• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Similarity measurement method of high-dimensional data based on normalized net lattice subspace①

    2017-06-27 08:09:22LiWenfa李文法WangGongmingLiKeHuangSu
    High Technology Letters 2017年2期
    關鍵詞:文法

    Li Wenfa (李文法), Wang Gongming, Li Ke, Huang Su

    (*Beijing Key Laboratory of Information Service Engineering,Beijing Union University, Beijing 100101, P.R.China) (**National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R.China)

    Similarity measurement method of high-dimensional data based on normalized net lattice subspace①

    Li Wenfa (李文法)②*, Wang Gongming**, Li Ke*, Huang Su*

    (*Beijing Key Laboratory of Information Service Engineering,Beijing Union University, Beijing 100101, P.R.China) (**National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R.China)

    The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data. The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results. A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed. The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval. Only the component in the same or adjacent interval is used to calculate the similarity. To validate this method, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method. In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.

    high-dimensional data, the curse of dimensionality, similarity, normalization, subspace, NPsim

    0 Introduction

    A similarity measurement can determine similarity degree between two data, or distance between two points, which is the basis of data-mining methods such as clustering, classification, nearest neighbor search, and association analysis. Conventional similarity measurement methods include Euclidean distance, Jaccard coefficient[1], and Pearson coefficient[2]. These methods can satisfy the similarity measurement requirement in low-dimensional space (less than 16)[3]. However, with the increasing spatial dimensionalities, the distance between a query point and its nearest neighbor point tends to be equal to the distance from the query point to its farthest neighbor point. When the distance between any two points is equal everywhere, the similarity is pointless; this is called the isometrics in high-dimensional space[4]. The root cause of this phenomenon is the curse of dimensionality that is derived from properties of sparsity and empty space in a high-dimensional space. Thus, the performances of many similarity measurements are positively affected in the low-dimensional space, yet decrease sharply in the high-dimensional space.

    In recent years, a series of methods have been proposed for similarity measurement of high-dimensional data; these includeHsim(X,Y)[5],HDsim(X,Y)[6],Gsim(X,Y)[7],Close(X,Y)[8],andEsim(X,Y)[9].However,thesemethodsignoretherelativedifferenceinproperty,noisedistribution,weight,andareonlyvalidforcertaindatatypes[10].ThePsim(X,Y)functionconsiderstheabove-mentionedfactors[10]andisapplicabletoavarietyofdatatypes;however,itisunabletocomparesimilarityunderdifferentdimensionsbecauseitsrangedependsonthespatialdimensionality.

    Tosolvethisproblem,asimilaritymeasurementmethodofhigh-dimensionaldatabasedonnormalizednetlatticesubspaceisproposed.Thesimilarityrangeisnolongerlimitedbythespatialdimensionality.

    1 Relatedwork

    1.1 Curse of dimensionality

    This is a ubiquitous phenomenon in the application field of high-dimensional data, and occurs because of the sparsity and empty space in high-dimensional space.

    1.1.1 Sparsity

    There is ad-dimensional data setDinahypercubeunitΨ=[0,1]d,anddataelementsaredistributeduniformly.Theprobabilityofapointfallingintoonehypercubewithlengthsissd,whichdecreaseswiththeincreaseofsbecauses<1.Thatis,itisverylikelythatthereisnopointinalargerange[11].Forexample,approximatelyonly0.59%dataexistsinahypercubewithlength0.95whendimensions=100.

    1.1.2Emptyspacephenomenon

    Anormaldistributiondatasetcanbeexpressedbyitscenterpointandstandarddeviation.ThedistancesbetweenthedatapointsandthecenterpointobeytheGaussdistribution;however,theirrelativeorientationcanbeselectedrandomly.Inaddition,thenumberofpossibledirectionsrelativetoacenterpointisincreasedexponentiallyandthedistancebetweenthemisincreasedwiththeincreaseofdimensionality.Fromtheviewpointofthedensityofadataset,amaximumvalueexistsatthecenterpoint,althoughtheremaynotbeapointclosetothecenterpoint.Thisphenomenonofahigh-dimensionalspaceiscalled“emptyspace.”

    1.1.3 Isometry

    The volume of unit sphere in ad-dimensional space is described as follows.

    (1)

    V(d)decreasesgraduallywiththeincreaseofdimensionalityd.Fig.1showsthatV(d)→0ifd>16.

    Fig.1 Variation trend of unit sphere volume with

    With the increase in dimensionality, the number of corners increases and the volume of unit sphere gradually decreases because the volume of the unit hyperspace does not change. Thus, most of the data will be distributed in the hyperspace corner. This phenomenon is shown in Fig.2 from left to right; the three subgraphs show the distributions of super-space data with dimensionality of 2, 3, and 8, respectively. In eight-dimensional space, 98% data is distributed in 2^8 = 256 corners. Moreover, the maximum and minimum Euclidean distances between the data and center point are both the same. When the dimensionality tends to infinity, the difference between the maximum and minimum Euclidean distance of the sample points to the center point tends toward 0.

