• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Similarity measurement method of high-dimensional data based on normalized net lattice subspace①

    2017-06-27 08:09:22LiWenfa李文法WangGongmingLiKeHuangSu
    High Technology Letters 2017年2期
    關鍵詞:文法

    Li Wenfa (李文法), Wang Gongming, Li Ke, Huang Su

    (*Beijing Key Laboratory of Information Service Engineering,Beijing Union University, Beijing 100101, P.R.China) (**National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R.China)

    Similarity measurement method of high-dimensional data based on normalized net lattice subspace①

    Li Wenfa (李文法)②*, Wang Gongming**, Li Ke*, Huang Su*

    (*Beijing Key Laboratory of Information Service Engineering,Beijing Union University, Beijing 100101, P.R.China) (**National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R.China)

    The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data. The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results. A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed. The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval. Only the component in the same or adjacent interval is used to calculate the similarity. To validate this method, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method. In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.

    high-dimensional data, the curse of dimensionality, similarity, normalization, subspace, NPsim

    0 Introduction

    A similarity measurement can determine similarity degree between two data, or distance between two points, which is the basis of data-mining methods such as clustering, classification, nearest neighbor search, and association analysis. Conventional similarity measurement methods include Euclidean distance, Jaccard coefficient[1], and Pearson coefficient[2]. These methods can satisfy the similarity measurement requirement in low-dimensional space (less than 16)[3]. However, with the increasing spatial dimensionalities, the distance between a query point and its nearest neighbor point tends to be equal to the distance from the query point to its farthest neighbor point. When the distance between any two points is equal everywhere, the similarity is pointless; this is called the isometrics in high-dimensional space[4]. The root cause of this phenomenon is the curse of dimensionality that is derived from properties of sparsity and empty space in a high-dimensional space. Thus, the performances of many similarity measurements are positively affected in the low-dimensional space, yet decrease sharply in the high-dimensional space.

    In recent years, a series of methods have been proposed for similarity measurement of high-dimensional data; these includeHsim(X,Y)[5],HDsim(X,Y)[6],Gsim(X,Y)[7],Close(X,Y)[8],andEsim(X,Y)[9].However,thesemethodsignoretherelativedifferenceinproperty,noisedistribution,weight,andareonlyvalidforcertaindatatypes[10].ThePsim(X,Y)functionconsiderstheabove-mentionedfactors[10]andisapplicabletoavarietyofdatatypes;however,itisunabletocomparesimilarityunderdifferentdimensionsbecauseitsrangedependsonthespatialdimensionality.

    Tosolvethisproblem,asimilaritymeasurementmethodofhigh-dimensionaldatabasedonnormalizednetlatticesubspaceisproposed.Thesimilarityrangeisnolongerlimitedbythespatialdimensionality.

    1 Relatedwork

    1.1 Curse of dimensionality

    This is a ubiquitous phenomenon in the application field of high-dimensional data, and occurs because of the sparsity and empty space in high-dimensional space.

    1.1.1 Sparsity

    There is ad-dimensional data setDinahypercubeunitΨ=[0,1]d,anddataelementsaredistributeduniformly.Theprobabilityofapointfallingintoonehypercubewithlengthsissd,whichdecreaseswiththeincreaseofsbecauses<1.Thatis,itisverylikelythatthereisnopointinalargerange[11].Forexample,approximatelyonly0.59%dataexistsinahypercubewithlength0.95whendimensions=100.

    1.1.2Emptyspacephenomenon

    Anormaldistributiondatasetcanbeexpressedbyitscenterpointandstandarddeviation.ThedistancesbetweenthedatapointsandthecenterpointobeytheGaussdistribution;however,theirrelativeorientationcanbeselectedrandomly.Inaddition,thenumberofpossibledirectionsrelativetoacenterpointisincreasedexponentiallyandthedistancebetweenthemisincreasedwiththeincreaseofdimensionality.Fromtheviewpointofthedensityofadataset,amaximumvalueexistsatthecenterpoint,althoughtheremaynotbeapointclosetothecenterpoint.Thisphenomenonofahigh-dimensionalspaceiscalled“emptyspace.”

    1.1.3 Isometry

    The volume of unit sphere in ad-dimensional space is described as follows.

    (1)

    V(d)decreasesgraduallywiththeincreaseofdimensionalityd.Fig.1showsthatV(d)→0ifd>16.

    Fig.1 Variation trend of unit sphere volume with

    With the increase in dimensionality, the number of corners increases and the volume of unit sphere gradually decreases because the volume of the unit hyperspace does not change. Thus, most of the data will be distributed in the hyperspace corner. This phenomenon is shown in Fig.2 from left to right; the three subgraphs show the distributions of super-space data with dimensionality of 2, 3, and 8, respectively. In eight-dimensional space, 98% data is distributed in 2^8 = 256 corners. Moreover, the maximum and minimum Euclidean distances between the data and center point are both the same. When the dimensionality tends to infinity, the difference between the maximum and minimum Euclidean distance of the sample points to the center point tends toward 0.

