• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal Behaviors of the Main Components in Nano-based Fuel Air Explosive

    2017-06-28 14:20:29ZHOUJingANJingDINGLiZHAOShengxiangFANGWei
    火炸藥學(xué)報 2017年3期
    關(guān)鍵詞:鋁粉高密度炸藥

    ZHOU Jing, AN Jing, DING Li, ZHAO Sheng-xiang, FANG Wei

    (Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    Thermal Behaviors of the Main Components in Nano-based Fuel Air Explosive

    ZHOU Jing, AN Jing, DING Li, ZHAO Sheng-xiang, FANG Wei

    (Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)

    The thermal behaviors in non-oxidizing environment and closed environment of isopropyl nitrate(IPN), high-density liquid fuels (HLF) and nanometer aluminum powder (nano-Al), as the main components in nano-based Fuel Air Explosive (FAE), were investigated by using DSC and DSC/TG-FTIR-MS coupled technique. The influence of nano-Al powder on the thermal behaviors of the main components in FAE was compared. The results show that the decomposition process of the main components in FAE is mainly divided into two stages: endothermic gasification and exothermic decomposition. IPN and HLF are the main energy source of FAE. The decomposition products of IPN can react with HLF and produce heat.

    fuel air explosive; nano-Al powder; thermal decomposition; FAE;IPN;HLF

    Introduction

    Fuel air explosive (FAE) is widely researched and applied since its discovery in the 1950s[1]. Significant changes have taken place in conventional weapons with the use of FAE. The salient feature of FAE is that the oxygen needed for detonation come from air around. Thus, the charging efficiency can be greatly improved[2-3]. Intensive attention was paid to FAE due to its high energy, distribution explosion and so on. In recent years, storage stability and explosive power are urgent need to resolve two key issues for FAE.

    Major component of FAE is high energy fuel. At the same time, aluminum is added to improve explosive power due to its high energy and adequate sources[4]. Comprehensive studies of the combustion model[5-6], detonation velocity[7], dispersion[8],detonation mode[9-10],thermal radiation[11]and safety performance[12]of FAE have been carried out. However, there are few reports about the decomposition process of FAE and the influence of aluminum on the decomposition of other components in FAE.

    The current work was aimed at the FAE composed of high-density liquid fuels (HLF), isopropyl nitrate (IPN) and nanometer aluminum powder (nano-Al). Based on the DSC/TG-FTIR-MS method, a thermal decomposition process was proposed for FAE. Furthermore, the effects of nano-Al on the thermal decomposition of other components in FAE were presented.

    1 Experimental

    1.1 Samples

    Nano-aluminum,with particle size of 5nm, was supplied by Beijing DK Nano technology Co., LTD. 1,3-Dimethyladamantane was chosen as high-density liquid fuels (HLF) and purchased from Alfa Aesar. Isopropyl nitrate (IPN) (purity>99.0%) used in this work was obtained from Jinjinle Chemical Co., LTD. Mixture A (HLF/IPN=50∶50) and mixture B (HLF/IPN/Nano-Al=30∶30∶40) were both prepared by mechanical mixing of the chemicals using laboratory mortar.

    1.2 Apparatus and measurements

    A TG/DSC-MS-FTIR coupling system composed of a NETZSCH (Selb, Germany) STA449C, NETZSCH-QMS403C, and Nicolet (Madison, WI, USA) 6700 FTIR were used for thermal analysis. The sample was encapsulated in an Au crucible with a pin hole on the lid (i.e., the measurements were realized at atmospheric pressure in non-oxidizing environment). Measurements were performed from 40℃ to 500℃ under similar conditions for both mixture A and mixture B. High-purity argon was used with a gas flow rate of 25mL/min.

    The DSC measurements in closed environment were preformed using a differential scanning calorimeter (DSC Q200) from TA in sealed Au pans with nitrogen flow rate of 50mL/min. The temperature was programmed at 10℃/min from 50℃ to 500℃.

    PDSC analyses under pressure of 4MPa and 2MPa were performed on DSC 204(NETZSCH, Germany) at a heating rate of 10℃/ min in nitrogen atmosphere from room temperature to 500℃.