    Fig.2 Data distribution in different dimensions

    Therefore, with the increase in dimensionality, the Euclidean distance between any data tends to remain the same, and no longer has the measurement function. The corresponding data-mining methods, such as clustering, classification, and nearest neighbor, would lose their effect.

    1.2 Conventional high-dimensional data similarity measurement methods

    In recent years, a similarity measurement problem in high-dimensional space has been studied to a certain extent but the research is insufficient. TheHsim(X,Y)functionwasproposedbyYang[5],whichisbetterthantheconventionalmethodbutneglectstherelativedifferenceandnoisedistribution.Inaddition,itisnotsuitableformeasuringthesimilarityofcategorical-attributedata.Next,theGsim(X,Y)function[7]wasproposedaccordingtotherelativedifferenceofpropertiesindifferentdimensions;however,itignorestheweightdiscrepancy.Zhaointroducedthepiecewisefunctionδ(X,Y)intoHsim(X,Y)andproposedtheHsimc(X,Y)function[12],whichcomprisesafunctionofmeasuringcategorical-attributedata.However,similaritybetweenapairofpointswhosecomponentsarecomplementaryineverydimensionisinconsistentwiththeactualresult.Thepiecewisefunctionδ(X,Y)offunctionXiemodifiedHsimc(X,Y)andproposedtheHDsim(X,Y)function[6],whichcansolvetheproblemderivedfromacomplementarypropertyineverydimension.However,theattributedifferenceandnoisedistributionproblemareneglected.TheClose(X,Y)function[8]basedonthemonotonousdecreaseofe-xcanovercometheinfluencefromcomponentsinsomedimensionswithlargevariancebutdoesnotconsidertherelativedifference,whichwouldbeaffectedbynoise.TheEsim(X,Y)[9]functionwasproposedbyimprovingHsim(X,Y)andClose(X,Y)functionsandcombiningtheinfluenceofpropertyonsimilarity.Ineverydimension,theEsim(X,Y)componentshowsapositivecorrelationtothevalueinthisdimension.Alldimensionsaredividedintotwoparts:normalandnoisydimensions.Inanoisydimension,thenoiseoccupiesmajority.Whennoiseissimilarorlargerthantheoneinanormaldimension,thismethodisinvalid.Thesecondarymeasurementmethod[13]isusedtocalculatethesimilaritybyvirtueofpropertydistribution,spacedistance,etc.;however,itneglectsthenoisedistributionandweight.Inaddition,itistime-consuming.TheconceptofnearestneighborprojectionwasproposedbyHinneburg[14],whichwascombinedwithdimensionalityreductiontosolvetheprobleminhigh-dimensionalspace.However,thismethodcomplicatesthedeterminationofasuitablequalitycriterionfunction.Thus,anextensiontheorywasintroducedintosimilaritycalculation[15],inwhich,thehigh-dimensionaldataisexpressedasanorderedthreetuplebyvirtueofmatterelement,andthedeviation(theintervallengthofattributevalueineverydimension)isaddedintofunctionA. However, this method is too complicated, and the result validation of the high-dimensional data was not described in the corresponding paper. Yi[10]determined that in a high-dimensional space, the difference in a noisy dimension is larger than in a sparse dimension, no matter how similar the data is. This difference occupies a large amount of the similarity calculation, leading to the calculation results of any objects being similar. Therefore, thePsim(X,Y)function[12]wasproposedtoeliminatethenoisyinfluencebyanalyzingthedifferenceamongalldimensions.Theexperimentalresultsindicatethatthismethodissuitableforavarietyofdata.However,itsrangeis[0,n],wherenisthedimensionality.Thus,thesimilaritiesindifferentdimensionscannotbecompared.

    2 Similaritymeasurementmethodbasedonnormalizednetlatticesubspace

    2.1 Sparse and noisy dimensions

    With increasing dimensionality, the similarities based on theLdnormbetweenanydatabecomethesame.TherootcauseisthattheLdnormdependsonthedimensiontoomuchwhichhaslargelydifferentcomponents.Inotherwords,whencalculatingsimilaritybetweenXandY,thelargerthevalueofXi-Yionthei-th dimension, the greater the contribution of thei-th dimension toXandY.AlthoughbothXandYareverysimilarinotherdimensionsexceptthei-th dimension, the overall similarity ofXandYisverysmall.Thisi-th dimension is called sparse or noisy dimension.

    Owing to the existence of sparsity and noise in the high-dimensional space, no matter how similar the two records are there will always be a different dimension. The difference in these dimensions occupies a large proportion of the whole similarity, leading to any record in the high-dimensional space being dissimilar[16].

    To solve this problem, the data range in every dimension can be divided into several intervals, and the components can be mapped onto corresponding intervals. When calculating the similarity between two points, only the dimensions that fall into the same interval are used. The other dimensions are regarded as sparse or noisy dimensions, and are not included in the calculation.

    2.2 Meshing of high-dimensional data space

    Let the dimension of dataset bed,andthenumberofdataobjectbeM.Then,everydataobjectisexpressedasxk(1≤k≤M).Inaddition,everydimensionisdividedinton=[θd]continuousintervals,andθistherealnumberbetween0and1.Thus,thenumberofpointsineveryintervalisG=[M/n].

