• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Altitude information fusion method and experiment for UAV①

    2017-06-27 08:09:22XuDongfu徐東甫PeiXinbiaoBaiYuePengChengWuZiyiXuZhijun
    High Technology Letters 2017年2期

    Xu Dongfu (徐東甫), Pei Xinbiao, Bai Yue, Peng Cheng, Wu Ziyi, Xu Zhijun

    (*Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R.China) (**University of Chinese Academy of Sciences, Beijing 100039, P.R.China)

    Altitude information fusion method and experiment for UAV①

    Xu Dongfu (徐東甫)***, Pei Xinbiao***, Bai Yue②*, Peng Cheng*, Wu Ziyi***, Xu Zhijun*

    (*Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R.China) (**University of Chinese Academy of Sciences, Beijing 100039, P.R.China)

    Altitude regulation is a fundamental problem in UAV (unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance. However, data from altitude sensors may be unstable by interference. A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment. Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter (SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground. This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.

    unmanned aerial vehicles (UAV), altitude information fusion, multi-sensor, adaptive Kalman filter

    0 Introduction

    In the last two decades, great efforts have been made for the research and development of multiple rotor UAVs driven by the significant progress of sensing and mechatronics technology[1-3]. This sort of aircrafts has shown its promising applications in both civic and military aspects. Compared with the traditional helicopters, they have the advantages of simplicity in mechanical construction, ease in modeling, control and maintenance[4-7].

    The accuracy and uniformity are very important for UAVs. However, due to the small structure and low cost, UAVs commonly use low cost sensors, such as MEM’s based acceleration, barometer and GPS (global positioning system). Suffered from severe drift and noise, the obtained estimation is unfeasible in practice. The attempt on this regard has been made by many researchers, by means of applying Kalman filter based techniques.

    Normally, Kalman filter is the acknowledged rule of technology for data fusion, which requires that measure noise and system noise are known[8]. However, when the Kalman filter is used in UAVs, measure noises and system noises are unknown and time-varied. The Kalman filter is no longer optimal and its convergence cannot be guaranteed.

    The SHAKF (Sage-Husa adaptive Kalman filter) can solve the above problems, which estimates system noises and measure noises in theory adaptively[9,10]. When estimating the altitude in UAVs, the SHAKF could not separate the system noises and the measure noises accurately, let alone the high accuracy estimation variance values. There is a constant error between estimations of the system noises and the measure noises[11]. The variance of the system noises is deviated, which result in wrong judgment of estimation, such as, increasing weight of barometer in the altitude estimation, decreasing precision of altitude and causing misconvergence. It cannot meet the need of UAVs autonomous flight.

    An improved Sage-Husa adaptive extended Kalman filtering (SHAEKF) is designed, aiming at the development of estimation for altitude. The improved SHAEKF uses the noise variance of MEMS accelerometer by real-time estimating the system noises variance of altitude[11], which not only reduces the estimation error of the system noises, but also guarantees the convergence. At the same time, united with the enhanced Kalman filter[12,13], the improved SHAEKF can inhibit the divergence of filter. Combined with the estimation structure based on the feature of different sensors, the sensor defects can be made up and accurate status information of the altitude can be obtained. At last, experiments were carried out to verify the feasibility and effectiveness of the method.

    1 Altitude system structure

    1.1 Brief introduction of UAV platform

    The UAV used in this paper, shown in Fig.1, is an electric-powered multi-rotor UAV, which is named Hex-rotor[14].

    Fig.1 UAV experimental platform

    The UAV’s structure is shown in Fig.2. Six equal-length, long light rods are placed evenly around the center of the UAV. On the tip of each rod there are two coaxial rotors with driving units. In clockwise direction the upper six rotors are numbered 1~6, while the lower six are numbered 7~12. Among them, rotor No.1, 3, 5, 8, 10, 12 rotate clockwise, while rotor No.2, 4, 6, 7, 9, 11 rotate counterclockwise. The angle between the rotor’s shaft and the body plane isγ(0<γ<90°),andtwoadjacentrotor’sshaftpointsoppositedirection.ThegeographiccoordinatesystemandthebodycoordinatesystemarealsoshowninFig.2.