    2 Results and Discussion

    2.1 Thermal analysis of the main components in FAE

    Thermal analysis experiments of mixture B under different conditions were carried out to study the thermal behaviors of the main components in FAE. Fig.1 shows the DSC-TG/DTG measurements at a heating rate of 10℃/min. It can be seen in Fig.1, DSC curve for mixture B is consisted of five endothermic peaks, and a multi-stage process was also observed on the TG/DTG curves (Fig.1). It shows that mixture B exhibits at least five stages on TG/DTG curves, which starts at about 40.3℃ and completes at 355.8℃.

    Further analysis of the DSC-TG/DTG curves indicates that there exists only endothermic peak on DSC curve, no exothermic peak under such test condition. Perhaps the main reason, however, centers on gasification of some components in FAE.

    To find out, DSC curve in closed environment was recorded and showed in Fig.2. As expected, an obvious exothermic peak is observed due to the decomposition of energetic components in FAE. Simultaneously, PDSC were also conducted as shown in Fig.3. It was shown that the endothermic peaks at the temperature below 150℃ disappeared with increasing the pressure. In view of the peak appears at a low temperature, it should be gasification processes.

    In conclusion, thermal behaviors of the main components in FAE at a temperature under 500℃ are mainly divided into two stages, which are endothermic gasification and exothermic decomposition.

    2.2 Gasification process of main components in FAE

    Considering IPN and HLF are subject to gasification under heating, mixture A was employed to disclose the gasification process mentioned above. Fig.4 is DSC-TG/DTG curves of mixture A in non-oxidizing environment. It can be seen from Fig.4 that two sharp endothermic peaks are well formed with peak maximum temperatures of 110.9℃ and 142.9℃ respectively. However, the two endothermic peaks are all disappeared when the DSC experiment was carried out in closed environment (Fig.5). The boiling point of IPN is 101-102℃ around the temperature of 110.9℃. Thus, the endothermic peaks at the temperatures of 110.9℃ should be the gasification of IPN.

    Simultaneously, the gases evolved from DSC/TG-DTG furnace were further analyzed by FTIR. The characteristic spectra at the temperature of 110.9℃ was obtained with the TG pattern and showed in Fig.6. IR absorption bands at the temperatures of 110.9℃ locate at 855.81, 1283.58, 1649.27, 2878.29 and 2956.60cm-1assigned to the stretching vibration of NO, asymmetric stretching vibrations of ONO2, dissymmetric stretching vibrations of ONO2, asymmetric stretching vibrations of CH3, and dissymmetric stretching vibrations of CH3, respectively. According to literature report[13], the spectrum at the temperature of 110.9℃ is quite similar to the spectrum of IPN.

    The gasification processes were also confirmed by PDSC curves of IPN, HLF and mixture A in Fig.7. It was also shown that the gasification process of IPN and HLF can be inhibited only when there was enough pressure. In fact, the easy or complexity of gasification refer to the main technical indexes of FAE.

    Taking into account above results, the two endothermic peaks are due to the gasification of IPN and HLF, where the first one (with the peak temperature approximated 100 ℃) belongs to the gasification of IPN and the second one (with the peak temperature approximated 150℃) belongs to the gasification of HLF.

    2.3 Decomposition process of main components in FAE

    The experiments data of different conditions under high-temperature side were analyzed to study the decomposition process of main components in FAE. Fig.4 illustrates again that no exothermic peak was observed on the DSC curves due to most of the sample were vaporized and escaped from DSC/TG-DTG furnace under heating. However, the PDSC curves and DSC curves in closed environment refer primarily to decomposition and give off heat.

    The reason is the gasification process of IPN and HLF were inhibited obviously under high pressures or a small, confined space, most of the samples are still in liquid state.

    DSC curves of IPN, HLF and IPN/HLF in closed environment were recorded and showed in the illustration of Fig.8. The endothermic peak of HLF in the high temperature turned to be an exothermic peak with the addition of IPN. This fact demonstrates that the decomposition products of IPN are able to react with HLF and gave off heat. Especially, HLF is prone to be oxidized by nitrogen oxides, which

    have powerful oxidization capacity.

    2.4.The effect of nano-Al on decomposition of FAE

    The DSC curves of mixture A and mixture B at a heating rate of 10℃ min are shown in Fig.9. The TG/DTG curves for both mixtures A and mixture B are shown in Fig.10, and the characteristic parameters of TG and DTG curves of both two mixtures are summarized in Table 1.