    Inthei-th dimension, all components are sorted in an ascending order. Thek-th sorted value isVal[k](1≤k≤M).Rijisthej-th interval in thei-th dimension, whose lower and upper bounds areLRijandURij,respectively.ItcanbeseenthatLRij=Val[(j-1)G+1]andURij=Val[jG].

    (2)

    (3)

    Forxkandyl,thesetofdimensionsinwhichcomponentsfallintothesameintervalis

    (4)

    Ifthei-th components ofxkandylfallintotheadjacentintervals,andthedistancebetweenthemislessthantheaveragelengthofthetwoadjacentintervals,thetwopointsareregardedasclosetoeachother,andincludedinthesimilaritycalculation.Thesetofthesedimensionsisshownas

    (5)

    ThesetofdimensionsincludedinthesimilaritycalculationistheunionofS1andS2:

    S=S1US2

    (6)

    2.3Similaritymeasurement

    ThePsim(X,Y)functionproposedbyYiissuitableforavarietyofdatatypes[10];however,itsrangeisdependentonthespatialdimensionality,andthusthecomparisonofsimilarityindifferentdimensionsisnotpossible.Underthecircumstanceofmaintainingeffects,Psim(X,Y)iscorrectedas

    (7)

    whereXandYareanytwopointsinthed-dimensional space, andXjandYjarecomponentsinthei-th dimension. Moreover,δ(Xj,Yj)isthediscriminantfunction.IfXjandYjareinthesameinterval[LRj,URj],δ(Xj,Yj)=1,otherwiseδ(Xj,Yj)=0.E(X,Y)representsthenumberofintervalsinwhichcomponentsofXandYareallthesame.TherangeofNPsim(X,Y)isobservedtobein[0, 1].TheaboveistheoutlineofNPsim,andthedetailedintroductioncanbefoundinRef.[10].

    3 Experiment

    Tovalidatethismethod,threedatatypeswithdifferentdistributionsweregeneratedthroughMatlab.Next,thesimilaritiesindifferentdimensionswerecalculatedusingtheproposedmethod,andwerecomparedwiththeresultobtainedfromcalculatingManhattandistance,Euclideandistance,Hsim(X,Y),Gsim(X,Y),Close(X,Y),Esim(X,Y),andPsim(X,Y).

    3.1Datadescription

    Thefollowingthreedatatypeswereusedintheexperiment[10].

    (1)Independentandidenticallydistributed(IID):Here,allvariablesobeythesamedatadistributionfunctionbutareindependentofeachother.TheIIDdataZisgeneratedbyZ=(Z1,…,ZM),andZifollowsthedistributionofZi~F(0,1).

    (3)Dependentandidenticallydistributed(DID):Allvariablesobeythesamedatadistributionbutarenotindependent.Inaddition,twodimensionsareindependentofeachothercalled“freedimensions”;theotherdimensionsarerelatedtothem.TheDIDdataZisgeneratedasfollows.First,twod×1randomvariablesAandBobeyingthedistributionofF(0,1)aregenerated.Second,two1×MrandomvariablesUandVobeyingthedistributionofF(-1, 1)areproduced.Third,Z1(2≤i≤M)isgeneratedthroughZi=A×Ui+B×Vi.Atlast,theDIDdataZisproducedasZ=(Z1,…,ZM).

    3.2Relativedifference

    Tovalidatethismethod,IID,RID,andDIDdataaregeneratedusinganormrnd()functionofMatlab[10].Thedimensionofeverydatatypeisasfollows: 10, 60, 110, 160, 210, 260, 310, 360,and410.Thenumberofdataineverydimensionis1000.Inaddition,therelativedifferencebetweenthefarthestandnearestneighborsiscalculatedasfollows[17]:

    (8)

    whereDmaxn,Dminn,andDavgnaremaximal,minimal,andaveragesimilaritiesinthed-dimensional space, respectively. The relative difference results are shown in Figs 3~5.

    According to the characteristics of the results, similarity measurement methods are divided into two types: the first includes Manhattan distance, Euclidean distance,Hsim(X,Y),Gsim(X,Y),Close(X,Y),andEsim(X,Y);andtheothersincludePsim(X,Y)andNPsim(X,Y).Therelativedifferenceofthesecondtypeofmethodsistwoorthreemagnitudeslargerthanthatofthefirsttypeofmethods.Therefore,theperformanceadvantageofthesecondmethodtypeisobvious.

    TherelativedifferenceofPsim(X,Y)andNPsim(X,Y)hasnodifferentiationdegree.Thus,thestatisticalanalysisneedstobestudiedfurther.