    Fig.2 Data distribution in different dimensions

    Therefore, with the increase in dimensionality, the Euclidean distance between any data tends to remain the same, and no longer has the measurement function. The corresponding data-mining methods, such as clustering, classification, and nearest neighbor, would lose their effect.

    1.2 Conventional high-dimensional data similarity measurement methods

    In recent years, a similarity measurement problem in high-dimensional space has been studied to a certain extent but the research is insufficient. TheHsim(X,Y)functionwasproposedbyYang[5],whichisbetterthantheconventionalmethodbutneglectstherelativedifferenceandnoisedistribution.Inaddition,itisnotsuitableformeasuringthesimilarityofcategorical-attributedata.Next,theGsim(X,Y)function[7]wasproposedaccordingtotherelativedifferenceofpropertiesindifferentdimensions;however,itignorestheweightdiscrepancy.Zhaointroducedthepiecewisefunctionδ(X,Y)intoHsim(X,Y)andproposedtheHsimc(X,Y)function[12],whichcomprisesafunctionofmeasuringcategorical-attributedata.However,similaritybetweenapairofpointswhosecomponentsarecomplementaryineverydimensionisinconsistentwiththeactualresult.Thepiecewisefunctionδ(X,Y)offunctionXiemodifiedHsimc(X,Y)andproposedtheHDsim(X,Y)function[6],whichcansolvetheproblemderivedfromacomplementarypropertyineverydimension.However,theattributedifferenceandnoisedistributionproblemareneglected.TheClose(X,Y)function[8]basedonthemonotonousdecreaseofe-xcanovercometheinfluencefromcomponentsinsomedimensionswithlargevariancebutdoesnotconsidertherelativedifference,whichwouldbeaffectedbynoise.TheEsim(X,Y)[9]functionwasproposedbyimprovingHsim(X,Y)andClose(X,Y)functionsandcombiningtheinfluenceofpropertyonsimilarity.Ineverydimension,theEsim(X,Y)componentshowsapositivecorrelationtothevalueinthisdimension.Alldimensionsaredividedintotwoparts:normalandnoisydimensions.Inanoisydimension,thenoiseoccupiesmajority.Whennoiseissimilarorlargerthantheoneinanormaldimension,thismethodisinvalid.Thesecondarymeasurementmethod[13]isusedtocalculatethesimilaritybyvirtueofpropertydistribution,spacedistance,etc.;however,itneglectsthenoisedistributionandweight.Inaddition,itistime-consuming.TheconceptofnearestneighborprojectionwasproposedbyHinneburg[14],whichwascombinedwithdimensionalityreductiontosolvetheprobleminhigh-dimensionalspace.However,thismethodcomplicatesthedeterminationofasuitablequalitycriterionfunction.Thus,anextensiontheorywasintroducedintosimilaritycalculation[15],inwhich,thehigh-dimensionaldataisexpressedasanorderedthreetuplebyvirtueofmatterelement,andthedeviation(theintervallengthofattributevalueineverydimension)isaddedintofunctionA. However, this method is too complicated, and the result validation of the high-dimensional data was not described in the corresponding paper. Yi[10]determined that in a high-dimensional space, the difference in a noisy dimension is larger than in a sparse dimension, no matter how similar the data is. This difference occupies a large amount of the similarity calculation, leading to the calculation results of any objects being similar. Therefore, thePsim(X,Y)function[12]wasproposedtoeliminatethenoisyinfluencebyanalyzingthedifferenceamongalldimensions.Theexperimentalresultsindicatethatthismethodissuitableforavarietyofdata.However,itsrangeis[0,n],wherenisthedimensionality.Thus,thesimilaritiesindifferentdimensionscannotbecompared.

    2 Similaritymeasurementmethodbasedonnormalizednetlatticesubspace

    2.1 Sparse and noisy dimensions

    With increasing dimensionality, the similarities based on theLdnormbetweenanydatabecomethesame.TherootcauseisthattheLdnormdependsonthedimensiontoomuchwhichhaslargelydifferentcomponents.Inotherwords,whencalculatingsimilaritybetweenXandY,thelargerthevalueofXi-Yionthei-th dimension, the greater the contribution of thei-th dimension toXandY.AlthoughbothXandYareverysimilarinotherdimensionsexceptthei-th dimension, the overall similarity ofXandYisverysmall.Thisi-th dimension is called sparse or noisy dimension.

    Owing to the existence of sparsity and noise in the high-dimensional space, no matter how similar the two records are there will always be a different dimension. The difference in these dimensions occupies a large proportion of the whole similarity, leading to any record in the high-dimensional space being dissimilar[16].

    To solve this problem, the data range in every dimension can be divided into several intervals, and the components can be mapped onto corresponding intervals. When calculating the similarity between two points, only the dimensions that fall into the same interval are used. The other dimensions are regarded as sparse or noisy dimensions, and are not included in the calculation.