    It shows that mixture A exhibits at least five stages on TG and DTG curves, which starts at about 40.3℃ and completes at 355.8℃.

    Table 1 The peak temperature (Tp) and mass loss (Dw, ω%) for mixtures A and B

    Note:Tp, temperature corresponding to the maximum rate of mass loss;Dw, corresponding mass loss

    It can be seen from Fig.9 that after the addition of nano-Al, the gasification temperature of IPN increases from 110.9℃ to 124.6℃ and the gasification temperature of HLF increases from 142.9℃ to 169.2℃, respectively. This phenomenon shows nano-Al will raise the initial volatile temperature and decrease the mass loss rates obviously at low temperature. The effect of nano-Al to the gasification processes of the main components in FAE is probably attributed to the surface adsorption. Nano-Al with a large surface area can adsorb gaseous reactive molecules on their surface. The first thing for IPN and HLF are to release from nano-Al before gasification. This process of desorption is endothermic. Therefore, gasification temperature of IPN and HLF all shifted to the high-temperature side with a more moderate endothermic progress.To learn the influence of nano-Al on the decomposition process, DSC curves of mixture A and mixture B in closed environment were employed (Fig.11).

    By comparison, we can find that the temperature of major exothermal peak remains unchanged. However, DSC curve of mixture B has more exothermal peaks than that mixture A, indicating the complex interactions between nano-Al and other components in FAE.

    3 Conclusions

    (1) Thermal behaviors of the main components in FAE at a temperature under 500℃ are mainly divided into endothermic gasification and exothermic decomposition.

    (2) IPN and HLF as the energy source are both released at the initial stage.

    (3) Nano-Al can raise the initial volatile temperature and decrease the mass loss rates obviously at low temperature.

    (4) The decomposition products of IPN can react with HLF and gave off heat. The influence of nano-Al on the decomposition process is complex.

    [1] Jiang L, Bai C H, Liu Q M. Experimental study on DDT process in 3-phase suspensions of gas/solid particle/liquid mist mixture[J]. Explosion and Shock Waves, 2010, 30(6): 588-592.

    [2] Zheng C M, Rui Y, Liu Z W, et al. Experimental study on oxygen consumption effect of thermo-baric explosives[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2014, 37(5): 33-36.

    [3] Yang L Z, Zhang C Y, Zhang Z C, et al. Selection of fuels of high power FAE[J]. Journal of Nan Jing University of Science and Technology, 1998, 22:15-18.

    [4] Si L H. Nano-metal fuel[J]. Chinese Journal of Chemical Education, 2007, 28(1): 11-12.

    [5] Gubin S A, Sichel M. Calculation of the detonation velocity of a mixture of liquid fuel droplets and a gaseous oxidizer[J]. Combustion Science and Technology, 2007, 17(3-4): 109-117.

    [6] Liu G, Hou F, Cao B, et al. Experimental study of fuel-air explosive[J]. Combustion Explosion & Shock Waves, 2008, 44(2):213-217.

    [7] Zhi X Q. Computation on detonation velocity of single event FAE[J]. Chinese Journal of Explosives & Propellants (Huozhayao Xuebao), 2005, 28(3):76-78.

    [8] XU X Z,Pei M J,Wang Y H,et al.Dispersion characteristics of single-event FAE[J].Chinese Journal of Explosives and Propellants(Huozhayao Xuebao),2000,23(1):47-49.

    [9] Moen I O, Murray S B, Bjerketvedt D, et al. Diffraction of detonation from tubes into a large fuel-air explosive cloud[J]. Symposium (International) on Combustion, 1982, 19(1): 635-644.

    [10] Huang L,He Z Q,Li C G,et al.Application of heat flux microsensor in radiation measurement of blasting field[J].Chinese Journal of Explosives and Propellants(Huozhayao Xuebao),2011,34(5):38-42.

    [11] Lee J H. Chemical initiation of detonation in fuel-air explosive clouds: US, 5168123[P]. 1992.

    [12] Wei G H, Sun Y W, Hui M A. Research on electrostatic safety of fuel air explosive projectile[J]. Journal of Beijing Institute of Technology, 2005, 25: 89-91.