    Fig.3 Relative difference of various similarity measurement methods for IID data

    Fig.4 Relative difference of various similarity measurement methods for RID data

    3.3 Statistical analysis

    To compare the effect ofPsim(X,Y)andNPsim(X,Y),themaximum,minimum,andaverageofDIDdataindifferentdimensionsarecalculated,asshowninFig.6.TheexperimentalresultsindicatethatthesimilarityrangeofPsim(X,Y)increaseswiththedimension.Thus,thefunctionisnotsuitableforthesimilaritycomparisonindifferentdimensions.However,theproblemdoesnotexistinNPsim(X,Y).Table1liststhenumbersofPsim(X,Y)whosevalueisgreaterthan1indifferentdimensions.Thenumberof

    Fig.5 Relative difference of various similarity measurement methods for DID data

    Fig.6 Statistical value of various similarity measurement methods for DID data

    Dimension1060110160210Number1686041203731132481045284672Dimension260310360410260Number9842963024720155885198429

    Psim(X,Y)ineverydimensionis1000×1000=1,000,000.Inaddition,the5%~17%resultismorethan1,andthusthecomparisonofsimilarityindifferentdimensionsisnotpossible.Therefore,NPsim(X,Y)cansatisfytherequirementofsimilaritycomparisonindifferentdimensions.

    4 Conclusion

    Thesimilaritymeasurementisthebasisofdata-miningalgorithms,suchasclustering,classification,andnearestneighbor.However,owingtothecurseofdimensionality,themeasurementalwaysfailsinhigh-dimensionalspace.Asimilaritymeasurementmethodofhigh-dimensionaldatabasedonanormalizednetlatticesubspaceisproposed.Inthismethod,datarangeofeachdimensionisdividedintoseveralintervals,andthecomponentsaremappedontothecorrespondingintervals.Duringsimilaritycalculation,onlythecomponentinthesameoradjacentintervalisused.Thismethodcanavoidthesimilarityeffectthatgeneratedfromthesparseornoisydimension.Tovalidatetheproposedalgorithm,threetypesofdistributiondataareusedintheexperiment,andanothersevenmethodtypesarecompared.Theexperimentalresultsshowthattheproposedmethodissuitableforsimilaritymeasurementinhigh-dimensiondata.

    Inthefuture,theweightcalculationindifferentdimensions,andtheautomaticupdatingstrategyofaspatialgridwillbestudied.Inaddition,theproposedmethodwillapplyarelateddata-miningalgorithm,suchasclusteringorcorrelationanalysis.

    [ 1] Tan P N, Michael S, Vipin K. Introduction to Data Mining. Boston: Addison-Wesley Publishing Company, 2005. 25-36

    [ 2] Chen J N. The Research and Application of Key Technologies in Knowledge Discovery of High-dimensional Clustering. Beijing: Publishing House of Electronics Industry, 2011. 120-128(In Chinese)

    [ 3] Aggarwal C C. Re-designing distance functions and distance based applications for high dimensional data.ACMSIGMODRecord, 2001, 33(1):117-128

    [ 4] Warren B P. Approximate Dynamic Programming: Solving the Curses of Dimensionality (2nd Edition). Hoboken, New Jersey: John Wiley & Sons Press, 2011. 124-161

    [ 5] Yang F Z, Zhu Y Y. An efficient method for similarity search on quantitative transaction data.JournalofComputerResearchandDevelopment, 2004, 41(2):361-368

    [ 6] Xie M X, Guo J Z, Zhang H B, et al. Research on the similarity measurement of high dimensional data.ComputerEngineeringandScience, 2010, 32(5):92-96(In Chinese)

    [ 7] Huang S D, Chen Q M. On clustering algorithm of high dimensional data based on similarity measurement.ComputerApplicationsandSoftware, 2009, 26(9):102-105(In Chinese)

    [ 8] Shao C S, Lou W, Yan L M. Optimization of algorithm of similarity measurement in high-dimensional data.ComputerTechnologyandDevelopment, 2011, 21(2):1-4(In Chinese)

    [ 9] Wang X Y, Zhang H Y, Shen L Z, et al. Re-search on high dimensional clustering algorithm based on similarity measurement.ComputerTechnologyandDevelopment, 2013, 23(5):30-33(In Chinese)

    [10] Yi L H. Research on clustering algorithm for high dimensional data:[Ph.D dissertation]. Qinhuangdao: Institute of Information Science and Engineering, Yanshan University, 2011. 28-30(In Chinese)

    [11] Ericson K, Pallickara S. On the performance of high dimensional data clustering and classification algorithms.FutureGenerationComputerSystems, 2013, 29(4):1024-1034

    [12] Zhao H. Study on Some Issues of Data Clustering in Data Mining:[Ph.D dissertation]. Xi’an: School of Electronic Engineering, Xidian University, 2005. 35-42(In Chinese)

    [13] Jia X Y. A high dimensional data clustering algorithm based on twice similarity.JournalofComputerApplications, 2005, 25(B12):176-177

    [14] Alexander H, Charu A C, Keim D A. What is the nearest neighbor in high dimensional spaces? In: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000. 506-515

    [15] Yuan R P, Shi M R. Research on the similarity of high dimensional big data based on extenics.OperationsResearchandManagementScience, 2015, 24(5):184-188

    [16] Kriegel H P, Kr?ger P, Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering.ACMTransactionsonKnowledgeDiscoveryfromData, 2009, 3(1):1-58

    [17] Charu C, Aggarwal, Yu P S. The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000. 119-129

    10.3772/j.issn.1006-6748.2017.02.009

    ①Supported by the National Natural Science Foundation of China (No. 61502475) and the Importation and Development of High-Caliber Talents Project of the Beijing Municipal Institutions (No. CIT & TCD201504039).

