老熟女国产l中国老女人| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 22中文网久久字幕| 午夜老司机福利剧场| 国产在线男女| 一进一出好大好爽视频| 少妇人妻精品综合一区二区 | 久久精品国产鲁丝片午夜精品 | 特大巨黑吊av在线直播| 日韩一本色道免费dvd| 欧美在线一区亚洲| 国产精品不卡视频一区二区| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 少妇高潮的动态图| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 午夜免费成人在线视频| 99在线视频只有这里精品首页| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 嫁个100分男人电影在线观看| 91在线观看av| 有码 亚洲区| 欧洲精品卡2卡3卡4卡5卡区| 国产真实伦视频高清在线观看 | 黄色一级大片看看| 亚洲午夜理论影院| 97热精品久久久久久| 亚洲人成网站高清观看| 女同久久另类99精品国产91| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 成人欧美大片| 99久久久亚洲精品蜜臀av| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 欧美日本视频| 日韩欧美精品v在线| 黄色视频,在线免费观看| 国产中年淑女户外野战色| 小蜜桃在线观看免费完整版高清| 12—13女人毛片做爰片一| 国产精品日韩av在线免费观看| 韩国av在线不卡| 在线国产一区二区在线| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区| 一进一出抽搐动态| 麻豆一二三区av精品| 亚洲精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添av毛片 | a在线观看视频网站| 啦啦啦观看免费观看视频高清| 国产乱人视频| 免费看美女性在线毛片视频| 亚洲中文日韩欧美视频| 五月玫瑰六月丁香| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 欧美色视频一区免费| 看十八女毛片水多多多| 一区二区三区四区激情视频 | 午夜久久久久精精品| 国产一区二区三区av在线 | 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| 听说在线观看完整版免费高清| 国产色婷婷99| 99热只有精品国产| 欧美另类亚洲清纯唯美| 国产真实伦视频高清在线观看 | 日韩中字成人| 一级av片app| 久久精品人妻少妇| 真人一进一出gif抽搐免费| 欧美最新免费一区二区三区| 一个人观看的视频www高清免费观看| 韩国av一区二区三区四区| 久久精品影院6| 日韩欧美国产在线观看| 久久久成人免费电影| 国产精品久久久久久久久免| 亚洲自拍偷在线| 乱系列少妇在线播放| 麻豆成人av在线观看| 校园人妻丝袜中文字幕| 熟妇人妻久久中文字幕3abv| 99九九线精品视频在线观看视频| 久久久久久久久中文| 88av欧美| 国产大屁股一区二区在线视频| 一a级毛片在线观看| 成年免费大片在线观看| 神马国产精品三级电影在线观看| 久久久久国内视频| 免费观看精品视频网站| 1000部很黄的大片| 日韩欧美 国产精品| 国内揄拍国产精品人妻在线| 欧美性猛交╳xxx乱大交人| 亚洲精品在线观看二区| 亚洲最大成人中文| 久久精品91蜜桃| 亚洲精品成人久久久久久| 男女下面进入的视频免费午夜| 在线免费观看的www视频| а√天堂www在线а√下载| 午夜免费激情av| 国产v大片淫在线免费观看| 国产大屁股一区二区在线视频| 91在线观看av| 国产免费一级a男人的天堂| 成人国产麻豆网| 男女之事视频高清在线观看| 1024手机看黄色片| 中文字幕免费在线视频6| 国产亚洲精品av在线| 悠悠久久av| 日韩欧美三级三区| 色精品久久人妻99蜜桃| 久久99热6这里只有精品| 亚洲欧美日韩高清在线视频| 国产视频一区二区在线看| 日韩中字成人| 男女做爰动态图高潮gif福利片| 欧美一区二区国产精品久久精品| 中亚洲国语对白在线视频| 国产精品久久久久久久久免| 中出人妻视频一区二区| 尾随美女入室| 麻豆成人av在线观看| 搡老妇女老女人老熟妇| 最近在线观看免费完整版| av黄色大香蕉| 成年版毛片免费区| 日本色播在线视频| 久久精品综合一区二区三区| 日本欧美国产在线视频| 日韩欧美国产在线观看| 网址你懂的国产日韩在线| 日韩中字成人| 亚洲av成人精品一区久久| 成人特级黄色片久久久久久久| 一区福利在线观看| 亚洲av一区综合| 免费看av在线观看网站| 欧美+日韩+精品| 久久人人精品亚洲av| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 国产 一区 欧美 日韩| 在线a可以看的网站| 热99在线观看视频| 亚洲黑人精品在线| 欧美极品一区二区三区四区| 国产精品亚洲美女久久久| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| ponron亚洲| 国产男人的电影天堂91| 亚洲va在线va天堂va国产| 亚洲图色成人| 国产精品99久久久久久久久| 国产91精品成人一区二区三区| 久久久久九九精品影院| 欧美国产日韩亚洲一区| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲欧美98| 尾随美女入室| 18禁黄网站禁片免费观看直播| 一个人免费在线观看电影| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 在线观看一区二区三区| 日本a在线网址| 婷婷丁香在线五月| 亚洲色图av天堂| 久久中文看片网| 春色校园在线视频观看| 黄色欧美视频在线观看| 精品一区二区三区视频在线观看免费| 亚洲av.av天堂| 久久午夜福利片| av在线老鸭窝| 在线观看66精品国产| 日韩欧美 国产精品| 村上凉子中文字幕在线| 热99在线观看视频| 女生性感内裤真人,穿戴方法视频| a级毛片a级免费在线| 最近最新免费中文字幕在线| 日本三级黄在线观看| 精品日产1卡2卡| 别揉我奶头 嗯啊视频| 欧美日本视频| 欧美日韩精品成人综合77777| 欧美成人一区二区免费高清观看| 日韩欧美国产在线观看| 成人av一区二区三区在线看| 综合色av麻豆| 欧美成人免费av一区二区三区| 成人国产综合亚洲| 色吧在线观看| 在线观看午夜福利视频| 欧美一级a爱片免费观看看| 