    [13] Kan J L, Zeng X L, Chen W H, et al. Study on FTIR and thermal decomposition kinetics of NPN and IPN[J]. Explosive Materials, 2007, 36(4): 1-2.

    納米基燃料空氣炸藥主要組分的熱行為

    周 靜,安 靜,丁 黎, 趙省向, 方 偉

    (西安近代化學(xué)研究所,陜西 西安 710065)

    采用DSC及DSC/TG-FTIR-MS聯(lián)用技術(shù)研究了納米基燃料空氣炸藥(FAE)中主要組分硝酸異丙酯(IPN)、高密度烴(HLF)、納米鋁粉在無氧條件和密封環(huán)境下的熱行為。比較了納米鋁粉對FAE中主要組分熱行為的影響。結(jié)果表明,F(xiàn)AE主要組分的熱分解過程主要分為吸熱氣化和放熱分解兩階段;IPN和HLF是FAE的主要能量來源;IPN的分解產(chǎn)物可以與HLF反應(yīng)并放出熱量。

    燃料空氣炸藥;納米鋁粉;熱分解;FAE;IPN;HLF

    10.14077/j.issn.1007-7812.2017.03.005

    date:2016-10-21; Revised date:2017-01-09

    DING Li(1970-), female, research field: Thermal analysis for energetic materials. E-mail: dingli403@sina.com

    TJ55;TQ560 Document Code:A Article ID:1007-7812(2017)03-0031-05

    Foundation:National Natural Science Foundation of China (No.21473131; No. 21473130)

    Biography:ZHOU Jing (1987-), female,research field: Thermal analysis for energetic materials. E-mail: zhoujing19872006@163.com