    ②To whom correspondence should be addressed. E-mail: liwenfa@buu.edu.cn

    on Dec. 10, 2016

    ?? born in 1974. He received his Ph.D. degree in Graduate University of Chinese Academy of Sciences in 2009. He also received his B.S. and M.S. degrees from PLA Information Engineering University in 1998 and 2003 respectively. His research interests include information security, data analysis and mining, etc.

    猜你喜歡
    文法
    從絕響到轉型:近現(xiàn)代“文法”概念與“文法學”
    關于1940 年尼瑪抄寫的《托忒文文法》手抄本
    中國石油大學勝利學院文法與經(jīng)濟管理學院簡介
    西夏文銅鏡的真言文法與四臂觀音像研究
    西夏學(2018年2期)2018-05-15 11:24:00
    LL(1)文法分析器的研究與分析
    科技風(2017年25期)2017-05-30 15:40:44
    A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix①
    25年呵護患病妻子不離不棄
    兵團工運(2016年9期)2016-11-09 05:46:13
    基于領域文法的微博輿情分析方法及其應用
    基于單向點格自動機的UPG文法識別并行算法
    文法有道,為作文注入音樂美
    學生天地(2016年26期)2016-06-15 20:29:39
    视频区欧美日本亚洲| 欧美日韩黄片免| 两性午夜刺激爽爽歪歪视频在线观看 | www.熟女人妻精品国产| 人成视频在线观看免费观看| 亚洲中文av在线| 国产深夜福利视频在线观看| 超碰成人久久| av天堂久久9| 日韩欧美在线二视频 | 欧美 亚洲 国产 日韩一| 黄色丝袜av网址大全| 亚洲五月婷婷丁香| 深夜精品福利| 乱人伦中国视频| a级毛片黄视频| 亚洲成人手机| 亚洲人成伊人成综合网2020| 91成年电影在线观看| 1024香蕉在线观看| 午夜精品国产一区二区电影| 好看av亚洲va欧美ⅴa在| 午夜老司机福利片| 久久精品国产清高在天天线| 中文亚洲av片在线观看爽 | 亚洲成人国产一区在线观看| 午夜两性在线视频| 王馨瑶露胸无遮挡在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产成人免费观看mmmm| 嫁个100分男人电影在线观看| 亚洲av电影在线进入| 少妇被粗大的猛进出69影院| 久久精品国产a三级三级三级| 欧美不卡视频在线免费观看 | 亚洲国产看品久久| 婷婷成人精品国产| 在线十欧美十亚洲十日本专区| 国产aⅴ精品一区二区三区波| 一区在线观看完整版| 日韩欧美免费精品| 免费在线观看完整版高清| 午夜福利,免费看| 国产又爽黄色视频| 国产无遮挡羞羞视频在线观看| 9热在线视频观看99| 在线十欧美十亚洲十日本专区| 国产在线精品亚洲第一网站| 久久久久国产一级毛片高清牌| 嫁个100分男人电影在线观看| 免费女性裸体啪啪无遮挡网站| 精品国产美女av久久久久小说| 国产日韩欧美亚洲二区| 在线观看www视频免费| 好看av亚洲va欧美ⅴa在| 国产人伦9x9x在线观看| 91国产中文字幕| 免费在线观看完整版高清| 成年动漫av网址| 亚洲美女黄片视频| 国产欧美日韩一区二区三区在线| 亚洲国产精品合色在线| 亚洲成人手机| 看黄色毛片网站| 国产在视频线精品| 一本综合久久免费| 亚洲午夜精品一区,二区,三区| 天堂俺去俺来也www色官网| 亚洲av成人不卡在线观看播放网| 国产不卡一卡二| 91字幕亚洲| 建设人人有责人人尽责人人享有的| 国产精品一区二区精品视频观看| 色播在线永久视频| 精品第一国产精品| 少妇的丰满在线观看| 日本一区二区免费在线视频| 国产成人影院久久av| 久久精品国产亚洲av高清一级| 欧美黑人欧美精品刺激| 亚洲欧美色中文字幕在线| 精品电影一区二区在线| 黑人巨大精品欧美一区二区mp4| 麻豆成人av在线观看| 国产精品99久久99久久久不卡| 午夜免费鲁丝| 久久国产精品人妻蜜桃| www.