    2.2 Meshing of high-dimensional data space

    Let the dimension of dataset bed,andthenumberofdataobjectbeM.Then,everydataobjectisexpressedasxk(1≤k≤M).Inaddition,everydimensionisdividedinton=[θd]continuousintervals,andθistherealnumberbetween0and1.Thus,thenumberofpointsineveryintervalisG=[M/n].

    Inthei-th dimension, all components are sorted in an ascending order. Thek-th sorted value isVal[k](1≤k≤M).Rijisthej-th interval in thei-th dimension, whose lower and upper bounds areLRijandURij,respectively.ItcanbeseenthatLRij=Val[(j-1)G+1]andURij=Val[jG].

    (2)

    (3)

    Forxkandyl,thesetofdimensionsinwhichcomponentsfallintothesameintervalis

    (4)

    Ifthei-th components ofxkandylfallintotheadjacentintervals,andthedistancebetweenthemislessthantheaveragelengthofthetwoadjacentintervals,thetwopointsareregardedasclosetoeachother,andincludedinthesimilaritycalculation.Thesetofthesedimensionsisshownas

    (5)

    ThesetofdimensionsincludedinthesimilaritycalculationistheunionofS1andS2:

    S=S1US2

    (6)

    2.3Similaritymeasurement

    ThePsim(X,Y)functionproposedbyYiissuitableforavarietyofdatatypes[10];however,itsrangeisdependentonthespatialdimensionality,andthusthecomparisonofsimilarityindifferentdimensionsisnotpossible.Underthecircumstanceofmaintainingeffects,Psim(X,Y)iscorrectedas

    (7)

    whereXandYareanytwopointsinthed-dimensional space, andXjandYjarecomponentsinthei-th dimension. Moreover,δ(Xj,Yj)isthediscriminantfunction.IfXjandYjareinthesameinterval[LRj,URj],δ(Xj,Yj)=1,otherwiseδ(Xj,Yj)=0.E(X,Y)representsthenumberofintervalsinwhichcomponentsofXandYareallthesame.TherangeofNPsim(X,Y)isobservedtobein[0, 1].TheaboveistheoutlineofNPsim,andthedetailedintroductioncanbefoundinRef.[10].

    3 Experiment

    Tovalidatethismethod,threedatatypeswithdifferentdistributionsweregeneratedthroughMatlab.Next,thesimilaritiesindifferentdimensionswerecalculatedusingtheproposedmethod,andwerecomparedwiththeresultobtainedfromcalculatingManhattandistance,Euclideandistance,Hsim(X,Y),Gsim(X,Y),Close(X,Y),Esim(X,Y),andPsim(X,Y).

    3.1Datadescription

    Thefollowingthreedatatypeswereusedintheexperiment[10].

    (1)Independentandidenticallydistributed(IID):Here,allvariablesobeythesamedatadistributionfunctionbutareindependentofeachother.TheIIDdataZisgeneratedbyZ=(Z1,…,ZM),andZifollowsthedistributionofZi~F(0,1).

    (3)Dependentandidenticallydistributed(DID):Allvariablesobeythesamedatadistributionbutarenotindependent.Inaddition,twodimensionsareindependentofeachothercalled“freedimensions”;theotherdimensionsarerelatedtothem.TheDIDdataZisgeneratedasfollows.First,twod×1randomvariablesAandBobeyingthedistributionofF(0,1)aregenerated.Second,two1×MrandomvariablesUandVobeyingthedistributionofF(-1, 1)areproduced.Third,Z1(2≤i≤M)isgeneratedthroughZi=A×Ui+B×Vi.Atlast,theDIDdataZisproducedasZ=(Z1,…,ZM).

    3.2Relativedifference

    Tovalidatethismethod,IID,RID,andDIDdataaregeneratedusinganormrnd()functionofMatlab[10].Thedimensionofeverydatatypeisasfollows: 10, 60, 110, 160, 210, 260, 310, 360,and410.Thenumberofdataineverydimensionis1000.Inaddition,therelativedifferencebetweenthefarthestandnearestneighborsiscalculatedasfollows[17]:

    (8)

    whereDmaxn,Dminn,andDavgnaremaximal,minimal,andaveragesimilaritiesinthed-dimensional space, respectively. The relative difference results are shown in Figs 3~5.

    According to the characteristics of the results, similarity measurement methods are divided into two types: the first includes Manhattan distance, Euclidean distance,Hsim(X,Y),Gsim(X,Y),Close(X,Y),andEsim(X,Y);andtheothersincludePsim(X,Y)andNPsim(X,Y).Therelativedifferenceofthesecondtypeofmethodsistwoorthreemagnitudeslargerthanthatofthefirsttypeofmethods.Therefore,theperformanceadvantageofthesecondmethodtypeisobvious.

    TherelativedifferenceofPsim(X,Y)andNPsim(X,Y)hasnodifferentiationdegree.Thus,thestatisticalanalysisneedstobestudiedfurther.