    猜你喜歡
    鋁粉高密度炸藥
    納米鋁粉的反應(yīng)性研究進展及趨勢
    “炸藥”驚魂
    議論火炸藥數(shù)字化制造
    高密度電法在斷裂構(gòu)造探測中的應(yīng)用
    高密度電法在尋找地下水中的應(yīng)用
    納米鋁粉對RDX基炸藥爆速的影響
    火工品(2019年1期)2019-04-29 03:03:44
    基于20 L球形爆炸裝置的微米級鋁粉爆炸特性實驗
    城市高密度環(huán)境下的建筑學(xué)探討
    防止球形鋁粉導(dǎo)致的安全事故
    山西化工(2015年1期)2015-08-15 00:50:11
    Al粉對炸藥爆炸加速能力的影響
    久9热在线精品视频| 久久久国产成人免费| 日本av免费视频播放| 久久久久国产一级毛片高清牌| 中文字幕最新亚洲高清| 99热网站在线观看| 欧美精品av麻豆av| 成人影院久久| 手机成人av网站| 91字幕亚洲| 久久av网站| 交换朋友夫妻互换小说| 热99re8久久精品国产| 精品少妇久久久久久888优播| 欧美精品啪啪一区二区三区 | 老司机影院成人| 老司机午夜福利在线观看视频 | 国产av国产精品国产| 成人黄色视频免费在线看| 国产99久久九九免费精品| 亚洲 欧美一区二区三区| 黄色a级毛片大全视频| 99国产精品一区二区三区| 天堂俺去俺来也www色官网| 国产高清视频在线播放一区 | 满18在线观看网站| 人成视频在线观看免费观看| cao死你这个sao货| 1024视频免费在线观看| e午夜精品久久久久久久| 日韩制服丝袜自拍偷拍| 老熟妇仑乱视频hdxx| 亚洲欧美色中文字幕在线| 天天影视国产精品| 日韩视频一区二区在线观看| 精品少妇黑人巨大在线播放| 在线天堂中文资源库| 日韩三级视频一区二区三区| 国产精品.久久久| 免费观看人在逋| 国产成人精品久久二区二区91| 亚洲精品自拍成人| 免费人妻精品一区二区三区视频| 欧美在线一区亚洲| 精品福利永久在线观看| 国产精品久久久久久人妻精品电影 | 久久久久视频综合| 一本色道久久久久久精品综合| 久久久久国产一级毛片高清牌| 99热网站在线观看| 成人黄色视频免费在线看| 日韩一卡2卡3卡4卡2021年| 满18在线观看网站| 一区在线观看完整版| 精品亚洲成国产av| 麻豆乱淫一区二区| 亚洲专区中文字幕在线| av在线app专区| 亚洲欧美色中文字幕在线| 91精品三级在线观看| 男女床上黄色一级片免费看| 少妇被粗大的猛进出69影院| 在线天堂中文资源库| a级片在线免费高清观看视频| 男人添女人高潮全过程视频| 人妻一区二区av| 男女床上黄色一级片免费看| 女性生殖器流出的白浆| 91成年电影在线观看| 性色av乱码一区二区三区2| 欧美精品人与动牲交sv欧美| 日韩大码丰满熟妇| 欧美日韩福利视频一区二区| 成年女人毛片免费观看观看9 | 一边摸一边抽搐一进一出视频| 国产精品免费视频内射| av在线老鸭窝| 蜜桃在线观看..| 久久久久久人人人人人| 亚洲精品国产区一区二| 一个人免费看片子| 国产成人精品在线电影| 男女边摸边吃奶| 在线看a的网站| 亚洲精品日韩在线中文字幕| e午夜精品久久久久久久| 亚洲情色 制服丝袜| 在线 av 中文字幕| 另类精品久久| 一区福利在线观看| 午夜福利一区二区在线看| av有码第一页| 国产免费福利视频在线观看| 欧美精品人与动牲交sv欧美| 国产成人精品在线电影| a级毛片在线看网站| 麻豆国产av国片精品| 性少妇av在线| 首页视频小说图片口味搜索| 久久久久久久久免费视频了| 亚洲自偷自拍图片 自拍| 丝瓜视频免费看黄片| 日韩视频在线欧美| 日韩,欧美,国产一区二区三区| 亚洲一码二码三码区别大吗| 欧美xxⅹ黑人| 最新在线观看一区二区三区| 2018国产大陆天天弄谢| 国产男女内射视频| 久久影院123| 欧美性长视频在线观看| 国产日韩欧美视频二区| 午夜视频精品福利| 美女中出高潮动态图| 国产精品九九99| 又大又爽又粗| 爱豆传媒免费全集在线观看| 久久青草综合色| www日本在线高清视频| 秋霞在线观看毛片| 久久久精品区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产日韩欧美亚洲二区| 成人免费观看视频高清| 波多野结衣一区麻豆| 精品国产乱码久久久久久小说| 国产极品粉嫩免费观看在线| 电影成人av| 视频区欧美日本亚洲| 久久久国产欧美日韩av| 欧美成人午夜精品| 欧美精品亚洲一区二区| 亚洲av片天天在线观看| 日本av手机在线免费观看| 啦啦啦中文免费视频观看日本| 国产成人啪精品午夜网站| 免费观看a级毛片全部| 亚洲av欧美aⅴ国产| 免费观看人在逋| 人人妻人人澡人人爽人人夜夜| 男人添女人高潮全过程视频| 每晚都被弄得嗷嗷叫到高潮| 美女国产高潮福利片在线看| 超碰成人久久| 国产野战对白在线观看| 宅男免费午夜| 国产精品成人在线| 