熟女人妻精品国产| 夜夜夜夜夜久久久久| 国产av又大| 久久精品亚洲av国产电影网| 精品福利永久在线观看| 免费高清在线观看日韩| 人人妻人人澡人人爽人人夜夜| 国产精品二区激情视频| 天堂√8在线中文| 国产免费av片在线观看野外av| 亚洲国产看品久久| 午夜免费成人在线视频| 久久婷婷成人综合色麻豆| 变态另类成人亚洲欧美熟女 | 他把我摸到了高潮在线观看| av欧美777| 久久狼人影院| 91成人精品电影| 18禁观看日本| 亚洲国产欧美日韩在线播放| 免费在线观看影片大全网站| 激情视频va一区二区三区| 老司机在亚洲福利影院| 天堂俺去俺来也www色官网| 热re99久久精品国产66热6| 天天躁狠狠躁夜夜躁狠狠躁| 精品电影一区二区在线| 在线观看www视频免费| 国产精品98久久久久久宅男小说| 成年人午夜在线观看视频| 国产成+人综合+亚洲专区| 精品国产乱子伦一区二区三区| 高潮久久久久久久久久久不卡| 久久国产精品人妻蜜桃| 久久午夜综合久久蜜桃| 亚洲欧美日韩高清在线视频| 成人18禁高潮啪啪吃奶动态图| 免费久久久久久久精品成人欧美视频| 精品一区二区三区四区五区乱码| 欧美一级毛片孕妇| 老司机午夜福利在线观看视频| 老司机福利观看| 成熟少妇高潮喷水视频| xxx96com| 成人影院久久| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图| 91大片在线观看| 久久久久精品国产欧美久久久| 校园春色视频在线观看| 首页视频小说图片口味搜索| 精品久久蜜臀av无| 久久精品国产99精品国产亚洲性色 | 精品久久久久久久毛片微露脸| 欧美激情极品国产一区二区三区| 久久人妻福利社区极品人妻图片| 在线天堂中文资源库| 在线天堂中文资源库| 一二三四社区在线视频社区8| 91精品三级在线观看| 亚洲熟妇熟女久久| 国产欧美日韩精品亚洲av| 黄片小视频在线播放| 深夜精品福利| 国产成人精品在线电影| 色94色欧美一区二区| 免费高清在线观看日韩| 99精国产麻豆久久婷婷| 久久中文字幕人妻熟女| 亚洲人成77777在线视频| 国产精品自产拍在线观看55亚洲 | 精品国产乱子伦一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产成人av激情在线播放| 99精品在免费线老司机午夜| 我的亚洲天堂| 精品国内亚洲2022精品成人 | 建设人人有责人人尽责人人享有的| 亚洲欧美日韩另类电影网站| 国产亚洲精品久久久久久毛片 | 欧美在线一区亚洲| cao死你这个sao货| 啪啪无遮挡十八禁网站| 国产麻豆69| 女人精品久久久久毛片| 久久久国产成人精品二区 | 欧美另类亚洲清纯唯美| 国产成人啪精品午夜网站| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| av电影中文网址| 久久 成人 亚洲| 国产亚洲精品久久久久久毛片 | 青草久久国产| 如日韩欧美国产精品一区二区三区| av福利片在线| 亚洲色图综合在线观看| 成年版毛片免费区| 99re在线观看精品视频| 亚洲熟妇中文字幕五十中出 | 日韩精品免费视频一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲视频免费观看视频| 亚洲av电影在线进入| 叶爱在线成人免费视频播放| 性色av乱码一区二区三区2| 亚洲五月天丁香| 这个男人来自地球电影免费观看| 午夜精品在线福利| 69精品国产乱码久久久| 亚洲人成伊人成综合网2020| 女人精品久久久久毛片| 午夜成年电影在线免费观看| 国产精品一区二区在线不卡| 日日夜夜操网爽| 热99国产精品久久久久久7| a级毛片黄视频| 纯流量卡能插随身wifi吗| www.自偷自拍.com| 欧美色视频一区免费| 欧美日韩成人在线一区二区| 在线观看日韩欧美| 成人国语在线视频| 一区二区三区国产精品乱码| 欧美日韩国产mv在线观看视频| 久久久久国产精品人妻aⅴ院 | 一夜夜www| 国产精品成人在线| 精品久久久久久电影网| 欧美一级毛片孕妇| 黄色a级毛片大全视频| 亚洲av成人一区二区三| 国产精品免费视频内射| 免费在线观看影片大全网站| 国产一区有黄有色的免费视频| 少妇被粗大的猛进出69影院| 俄罗斯特黄特色一大片| 在线看a的网站| 成人手机av| 老司机午夜十八禁免费视频| 国产激情久久老熟女| 精品卡一卡二卡四卡免费| 老司机在亚洲福利影院| 精品电影一区二区在线| 黄色女人牲交| 国产免费现黄频在线看| 亚洲七黄色美女视频| 国产色视频综合| 99久久综合精品五月天人人| 黑人欧美特级aaaaaa片| 成人永久免费在线观看视频| 女同久久另类99精品国产91| 纯流量卡能插随身wifi吗| av欧美777| 国产亚洲欧美在线一区二区| 最近最新免费中文字幕在线| 欧美日韩一级在线毛片| 9色porny在线观看| 好看av亚洲va欧美ⅴa在| 久热爱精品视频在线9| 超碰97精品在线观看| 久久天堂一区二区三区四区| 美女高潮到喷水免费观看| 男人的好看免费观看在线视频 | 久久香蕉精品热| 十八禁高潮呻吟视频| 一进一出好大好爽视频| 男女下面插进去视频免费观看| 一区二区三区精品91| 日本撒尿小便嘘嘘汇集6| www.熟女人妻精品国产| 777久久人妻少妇嫩草av网站| 999精品在线视频| 丁香欧美五月| 亚洲精品国产精品久久久不卡| 亚洲欧美一区二区三区黑人| 午夜精品久久久久久毛片777| 成人18禁在线播放| 国产成人欧美| 欧美精品高潮呻吟av久久| 天堂动漫精品| 男女免费视频国产| 亚洲免费av在线视频| 最新美女视频免费是黄的| 午夜91福利影院| 日本黄色视频三级网站网址 | 国产成人免费观看mmmm| 狂野欧美激情性xxxx| 亚洲精品久久午夜乱码| 又黄又爽又免费观看的视频| ponron亚洲| 国产精品香港三级国产av潘金莲| 亚洲中文av在线| 天天操日日干夜夜撸| 久99久视频精品免费| 久久青草综合色| 欧美日韩瑟瑟在线播放| 久久香蕉精品热| 韩国精品一区二区三区| 日韩欧美一区二区三区在线观看 | 