    Fig.3 Relative difference of various similarity measurement methods for IID data

    Fig.4 Relative difference of various similarity measurement methods for RID data

    3.3 Statistical analysis

    To compare the effect ofPsim(X,Y)andNPsim(X,Y),themaximum,minimum,andaverageofDIDdataindifferentdimensionsarecalculated,asshowninFig.6.TheexperimentalresultsindicatethatthesimilarityrangeofPsim(X,Y)increaseswiththedimension.Thus,thefunctionisnotsuitableforthesimilaritycomparisonindifferentdimensions.However,theproblemdoesnotexistinNPsim(X,Y).Table1liststhenumbersofPsim(X,Y)whosevalueisgreaterthan1indifferentdimensions.Thenumberof

    Fig.5 Relative difference of various similarity measurement methods for DID data

    Fig.6 Statistical value of various similarity measurement methods for DID data

    Dimension1060110160210Number1686041203731132481045284672Dimension260310360410260Number9842963024720155885198429

    Psim(X,Y)ineverydimensionis1000×1000=1,000,000.Inaddition,the5%~17%resultismorethan1,andthusthecomparisonofsimilarityindifferentdimensionsisnotpossible.Therefore,NPsim(X,Y)cansatisfytherequirementofsimilaritycomparisonindifferentdimensions.

    4 Conclusion

    Thesimilaritymeasurementisthebasisofdata-miningalgorithms,suchasclustering,classification,andnearestneighbor.However,owingtothecurseofdimensionality,themeasurementalwaysfailsinhigh-dimensionalspace.Asimilaritymeasurementmethodofhigh-dimensionaldatabasedonanormalizednetlatticesubspaceisproposed.Inthismethod,datarangeofeachdimensionisdividedintoseveralintervals,andthecomponentsaremappedontothecorrespondingintervals.Duringsimilaritycalculation,onlythecomponentinthesameoradjacentintervalisused.Thismethodcanavoidthesimilarityeffectthatgeneratedfromthesparseornoisydimension.Tovalidatetheproposedalgorithm,threetypesofdistributiondataareusedintheexperiment,andanothersevenmethodtypesarecompared.Theexperimentalresultsshowthattheproposedmethodissuitableforsimilaritymeasurementinhigh-dimensiondata.

    Inthefuture,theweightcalculationindifferentdimensions,andtheautomaticupdatingstrategyofaspatialgridwillbestudied.Inaddition,theproposedmethodwillapplyarelateddata-miningalgorithm,suchasclusteringorcorrelationanalysis.

    [ 1] Tan P N, Michael S, Vipin K. Introduction to Data Mining. Boston: Addison-Wesley Publishing Company, 2005. 25-36

    [ 2] Chen J N. The Research and Application of Key Technologies in Knowledge Discovery of High-dimensional Clustering. Beijing: Publishing House of Electronics Industry, 2011. 120-128(In Chinese)

    [ 3] Aggarwal C C. Re-designing distance functions and distance based applications for high dimensional data.ACMSIGMODRecord, 2001, 33(1):117-128

    [ 4] Warren B P. Approximate Dynamic Programming: Solving the Curses of Dimensionality (2nd Edition). Hoboken, New Jersey: John Wiley & Sons Press, 2011. 124-161

    [ 5] Yang F Z, Zhu Y Y. An efficient method for similarity search on quantitative transaction data.JournalofComputerResearchandDevelopment, 2004, 41(2):361-368

    [ 6] Xie M X, Guo J Z, Zhang H B, et al. Research on the similarity measurement of high dimensional data.ComputerEngineeringandScience, 2010, 32(5):92-96(In Chinese)

    [ 7] Huang S D, Chen Q M. On clustering algorithm of high dimensional data based on similarity measurement.ComputerApplicationsandSoftware, 2009, 26(9):102-105(In Chinese)

    [ 8] Shao C S, Lou W, Yan L M. Optimization of algorithm of similarity measurement in high-dimensional data.ComputerTechnologyandDevelopment, 2011, 21(2):1-4(In Chinese)

    [ 9] Wang X Y, Zhang H Y, Shen L Z, et al. Re-search on high dimensional clustering algorithm based on similarity measurement.ComputerTechnologyandDevelopment, 2013, 23(5):30-33(In Chinese)

    [10] Yi L H. Research on clustering algorithm for high dimensional data:[Ph.D dissertation]. Qinhuangdao: Institute of Information Science and Engineering, Yanshan University, 2011. 28-30(In Chinese)

    [11] Ericson K, Pallickara S. On the performance of high dimensional data clustering and classification algorithms.FutureGenerationComputerSystems, 2013, 29(4):1024-1034

    [12] Zhao H. Study on Some Issues of Data Clustering in Data Mining:[Ph.D dissertation]. Xi’an: School of Electronic Engineering, Xidian University, 2005. 35-42(In Chinese)

    [13] Jia X Y. A high dimensional data clustering algorithm based on twice similarity.JournalofComputerApplications, 2005, 25(B12):176-177

    [14] Alexander H, Charu A C, Keim D A. What is the nearest neighbor in high dimensional spaces? In: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000. 506-515

    [15] Yuan R P, Shi M R. Research on the similarity of high dimensional big data based on extenics.OperationsResearchandManagementScience, 2015, 24(5):184-188

    [16] Kriegel H P, Kr?ger P, Zimek A. Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering.ACMTransactionsonKnowledgeDiscoveryfromData, 2009, 3(1):1-58

    [17] Charu C, Aggarwal, Yu P S. The IGrid index: reversing the dimensionality curse for similarity indexing in high dimensional space. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000. 119-129

    10.3772/j.issn.1006-6748.2017.02.009

    ①Supported by the National Natural Science Foundation of China (No. 61502475) and the Importation and Development of High-Caliber Talents Project of the Beijing Municipal Institutions (No. CIT & TCD201504039).