    1.2 Altitude measurement unit

    Altitude measurement unit consists of MEMS-based accelerometers, barometer, GPS module and laser module.

    1.2.1 Accelerometer

    Fig.2 Diagram of Hex-Rotor aircraft structure

    (1)

    where:

    Positioninformationcanbesolvedbyintegrationofspeedva.

    (2)

    Fig.3 Altitude of MEMS ACC

    1.2.2 Barometric altimeter

    The air pressure decreases with the increasing of altitude. Based on this principle, altitude can be determined by measuring pressure with barometer. However, the decrease of altitude is not uniform. Under the standard atmospheric conditions, altimeter formula is expressed as

    (3)

    whereRisthegasconstant,gnistheaccelerationoffreefall.βistheverticalchangerateoftemperature,Ta,Paandhaaretheenvironment’satmospherictemperaturelowerlimit,atmosphericpressureandgeopotentialheightrespectively.Phistheatmosphericstaticpressuremeasuredundercurrentaltitude.Settingthebarometermeasuredaltitudeattake-offpositionasareference,andcomparingwithitscurrentvalue,thealtitudeofUAVwithrespecttothealtitudeofthetakingoffplanecanbeobtained,whichisthealtitudeinformationdesiredinnavigation.

    Inactualmeasurement,theactualatmosphericconditionscannotmeettherequiredstandard;therefore,measurementerrormayoccur.Thismeasurementerrorincreaseswithreducedaltitude.WhenUAVisinflight,barometeroutputaccuracyismainlyaffectedbythehigh-frequencynoiseandconstanterrors.Theerrorcanbeexpressedas

    hb=h0+εb+ωb

    (4)

    where,hbisthemeasuredvalueofthebarometer,h0istheidealaltitude.Constanterrorismainlyrelatedtotemperatureandpressure,andcanbecompensatedbyinitialcalibration.ThereadingsofaltimeterwhentheUAVishoveringareshowninFig.4,intheeffectoftherotor’sdownwash,winddisturbanceandbarometererror.Thereisalsoadriftsothisaltitudesensitivetooutsideinterferencecannotbeusedalone.

    Fig.4 Altitude of barometer

    1.2.3 GPS altitude measure

    The GPS module receives data from three or more satellites whose coordinates are already known, then calculates the coordinates of the measuring points. The altitude obtained from GPS positioning by calculation and conversion can be expressed as

    hg=h0+ωg

    (5)

    wherehgisthemeasuredGPSvalue,h0istheidealaltitude,ωgisthemeasuringnoise(whitenoise).

    Fig.5 Altitude of GPS

    Fig.5 is the GPS altitude of the UAV during hovering. The GPS module output is overall smooth with small volatile. However, the GPS output frequency is 1-10Hz, much smaller than the control frequency of the UAV which reaches 50Hz. So the GPS data cannot meet the requirements of the aircraft’s dynamic response. It can be also seen from Fig.5 that sometimes there is no output because the GPS module is blocked. Therefore, the GPS module cannot be used alone either.

    1.2.4 Laser ranging module

    The laser ranging module of the UAV uses 905nm, near-infrared laser with phase method. The measurement range is 0.1m~25m, while measurement accuracy reaches ±5mm at the frequency of 100Hz. The error of laser ranging module can be expressed as

    hl=h0+ωl

    (6)

    wherehgisthelasermeasuringvalue,h0istheidealaltitude,ωgisthemeasuringnoise(whitenoise).Fig.6isthelasermoduleheightoftheUAVduringhovering.

    AsseeninFig.6,thealtitudedataprovidedbylaserrangingmodulehashighprecisionwithtransition.Consideringitsmeasurementrangeof1m~25m,laserrangingmodulecanonlybeusedatlowaltitudes.

    Fig.6 Altitude of laser module

    2 Altitude data fusions

    As seen from the data above,the error of altitude obtained from accelerometer accumulates over time because of the two integration; The barometer output gave a much wide measuring range due to its sensing mechanism with larger white noise. The GPS module not only has rather big fluctuation and noise with a constant bias, but also has no output when blocked; The laser module reading is rather accurate detection but only in a limited range of 0 to 30m above ground level. Therefore, based on the characteristics of each sensor, a process of SHAEKF is designed as shown in Fig.7.