99热国产这里只有精品6| 国产成人啪精品午夜网站| 9191精品国产免费久久| 丰满饥渴人妻一区二区三| 国产av一区二区精品久久| 精品久久久久久久毛片微露脸| 黄片大片在线免费观看| 可以免费在线观看a视频的电影网站| 丝袜美足系列| 变态另类成人亚洲欧美熟女 | 两性夫妻黄色片| 老司机福利观看| 欧美日韩国产mv在线观看视频| 亚洲精品国产区一区二| 一区福利在线观看| 人人妻人人澡人人爽人人夜夜| 后天国语完整版免费观看| 国产精品久久电影中文字幕 | 999精品在线视频| 国产蜜桃级精品一区二区三区 | 91大片在线观看| 免费在线观看视频国产中文字幕亚洲| 一进一出抽搐gif免费好疼 | 国产不卡一卡二| av有码第一页| 1024视频免费在线观看| 精品福利永久在线观看| 久久久精品国产亚洲av高清涩受| 黄色成人免费大全| 国产精品自产拍在线观看55亚洲 | 亚洲精品久久成人aⅴ小说| 在线观看免费午夜福利视频| 国产乱人伦免费视频| 亚洲av电影在线进入| 国产精品一区二区在线不卡| 91成人精品电影| 成人黄色视频免费在线看| 又黄又爽又免费观看的视频| 日韩成人在线观看一区二区三区| 国产午夜精品久久久久久| 女警被强在线播放| 人妻丰满熟妇av一区二区三区 | 国产成人系列免费观看| 成人亚洲精品一区在线观看| 一级作爱视频免费观看| 久久久久久久久免费视频了| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 狠狠婷婷综合久久久久久88av| 久久久国产成人免费| 成人18禁高潮啪啪吃奶动态图| a级毛片黄视频| 91麻豆精品激情在线观看国产 | 成在线人永久免费视频| 中国美女看黄片| 午夜成年电影在线免费观看| 又黄又爽又免费观看的视频| 国产野战对白在线观看| 女性生殖器流出的白浆| 久久香蕉激情| 中文字幕高清在线视频| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 91成年电影在线观看| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 免费在线观看影片大全网站| 国产精品免费一区二区三区在线 | 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 欧美激情极品国产一区二区三区| 欧美日韩视频精品一区| 夜夜躁狠狠躁天天躁| 欧美亚洲日本最大视频资源| 免费电影在线观看免费观看| 十八禁人妻一区二区| 精品久久久久久久久久久久久| 国产乱人伦免费视频| 国产一区二区在线观看日韩 | 99久国产av精品| 在线播放无遮挡| 午夜福利在线在线| 少妇裸体淫交视频免费看高清| 国产亚洲欧美98| 老司机深夜福利视频在线观看| 国产精品影院久久| av在线天堂中文字幕| xxxwww97欧美| 一本综合久久免费| 成人三级黄色视频| 亚洲av熟女| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 好男人电影高清在线观看| 变态另类丝袜制服| 亚洲精品456在线播放app | 中文字幕人妻丝袜一区二区| 午夜老司机福利剧场| av专区在线播放| 久久精品人妻少妇| 天天添夜夜摸| 免费看日本二区| 成人永久免费在线观看视频| 欧美bdsm另类| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| 午夜两性在线视频| 亚洲熟妇中文字幕五十中出| 成人av在线播放网站| 国产精品野战在线观看| 大型黄色视频在线免费观看| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆 | svipshipincom国产片| 又紧又爽又黄一区二区| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频| 中文字幕久久专区| 亚洲 国产 在线| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片 | 搡老妇女老女人老熟妇| 校园春色视频在线观看| 国产乱人伦免费视频| 国产精品一及| 最近在线观看免费完整版| 亚洲中文日韩欧美视频| 在线视频色国产色| 日韩高清综合在线| 国产色爽女视频免费观看| 日本黄大片高清| 精品久久久久久久毛片微露脸| 欧美3d第一页| 亚洲电影在线观看av| 久久精品综合一区二区三区| av片东京热男人的天堂| 久久久久国产精品人妻aⅴ院| 久久这里只有精品中国| 精品熟女少妇八av免费久了| 亚洲一区二区三区不卡视频| 少妇丰满av| 国产亚洲av嫩草精品影院| 一级毛片高清免费大全| 亚洲国产精品sss在线观看| 久久精品91无色码中文字幕| 亚洲欧美日韩高清在线视频| 精品人妻偷拍中文字幕| 搡老妇女老女人老熟妇| 国产高清videossex| 亚洲av成人不卡在线观看播放网| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 丁香欧美五月| 一边摸一边抽搐一进一小说| 国产欧美日韩精品一区二区| 一区福利在线观看| 在线观看舔阴道视频| 国产精品综合久久久久久久免费| 有码 亚洲区| 国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 日日干狠狠操夜夜爽| 无限看片的www在线观看| 18禁在线播放成人免费| 在线播放无遮挡| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 脱女人内裤的视频| 精品人妻1区二区| 天天躁日日操中文字幕| 特级一级黄色大片| 亚洲18禁久久av| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 19禁男女啪啪无遮挡网站| www.