    ②To whom correspondence should be addressed. E-mail: liwenfa@buu.edu.cn

    on Dec. 10, 2016

    ?? born in 1974. He received his Ph.D. degree in Graduate University of Chinese Academy of Sciences in 2009. He also received his B.S. and M.S. degrees from PLA Information Engineering University in 1998 and 2003 respectively. His research interests include information security, data analysis and mining, etc.

    猜你喜歡
    文法
    從絕響到轉型:近現(xiàn)代“文法”概念與“文法學”
    關于1940 年尼瑪抄寫的《托忒文文法》手抄本
    中國石油大學勝利學院文法與經(jīng)濟管理學院簡介
    西夏文銅鏡的真言文法與四臂觀音像研究
    西夏學(2018年2期)2018-05-15 11:24:00
    LL(1)文法分析器的研究與分析
    科技風(2017年25期)2017-05-30 15:40:44
    A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix①
    25年呵護患病妻子不離不棄
    兵團工運(2016年9期)2016-11-09 05:46:13
    基于領域文法的微博輿情分析方法及其應用
    基于單向點格自動機的UPG文法識別并行算法
    文法有道,為作文注入音樂美
    學生天地(2016年26期)2016-06-15 20:29:39
    久久久久精品国产欧美久久久| 91麻豆精品激情在线观看国产| 国产91精品成人一区二区三区| 女生性感内裤真人,穿戴方法视频| 一级毛片久久久久久久久女| 国产精品三级大全| 久久久精品欧美日韩精品| 在线观看美女被高潮喷水网站| 欧美在线一区亚洲| av女优亚洲男人天堂| 人妻久久中文字幕网| 日本一本二区三区精品| 窝窝影院91人妻| 亚洲三级黄色毛片| 亚洲男人的天堂狠狠| 观看免费一级毛片| 国内久久婷婷六月综合欲色啪| 亚洲在线自拍视频| 日韩大尺度精品在线看网址| 成人精品一区二区免费| 不卡视频在线观看欧美| 欧美激情久久久久久爽电影| av福利片在线观看| 日本免费一区二区三区高清不卡| 亚洲专区中文字幕在线| 久久人人精品亚洲av| 色噜噜av男人的天堂激情| 丰满的人妻完整版| 国产av不卡久久| 18禁在线播放成人免费| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| 九色国产91popny在线| 亚洲精华国产精华液的使用体验 | 欧美一区二区国产精品久久精品| 午夜亚洲福利在线播放| 久久久久国内视频| 久9热在线精品视频| 女人被狂操c到高潮| 日韩欧美国产在线观看| 天堂网av新在线| 韩国av一区二区三区四区| 亚洲专区国产一区二区| 午夜免费成人在线视频| 丰满人妻一区二区三区视频av| 国产黄a三级三级三级人| 我要搜黄色片| 最近最新免费中文字幕在线| 久久久久九九精品影院| 能在线免费观看的黄片| 久久精品国产99精品国产亚洲性色| 国产又黄又爽又无遮挡在线| 欧美人与善性xxx| 色哟哟哟哟哟哟| 男人舔女人下体高潮全视频| 国产精品人妻久久久影院| 亚洲精品国产成人久久av| 国产黄色小视频在线观看| 高清毛片免费观看视频网站| 午夜激情福利司机影院| 中文字幕免费在线视频6| av专区在线播放| 国产一区二区三区在线臀色熟女| 超碰av人人做人人爽久久| 色精品久久人妻99蜜桃| 久9热在线精品视频| 亚洲av不卡在线观看| av在线老鸭窝| 内射极品少妇av片p| 日本成人三级电影网站| .国产精品久久| 亚洲精品在线观看二区| 最新中文字幕久久久久| 国产精品一及| 亚洲av熟女| 国产成人aa在线观看| 九九久久精品国产亚洲av麻豆| 日韩一本色道免费dvd| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 男人和女人高潮做爰伦理| 夜夜夜夜夜久久久久| 国产成人a区在线观看| 黄色一级大片看看| 91午夜精品亚洲一区二区三区 | 久久久久九九精品影院| 亚洲一区高清亚洲精品| av专区在线播放| 99视频精品全部免费 在线| 无遮挡黄片免费观看| 长腿黑丝高跟| 亚洲国产精品成人综合色| 在现免费观看毛片| 女的被弄到高潮叫床怎么办 | 天堂动漫精品| 欧美日韩乱码在线| 在线免费十八禁| 日韩欧美国产在线观看| 天天一区二区日本电影三级| 22中文网久久字幕| 欧美日韩精品成人综合77777| 在线免费观看的www视频| 久久久精品欧美日韩精品| 国产淫片久久久久久久久| 欧美成人免费av一区二区三区| av在线亚洲专区| 动漫黄色视频在线观看| 久久国产乱子免费精品| 亚洲国产欧美人成| www.www免费av| 麻豆av噜噜一区二区三区| 国产精品电影一区二区三区| 