亚洲成人中文字幕在线播放| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 免费观看的影片在线观看| 亚洲欧美日韩东京热| 久久久精品大字幕| 国内少妇人妻偷人精品xxx网站| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 亚洲,欧美,日韩| 日本 av在线| 久久午夜福利片| 免费在线观看日本一区| 亚洲 国产 在线| 久9热在线精品视频| 一级黄色大片毛片| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 少妇的逼好多水| 久久99热6这里只有精品| 欧美不卡视频在线免费观看| 国产私拍福利视频在线观看| 免费大片18禁| 亚洲一区高清亚洲精品| 免费看光身美女| 国产精品一及| 麻豆成人午夜福利视频| 色5月婷婷丁香| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 少妇的逼水好多| 少妇丰满av| 日本欧美国产在线视频| 国产精品亚洲美女久久久| 日韩精品有码人妻一区| 免费观看的影片在线观看| netflix在线观看网站| 精品久久久久久,| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 成人国产一区最新在线观看| 女人十人毛片免费观看3o分钟| av在线老鸭窝| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 午夜视频国产福利| 中亚洲国语对白在线视频| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 久久国内精品自在自线图片| 18+在线观看网站| 国产蜜桃级精品一区二区三区| 最近在线观看免费完整版| 国产精品乱码一区二三区的特点| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 一级黄色大片毛片| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 欧美日韩黄片免| 两个人视频免费观看高清| 久久人妻av系列| ponron亚洲| 一区二区三区四区激情视频 | 尤物成人国产欧美一区二区三区| 久久热精品热| 男女视频在线观看网站免费| 精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 亚洲精品久久国产高清桃花| 国产精品电影一区二区三区| 色噜噜av男人的天堂激情| 国产亚洲精品久久久com| 欧美+日韩+精品| 久久久久久久久久黄片| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 国产久久久一区二区三区| 午夜福利高清视频| 成人无遮挡网站| 国产av麻豆久久久久久久| 男女下面进入的视频免费午夜| 在线免费十八禁| 老司机深夜福利视频在线观看| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 国产亚洲精品综合一区在线观看| 精品人妻1区二区| 色播亚洲综合网| 亚洲avbb在线观看| 我的老师免费观看完整版| 夜夜爽天天搞| 日韩欧美在线乱码| 亚洲自偷自拍三级| 亚洲av电影不卡..在线观看| 91午夜精品亚洲一区二区三区 | 国产亚洲精品av在线| 国产成年人精品一区二区| 亚洲av不卡在线观看| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 老司机深夜福利视频在线观看| 亚洲内射少妇av| 久久久久久久久久久丰满 | 国产黄a三级三级三级人| 亚洲久久久久久中文字幕| av天堂在线播放| 久久国内精品自在自线图片| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| 99久久成人亚洲精品观看| 国产 一区精品| 国产人妻一区二区三区在| 亚洲精品一卡2卡三卡4卡5卡| 舔av片在线| 人人妻人人看人人澡| 国产成年人精品一区二区| 内地一区二区视频在线| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 小说图片视频综合网站| 狠狠狠狠99中文字幕| 看黄色毛片网站| 亚洲精品色激情综合| 国内久久婷婷六月综合欲色啪| 精品久久久久久,| 三级毛片av免费| 麻豆成人av在线观看| 岛国在线免费视频观看| 亚洲无线观看免费| 少妇的逼好多水| 久久国产精品人妻蜜桃| 国内揄拍国产精品人妻在线| 成人二区视频| 国产av在哪里看| 国产成人av教育| 999久久久精品免费观看国产| 久久久久国内视频| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 成人国产麻豆网| 亚洲av不卡在线观看| 色在线成人网| 国产日本99.免费观看| 久久热精品热| 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 欧美日韩乱码在线| 色5月婷婷丁香| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 亚洲18禁久久av| 成人综合一区亚洲| 91麻豆精品激情在线观看国产| 亚洲美女搞黄在线观看 | 12—13女人毛片做爰片一| 久久久久九九精品影院| 一级黄色大片毛片| 嫩草影院入口| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 不卡视频在线观看欧美| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 少妇的逼好多水| 免费人成在线观看视频色| 天堂√8在线中文| 欧美一级a爱片免费观看看| 亚洲av免费在线观看| 乱码一卡2卡4卡精品| 99热网站在线观看| 99久久成人亚洲精品观看| 国产精品一及| 又黄又爽又刺激的免费视频.| 久久久久久伊人网av| 精品人妻一区二区三区麻豆 | 日韩精品中文字幕看吧| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕| 日韩国内少妇激情av| а√天堂www在线а√下载| 亚洲va日本ⅴa欧美va伊人久久| 日本a在线网址| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 欧美绝顶高潮抽搐喷水| 丝袜美腿在线中文| 变态另类成人亚洲欧美熟女| 午夜免费激情av| 12—13女人毛片做爰片一| 久99久视频精品免费| 欧美又色又爽又黄视频| 欧美中文日本在线观看视频| 亚洲精品成人久久久久久|