熟女人妻精品国产| 国产乱人视频| 欧美zozozo另类| 国产精品野战在线观看| 在线观看一区二区三区| 99在线视频只有这里精品首页| 99国产精品一区二区三区| 天堂动漫精品| 99久国产av精品| 老汉色∧v一级毛片| 51午夜福利影视在线观看| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 国产真实乱freesex| 又黄又爽又免费观看的视频| 免费高清视频大片| 精品99又大又爽又粗少妇毛片 | 99riav亚洲国产免费| 9191精品国产免费久久| 亚洲,欧美精品.| 久久久国产成人精品二区| 日本黄大片高清| 最近最新中文字幕大全免费视频| 真人做人爱边吃奶动态| 亚洲片人在线观看| 18禁黄网站禁片午夜丰满| 黄色日韩在线| 精品久久久久久久毛片微露脸| 精品国内亚洲2022精品成人| 亚洲美女黄片视频| bbb黄色大片| 国产一级毛片七仙女欲春2| 日本免费a在线| 日日摸夜夜添夜夜添小说| 99久久精品热视频| 欧美3d第一页| 亚洲国产高清在线一区二区三| 男女之事视频高清在线观看| 欧美最黄视频在线播放免费| 国产高清激情床上av| 亚洲成a人片在线一区二区| 不卡一级毛片| 久久亚洲真实| 18+在线观看网站| 99热只有精品国产| 精品日产1卡2卡| av天堂在线播放| 成人av在线播放网站| 亚洲专区国产一区二区| 我要搜黄色片| 美女被艹到高潮喷水动态| 国产精品久久久人人做人人爽| 色视频www国产| 日韩精品青青久久久久久| 18禁裸乳无遮挡免费网站照片| 免费无遮挡裸体视频| 黄色视频,在线免费观看| 看免费av毛片| 国产免费av片在线观看野外av| 国产日本99.免费观看| 国产高潮美女av| a在线观看视频网站| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 99热这里只有是精品50| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 国产高清激情床上av| 亚洲久久久久久中文字幕| 婷婷六月久久综合丁香| 首页视频小说图片口味搜索| 久久久久亚洲av毛片大全| 一本一本综合久久| 国产精品98久久久久久宅男小说| 极品教师在线免费播放| 国产激情欧美一区二区| 美女黄网站色视频| 久久伊人香网站| 一级a爱片免费观看的视频| 午夜激情欧美在线| av在线蜜桃| 久久久久九九精品影院| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 亚洲中文日韩欧美视频| 久久久久久久午夜电影| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 又爽又黄无遮挡网站| 神马国产精品三级电影在线观看| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 日本 欧美在线| 亚洲av五月六月丁香网| 51午夜福利影视在线观看| netflix在线观看网站| 成年女人永久免费观看视频| 国产色婷婷99| 99热只有精品国产| 精品人妻一区二区三区麻豆 | 天天一区二区日本电影三级| 日本免费a在线| 少妇高潮的动态图| 高清毛片免费观看视频网站| 国产老妇女一区| 老鸭窝网址在线观看| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 欧美+日韩+精品| 国产精品精品国产色婷婷| 看黄色毛片网站| 乱人视频在线观看| 看黄色毛片网站| 欧美一区二区国产精品久久精品| 国产探花在线观看一区二区| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 免费电影在线观看免费观看| 日日夜夜操网爽| 国产精品香港三级国产av潘金莲| 国产精品久久久久久久久免 | 99热精品在线国产| 久久久久久国产a免费观看| 国产精品电影一区二区三区| 天堂√8在线中文| 免费在线观看日本一区| 有码 亚洲区| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 精品久久久久久久人妻蜜臀av| 国产三级黄色录像| 国产激情偷乱视频一区二区| 国产一区二区激情短视频| 看片在线看免费视频| 90打野战视频偷拍视频| 国产亚洲精品av在线| 深爱激情五月婷婷| 欧美精品啪啪一区二区三区| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 亚洲av成人不卡在线观看播放网| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 可以在线观看毛片的网站| a级毛片a级免费在线| 中文资源天堂在线| 搡老妇女老女人老熟妇|