黄色一级大片看看| av天堂在线播放| 国产男人的电影天堂91| 俺也久久电影网| 亚洲欧美精品综合久久99| 美女被艹到高潮喷水动态| 国产一级毛片七仙女欲春2| 久久精品国产清高在天天线| 深爱激情五月婷婷| 1024手机看黄色片| 亚洲男人的天堂狠狠| 欧美人与善性xxx| 两个人的视频大全免费| 3wmmmm亚洲av在线观看| 99九九线精品视频在线观看视频| 日本欧美国产在线视频| 免费黄网站久久成人精品| 欧美日本视频| 国产免费一级a男人的天堂| 久久这里只有精品中国| 国产精品自产拍在线观看55亚洲| 精品人妻熟女av久视频| 男女那种视频在线观看| 欧美区成人在线视频| 色综合亚洲欧美另类图片| 91久久精品国产一区二区成人| 亚洲欧美激情综合另类| 真人做人爱边吃奶动态| 免费观看在线日韩| 久久99热这里只有精品18| 国产高清有码在线观看视频| 在线看三级毛片| 免费在线观看日本一区| 亚洲中文字幕日韩| 无遮挡黄片免费观看| 乱人视频在线观看| 可以在线观看的亚洲视频| 精品久久久噜噜| 黄色一级大片看看| 精品久久久久久,| 国产一区二区三区在线臀色熟女| 俺也久久电影网| 久久精品国产亚洲av天美| 国产亚洲精品av在线| av在线蜜桃| 国产成年人精品一区二区| 嫩草影院新地址| 亚洲成a人片在线一区二区| 看片在线看免费视频| 我要看日韩黄色一级片| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 免费黄网站久久成人精品| 欧美不卡视频在线免费观看| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 美女cb高潮喷水在线观看| 久久久久久久久久久丰满 | 国内精品一区二区在线观看| 又粗又爽又猛毛片免费看| 国产亚洲91精品色在线| 少妇猛男粗大的猛烈进出视频 | 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 国产精品久久视频播放| 日本在线视频免费播放| 黄色日韩在线| 黄色女人牲交| 欧美成人一区二区免费高清观看| 欧美成人免费av一区二区三区| 精品久久久久久久人妻蜜臀av| av在线蜜桃| 国产精品国产三级国产av玫瑰| 97热精品久久久久久| 中出人妻视频一区二区| 免费av观看视频| 国产精品久久久久久久电影| 亚洲自拍偷在线| 亚洲内射少妇av| 日韩av在线大香蕉| 精品99又大又爽又粗少妇毛片 | 天美传媒精品一区二区| 很黄的视频免费| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 露出奶头的视频| 51国产日韩欧美| 国产av一区在线观看免费| .国产精品久久| 香蕉av资源在线| 久久久久国内视频| 亚洲美女搞黄在线观看 | 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 日本a在线网址| xxxwww97欧美| 黄色配什么色好看| 久久这里只有精品中国| 性插视频无遮挡在线免费观看| 亚洲av不卡在线观看| 成年版毛片免费区| 黄色女人牲交| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 中文亚洲av片在线观看爽| 免费av毛片视频| 午夜福利在线观看吧| 日本三级黄在线观看| 韩国av一区二区三区四区| 亚洲真实伦在线观看| 欧美性感艳星| 免费看日本二区| 久久久久免费精品人妻一区二区| 日韩欧美国产一区二区入口| 麻豆国产97在线/欧美| 成人av在线播放网站| 日日摸夜夜添夜夜添av毛片 | 美女高潮的动态| 国产精品乱码一区二三区的特点| 一级a爱片免费观看的视频| 日本免费a在线| 免费看日本二区| 成年版毛片免费区| 他把我摸到了高潮在线观看| 午夜福利视频1000在线观看| 精品久久久噜噜| 嫩草影视91久久| 国产精品爽爽va在线观看网站| xxxwww97欧美| 不卡视频在线观看欧美| 五月伊人婷婷丁香| 午夜老司机福利剧场| 国产精品一区二区免费欧美| 欧美一区二区精品小视频在线| a级毛片免费高清观看在线播放| 中文字幕精品亚洲无线码一区| 少妇的逼水好多| 色在线成人网| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| .国产精品久久| 深夜精品福利| 亚洲精品影视一区二区三区av| 亚洲国产精品久久男人天堂| 欧美区成人在线视频| 色吧在线观看| 午夜福利视频1000在线观看| 日本在线视频免费播放| 网址你懂的国产日韩在线| 午夜a级毛片| 毛片女人毛片| 国内精品久久久久精免费| 午夜影院日韩av| 国产成人福利小说| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 精品人妻视频免费看| 日本a在线网址| 久久久久久久久久久丰满 | 久久精品影院6| aaaaa片日本免费| 成人高潮视频无遮挡免费网站| 午夜a级毛片| a在线观看视频网站| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 少妇的逼水好多| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 大又大粗又爽又黄少妇毛片口| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件 | av国产免费在线观看| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 嫩草影院新地址| 亚洲第一电影网av| 日本-黄色视频高清免费观看| 精品久久久久久久久av| 老司机福利观看| 亚洲中文字幕一区二区三区有码在线看| 成年女人永久免费观看视频| 午夜激情福利司机影院| 又黄又爽又刺激的免费视频.