亚洲精品乱久久久久久| 欧美一级毛片孕妇| 看免费av毛片| 人妻人人澡人人爽人人| 亚洲精品国产区一区二| 日韩电影二区| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 精品少妇久久久久久888优播| 色老头精品视频在线观看| 国产精品影院久久| 日韩,欧美,国产一区二区三区| 嫁个100分男人电影在线观看| 亚洲精品国产色婷婷电影| 夜夜骑夜夜射夜夜干| 每晚都被弄得嗷嗷叫到高潮| 日本欧美视频一区| 亚洲精品美女久久av网站| 午夜福利在线观看吧| 欧美黄色淫秽网站| 国精品久久久久久国模美| 久久人人爽人人片av| 亚洲 国产 在线| 欧美日韩中文字幕国产精品一区二区三区 | 国产黄色免费在线视频| 人人妻人人澡人人看| 啦啦啦在线免费观看视频4| 久久久久国产精品人妻一区二区| 搡老岳熟女国产| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 一本色道久久久久久精品综合| 99国产精品99久久久久| 亚洲成人免费电影在线观看| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 91大片在线观看| 亚洲精品第二区| 国产欧美日韩一区二区三 | 在线av久久热| 亚洲精品久久午夜乱码| 日韩中文字幕欧美一区二区| 一区二区日韩欧美中文字幕| 久久久久国内视频| 中文精品一卡2卡3卡4更新| 午夜成年电影在线免费观看| 欧美少妇被猛烈插入视频| 久久综合国产亚洲精品| 真人做人爱边吃奶动态| 大片免费播放器 马上看| 又黄又粗又硬又大视频| 老司机影院成人| 久久国产精品影院| 啦啦啦啦在线视频资源| 啦啦啦啦在线视频资源| 午夜精品国产一区二区电影| videos熟女内射| 天天影视国产精品| 涩涩av久久男人的天堂| 亚洲精品一区蜜桃| 80岁老熟妇乱子伦牲交| 国产不卡av网站在线观看| 女人高潮潮喷娇喘18禁视频| 日本欧美视频一区| 日韩视频在线欧美| 国产精品麻豆人妻色哟哟久久| 日本精品一区二区三区蜜桃| 成人黄色视频免费在线看| 久久热在线av| 男人爽女人下面视频在线观看| 久久这里只有精品19| 国产片内射在线| 久久国产精品影院| 久久毛片免费看一区二区三区| 久久久久国内视频| 两个人看的免费小视频| 国产精品国产三级国产专区5o| 91麻豆精品激情在线观看国产 | 黄色片一级片一级黄色片| 国产成人精品久久二区二区免费| 午夜精品国产一区二区电影| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 国产免费视频播放在线视频| 韩国精品一区二区三区| 一个人免费在线观看的高清视频 | 日日爽夜夜爽网站| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 女警被强在线播放| 国产成人a∨麻豆精品| 乱人伦中国视频| 男女免费视频国产| 18禁裸乳无遮挡动漫免费视频| 女人爽到高潮嗷嗷叫在线视频| 欧美精品高潮呻吟av久久| 国产福利在线免费观看视频| 久久久久精品国产欧美久久久 | 在线天堂中文资源库| 国产国语露脸激情在线看| 亚洲欧美一区二区三区久久| 国产日韩欧美在线精品| 久久精品国产亚洲av高清一级| 婷婷丁香在线五月| 亚洲精品第二区| 啦啦啦 在线观看视频| 成人手机av| 啦啦啦中文免费视频观看日本| 午夜免费成人在线视频| 久久精品国产亚洲av高清一级| 免费久久久久久久精品成人欧美视频| 老司机在亚洲福利影院| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 国产亚洲av片在线观看秒播厂| 亚洲一码二码三码区别大吗| 黑人猛操日本美女一级片| 激情视频va一区二区三区| 成年人免费黄色播放视频| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 午夜影院在线不卡| 亚洲av欧美aⅴ国产| 精品第一国产精品| 久久精品国产a三级三级三级| 黄色视频不卡| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 性色av一级| 1024香蕉在线观看| 香蕉国产在线看| 国产1区2区3区精品| 国产深夜福利视频在线观看| 免费高清在线观看日韩| 精品欧美一区二区三区在线| 97人妻天天添夜夜摸| 80岁老熟妇乱子伦牲交| 91成年电影在线观看| 中国美女看黄片| e午夜精品久久久久久久| 黄色a级毛片大全视频| 免费日韩欧美在线观看| 国产成人欧美| 考比视频在线观看| 国产精品.久久久| 日韩大码丰满熟妇| 亚洲国产欧美在线一区| 欧美精品亚洲一区二区| 亚洲,欧美精品.