| 久久热精品热| а√天堂www在线а√下载| 亚洲人成网站在线播| 久久香蕉精品热| 国产一区二区亚洲精品在线观看| 亚洲精品456在线播放app | 免费观看的影片在线观看| 麻豆一二三区av精品| 国产一区二区在线观看日韩| 日韩高清综合在线| 看黄色毛片网站| 一区福利在线观看| 亚洲欧美日韩高清专用| 亚洲国产日韩欧美精品在线观看| 久久精品久久久久久噜噜老黄 | 在线国产一区二区在线| avwww免费| 精品欧美国产一区二区三| av在线亚洲专区| 国产蜜桃级精品一区二区三区| 国产精品一区www在线观看 | 久久天躁狠狠躁夜夜2o2o| 国产伦精品一区二区三区四那| 搡老岳熟女国产| 国产亚洲精品久久久com| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| bbb黄色大片| 亚洲av二区三区四区| 欧美精品国产亚洲| 欧美中文日本在线观看视频| 小说图片视频综合网站| 九九热线精品视视频播放| 日本三级黄在线观看| 男女啪啪激烈高潮av片| 嫩草影院入口| 日韩欧美在线乱码| 久久亚洲精品不卡| 国产成人aa在线观看| av福利片在线观看| 亚洲无线在线观看| 99热这里只有精品一区| 午夜福利高清视频| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 男女下面进入的视频免费午夜| 成人性生交大片免费视频hd| 99久久九九国产精品国产免费| 免费高清视频大片| 成人二区视频| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 国产亚洲欧美98| 国产精品1区2区在线观看.| 丰满人妻一区二区三区视频av| 亚洲欧美日韩高清专用| 午夜视频国产福利| 亚洲乱码一区二区免费版| 免费人成视频x8x8入口观看| 中文字幕久久专区| 亚洲美女黄片视频| a在线观看视频网站| 亚洲av中文字字幕乱码综合| 国产一区二区三区av在线 | 国产乱人伦免费视频| 有码 亚洲区| 中文字幕免费在线视频6| 亚洲一区二区三区色噜噜| 久久久精品欧美日韩精品| 日本在线视频免费播放| 久久热精品热| 欧美黑人巨大hd| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 国产av麻豆久久久久久久| 日韩一本色道免费dvd| 最近最新免费中文字幕在线| 中文字幕av在线有码专区| 少妇丰满av| 麻豆国产av国片精品| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 简卡轻食公司| 两性午夜刺激爽爽歪歪视频在线观看| 免费av毛片视频| 国内精品久久久久久久电影| h日本视频在线播放| 听说在线观看完整版免费高清| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 亚洲av免费高清在线观看| 白带黄色成豆腐渣| 欧美性感艳星| 波多野结衣巨乳人妻| 十八禁网站免费在线| 亚洲国产精品久久男人天堂| 亚洲美女黄片视频| 成人性生交大片免费视频hd| 国产精品亚洲一级av第二区| 国产伦人伦偷精品视频| 小蜜桃在线观看免费完整版高清| 久久精品国产清高在天天线| 特大巨黑吊av在线直播| 久久久午夜欧美精品| 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 国产蜜桃级精品一区二区三区| 国产亚洲欧美98| 91久久精品电影网| videossex国产| 熟妇人妻久久中文字幕3abv| 国产精品三级大全| 久久国产精品人妻蜜桃| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| av在线蜜桃| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 狠狠狠狠99中文字幕| 欧美高清成人免费视频www| 亚洲18禁久久av| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 在线免费观看不下载黄p国产 | 午夜免费激情av| 免费av不卡在线播放| 丝袜美腿在线中文| 亚洲国产精品合色在线| 我要搜黄色片| 在线观看舔阴道视频| 色哟哟·www| 欧美一级a爱片免费观看看| 国产蜜桃级精品一区二区三区| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器| 欧美日韩黄片免| 最近最新免费中文字幕在线| 国内精品一区二区在线观看| 内地一区二区视频在线| 久久香蕉精品热| 亚洲性夜色夜夜综合| 亚洲av中文字字幕乱码综合| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 国产男靠女视频免费网站| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区久久| 成人午夜高清在线视频| 日韩欧美在线乱码| 欧美性猛交黑人性爽| 99久久精品一区二区三区| 亚洲av免费在线观看| 国产av一区在线观看免费| 成人国产麻豆网| 校园春色视频在线观看| 精品久久久久久,| 一级黄片播放器| 亚洲av中文av极速乱 | 国产免费一级a男人的天堂| 成年人黄色毛片网站| 一区二区三区激情视频| 男插女下体视频免费在线播放| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 国产白丝娇喘喷水9色精品| 日日干狠狠操夜夜爽| 日本熟妇午夜| 欧美激情在线99| 国产毛片a区久久久久| 69人妻影院| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6 | 亚洲综合色惰| 亚洲第一电影网av| 久久久久久久久大av| 级片在线观看| 黄色女人牲交| 欧美国产日韩亚洲一区| 亚洲美女视频黄频| 国产精品久久电影中文字幕| 男女做爰动态图高潮gif福利片| 日韩欧美在线二视频| 国产蜜桃级精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 美女黄网站色视频| 久久国产精品人妻蜜桃| 国产精品国产三级国产av玫瑰| 久久人妻av系列| 97超视频在线观看视频| 九色国产91popny在线| 久久这里只有精品中国| 欧美极品一区二区三区四区| 日本 av在线| 蜜桃久久精品国产亚洲av| av国产免费在线观看| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 国产大屁股一区二区在线视频| 免费不卡的大黄色大毛片视频在线观看 | 一级黄片播放器| 99国产极品粉嫩在线观看| 一本一本综合久久| 免费av不卡在线播放| 亚洲欧美清纯卡通| av.在线天堂| 午夜福利在线观看吧| 麻豆成人av在线观看| 日本一二三区视频观看| 国产一级毛片七仙女欲春2| 久久午夜亚洲精品久久| 小说图片视频综合网站| 免费观看的影片在线观看| 国产高清视频在线播放一区| 三级毛片av免费| av中文乱码字幕在线| 极品教师在线视频| www日本黄色视频网| 老司机福利观看| 亚洲av中文av极速乱 | www日本黄色视频网| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 女的被弄到高潮叫床怎么办 | 蜜桃久久精品国产亚洲av| 一区福利在线观看| 别揉我奶头 嗯啊视频| 国产精品av视频在线免费观看| 黄色丝袜av网址大全| 丰满人妻一区二区三区视频av| 国产在线精品亚洲第一网站| 国产精品一及| 久久人妻av系列| 免费高清视频大片| 中文字幕高清在线视频| 综合色av麻豆| 天堂av国产一区二区熟女人妻| 国产精品三级大全| 亚洲成av人片在线播放无| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 亚洲性久久影院| 日本a在线网址| 黄色配什么色好看| 少妇猛男粗大的猛烈进出视频 | 在线观看美女被高潮喷水网站| 看免费成人av毛片| 一个人观看的视频www高清免费观看| 免费av不卡在线播放| 久久九九热精品免费| av在线蜜桃| 欧美色欧美亚洲另类二区| 人人妻,人人澡人人爽秒播| 色视频www国产| 一a级毛片在线观看| 国产久久久一区二区三区| 日日撸夜夜添| 99精品在免费线老司机午夜| 成年女人永久免费观看视频| 国产成人一区二区在线| 欧美日韩乱码在线| 成人国产综合亚洲| 性色avwww在线观看| 亚洲一区二区三区色噜噜| 亚洲人与动物交配视频| 国产高潮美女av| 18禁黄网站禁片午夜丰满| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 男女做爰动态图高潮gif福利片| 国产 一区 欧美 日韩| 免费高清视频大片| 天堂av国产一区二区熟女人妻| 俄罗斯特黄特色一大片| 国产午夜精品论理片| 夜夜爽天天搞| 在线天堂最新版资源| 乱系列少妇在线播放| 深夜a级毛片| 欧美高清性xxxxhd video| 亚洲熟妇中文字幕五十中出| 麻豆一二三区av精品| 韩国av在线不卡| 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 久久久午夜欧美精品| 欧美中文日本在线观看视频| 在线观看一区二区三区| 国产精品久久电影中文字幕| 国产精品国产三级国产av玫瑰| 免费一级毛片在线播放高清视频| 少妇裸体淫交视频免费看高清| 麻豆成人av在线观看| 午夜爱爱视频在线播放| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 色在线成人网| 免费黄网站久久成人精品| 日韩欧美三级三区| av专区在线播放| 亚洲av一区综合| 免费av不卡在线播放| 99精品久久久久人妻精品| 少妇人妻一区二区三区视频| 亚洲久久久久久中文字幕| 九九热线精品视视频播放| 久久久久免费精品人妻一区二区| 色精品久久人妻99蜜桃| 国产爱豆传媒在线观看| 男人狂女人下面高潮的视频|