| 18在线观看网站| 亚洲欧美日韩高清在线视频 | 国产高清视频在线播放一区 | 国产成人a∨麻豆精品| 国产亚洲av片在线观看秒播厂| cao死你这个sao货| 久久国产精品人妻蜜桃| 18禁观看日本| 香蕉丝袜av| 国产麻豆69| 黄色毛片三级朝国网站| 少妇精品久久久久久久| 午夜福利在线观看吧| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 我的亚洲天堂| 极品少妇高潮喷水抽搐| cao死你这个sao货| 脱女人内裤的视频| 丝袜喷水一区| 亚洲av国产av综合av卡| 中文字幕高清在线视频| 欧美黑人精品巨大| 亚洲人成电影免费在线| 欧美性长视频在线观看| 人妻一区二区av| 国产97色在线日韩免费| 天堂俺去俺来也www色官网| 欧美激情高清一区二区三区| 黑人操中国人逼视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产男人的电影天堂91| videos熟女内射| 久久这里只有精品19| 午夜精品国产一区二区电影| 别揉我奶头~嗯~啊~动态视频 | 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 亚洲中文字幕日韩| 国产黄色免费在线视频| 亚洲精品成人av观看孕妇| 老鸭窝网址在线观看| 国产精品久久久久久精品电影小说| 日本a在线网址| 高清欧美精品videossex| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| av有码第一页| 男男h啪啪无遮挡| 成人免费观看视频高清| 国产1区2区3区精品| www.av在线官网国产| 国产精品 欧美亚洲| 欧美97在线视频| 自拍欧美九色日韩亚洲蝌蚪91| av天堂在线播放| 亚洲国产av新网站| 97在线人人人人妻| 久久久久久亚洲精品国产蜜桃av| 十八禁高潮呻吟视频| 色婷婷av一区二区三区视频| 久久精品国产a三级三级三级| 久久久精品国产亚洲av高清涩受| 99国产极品粉嫩在线观看| 一区二区av电影网| www.自偷自拍.com| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 国产一区二区在线观看av| 亚洲伊人色综图| 日本vs欧美在线观看视频| 亚洲三区欧美一区| 满18在线观看网站| 高潮久久久久久久久久久不卡| 老熟女久久久| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 日韩欧美一区视频在线观看| 夜夜夜夜夜久久久久| 婷婷成人精品国产| 伊人亚洲综合成人网| 午夜福利视频精品| 黄片小视频在线播放| 高清av免费在线| 99久久人妻综合| 国产欧美日韩一区二区精品| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 欧美大码av| 欧美在线黄色| 一区二区av电影网| 亚洲中文字幕日韩| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 搡老岳熟女国产| 免费观看a级毛片全部| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 国产成人av教育| 777久久人妻少妇嫩草av网站| 人人妻人人澡人人爽人人夜夜| 亚洲精品av麻豆狂野| 日韩熟女老妇一区二区性免费视频| 99久久综合免费| 叶爱在线成人免费视频播放| 五月天丁香电影| a级毛片在线看网站| 午夜两性在线视频| tocl精华| av线在线观看网站| 大码成人一级视频| 日韩欧美一区二区三区在线观看 | 国产色视频综合| 国产高清视频在线播放一区 | 久久久精品免费免费高清| 中文字幕最新亚洲高清| 捣出白浆h1v1| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕一二三四区 | 另类亚洲欧美激情| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 午夜91福利影院| 日韩欧美免费精品| a级毛片黄视频| 视频在线观看一区二区三区| 欧美亚洲日本最大视频资源| 国产麻豆69| 国产精品久久久av美女十八| 男女高潮啪啪啪动态图| 十八禁网站免费在线| 国产成人a∨麻豆精品| 国产精品av久久久久免费| 岛国在线观看网站| 免费看十八禁软件| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 国产精品香港三级国产av潘金莲| 久久热在线av| 色94色欧美一区二区| 老司机深夜福利视频在线观看 | 午夜精品国产一区二区电影| 首页视频小说图片口味搜索| 80岁老熟妇乱子伦牲交| 久久99热这里只频精品6学生| 国产成人精品在线电影| 男人爽女人下面视频在线观看| 亚洲精品久久久久久婷婷小说| 悠悠久久av| 亚洲伊人久久精品综合| 一区福利在线观看| 黄色怎么调成土黄色| 亚洲人成77777在线视频| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 亚洲专区中文字幕在线| 777米奇影视久久| 蜜桃在线观看..| 国精品久久久久久国模美| 丝袜美腿诱惑在线| 九色亚洲精品在线播放| 精品熟女少妇八av免费久了| 欧美精品高潮呻吟av久久| 伦理电影免费视频| 亚洲中文av在线| 免费在线观看视频国产中文字幕亚洲 | 日韩三级视频一区二区三区| 制服人妻中文乱码| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区四区激情视频| 国产亚洲精品久久久久5区| 国产精品免费视频内射| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 精品一区在线观看国产| 亚洲中文av在线| 老司机亚洲免费影院| 亚洲av国产av综合av卡| 欧美+亚洲+日韩+国产| 777米奇影视久久| 欧美激情 高清一区二区三区| 国产成人a∨麻豆精品| 男女下面插进去视频免费观看| 国产精品一二三区在线看| 久久久精品国产亚洲av高清涩受| 在线观看免费视频网站a站| 高潮久久久久久久久久久不卡| 亚洲性夜色夜夜综合| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 搡老岳熟女国产| 久久热在线av| 久久人妻福利社区极品人妻图片| 国产日韩欧美视频二区| 性少妇av在线| 考比视频在线观看| 男男h啪啪无遮挡| 国产精品久久久久久人妻精品电影 | 乱人伦中国视频| 欧美中文综合在线视频| 国产精品九九99| 在线 av 中文字幕| 久久香蕉激情| 日韩 欧美 亚洲 中文字幕| 我的亚洲天堂| 51午夜福利影视在线观看| 久久久精品区二区三区| 国产精品亚洲av一区麻豆| 久久天堂一区二区三区四区| 9191精品国产免费久久| a级毛片在线看网站| 男人舔女人的私密视频| 夫妻午夜视频| 午夜福利免费观看在线| 亚洲专区国产一区二区| 久久这里只有精品19| 午夜福利一区二区在线看| 午夜福利视频精品| 色精品久久人妻99蜜桃| 91字幕亚洲| 国产亚洲午夜精品一区二区久久| 国产亚洲欧美在线一区二区| 老司机靠b影院| 亚洲免费av在线视频| 国产精品国产av在线观看| 国产成人免费无遮挡视频| 国产成人精品无人区| 国产高清视频在线播放一区 | 99re6热这里在线精品视频| 国产成+人综合+亚洲专区| 国产精品偷伦视频观看了| 久久久国产欧美日韩av| 国产成人av激情在线播放| 久久人妻熟女aⅴ| 婷婷色av中文字幕| 人妻久久中文字幕网| 久久久久精品人妻al黑| 亚洲午夜精品一区,二区,三区| 亚洲五月婷婷丁香| 亚洲国产毛片av蜜桃av| 一级毛片女人18水好多| 精品福利永久在线观看| 久久久久久久国产电影| www.精华液| 午夜福利免费观看在线| 99热全是精品| 99热网站在线观看| 人人妻人人爽人人添夜夜欢视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产精品成人久久小说| 操出白浆在线播放| 午夜福利一区二区在线看| xxxhd国产人妻xxx| 黄色视频,在线免费观看| 色婷婷久久久亚洲欧美| 午夜福利免费观看在线| 久久久久久久久久久久大奶| 天天躁日日躁夜夜躁夜夜| 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 久久天躁狠狠躁夜夜2o2o| 蜜桃国产av成人99| 亚洲伊人久久精品综合| 桃红色精品国产亚洲av| 少妇被粗大的猛进出69影院| 亚洲精品国产一区二区精华液| 午夜视频精品福利| 国产成人欧美在线观看 | 国产精品一二三区在线看| 男人舔女人的私密视频| 大片免费播放器 马上看| 中文字幕精品免费在线观看视频| 十八禁网站网址无遮挡| 国产亚洲午夜精品一区二区久久| 午夜视频精品福利| 亚洲国产av影院在线观看| 精品国产超薄肉色丝袜足j| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 亚洲av片天天在线观看| 高清视频免费观看一区二区| 黑人猛操日本美女一级片| 天天躁夜夜躁狠狠躁躁| 亚洲一区二区三区欧美精品| 一区二区三区乱码不卡18| 亚洲性夜色夜夜综合| 一区二区三区乱码不卡18| 亚洲性夜色夜夜综合| 国产亚洲精品一区二区www | 久久99热这里只频精品6学生| 日韩三级视频一区二区三区| 国产精品一区二区免费欧美 | 50天的宝宝边吃奶边哭怎么回事| 精品乱码久久久久久99久播| 黄色a级毛片大全视频| 深夜精品福利| 高潮久久久久久久久久久不卡| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 国产一卡二卡三卡精品| 黄色a级毛片大全视频| 99国产精品免费福利视频| 成人影院久久| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 99久久人妻综合| 成人国产av品久久久| 国产精品亚洲av一区麻豆|