    Fig.7 Process of SHAEKF

    The process of SHAEKF is divided into two parts: data analysis module and improved SHAEKF which improves the accuracy of altitude in different environment.

    2.1 State and observation models of altitude

    UAVs vertical movement can be described by linear mathematical model:

    (7)

    It can be said by equation of state:

    (8)

    (9)

    Xk=ΦXk-1+Buk-1+ΓWk-1

    (10)

    where:

    (11)

    Xkis the state vector,Tsisthefusiontimecycle,Wk∈R1×1isthesystemnoise,itsvariancestatisticalpropertiesarecompletelydecidedbythestatisticalfeaturesofmodelinput,therefore,thesystemnoisedrivearray: Γ=B.

    The measurement equation of discrete time state model is

    Zk=HXk+Vk

    (12)

    where Zk∈R3×1is the measurement provided from the GPS module, the MEMS accelerometer, the laser module and the barometer. Vk∈R3×1is the measurement noise. H is the quantity measurement matrix.

    Above all, the discrete time linear state model (state equation and measurement equation) of UAVS integration system is

    (13)

    The laser module is in a limited range of 0 to 25m above ground level, the laser module is used below 25m and the barometer is used above 25m in the process of SHAEKF, as shown in Eq.(14):

    (14)

    2.2 Data analysis module

    There are many errors on the altitude status from different sensors before the Kalman filter. Fuzzy Kalman filter is used to calculate theoretical and actual variance of innovation. A data analysis is added to the process of data fusion to identify the outputs of sensors and determines weight coefficient.

    The actual variance of innovation is calculated byNsamplingdata:

    (15)

    Thefusionaltitudeistreatedaspredictivevalue,andtheoutputistreatedasmeasurementvalue.vkisthedifferencevaluebetweenpredictivevalueandmeasurementvalue,namelyinnovation.Nisdecidedbythecharacteristicsofeachsensor.Thetheoreticalvarianceofinnovationisdefinedas

    (16)

    UsingfuzzyKalmantomatchvariance,avariantisdefendedtoinspectthedifferenceofpredictivevalueandmeasurementvalue:

    (17)

    Iftheoutputsarestable,theratiooftheoreticalandtheactualvarianceαCxiscloseto1,otherwiseαCxwillbecomebiggerwhentheoutputsmalfunction.InspectingthechangeofαCx,thefuzzyruleisagain:

    (18)

    Measuredbyexperiment,β=[βg,βb,βm,βl]isusedtoadjustweightcoefficient,whichcanadaptivelyadjusttheweightofeachsensor,ensuringtheaccuracyofestimationinsituationofhighdynamicindifferentenvironmentofUAVs.

    2.3ImprovedSHAEKF

    TheimprovedSHAEKFisgivenbythefollowingrecursiveequations:

    ①Firststepofprediction:

    (19)

    ②Updateinnovation:

    (20)

    ③Updatethepredictionsquareerrormatrix:

    (21)

    ④Noiseofmeasurement:

    (22)

    ⑤ Filter convergence criterion:

    (23)

    If Eq.(23) is satisfied, the filter is in convergence and keep the Pk/k-1in ③; Otherwise, update Pk/k-1by strong Kalman filter:

    (24)

    ⑥ Update the filter gain:

    (25)

    State altitude estimation:

    (26)

    whereαistheweightcoefficient.

    ⑦Updatestateestimationsquareerrormatrix:

    (27)

    ⑧Systemnoiseestimation:

    The improved SHAEKF has advantages as follows:

    (1) Estimates system noise and measurement noise

    The top priority of the improved SHAEKF is separating the system noise and the measurement noise while their statistical properties are neither unknown. For altitude fusion system of UAVs, system noise is mainly derived from the integral of MEMS accelerometer error, noise parameters are relatively stable. Therefore, the variance of estimation system noise can be calculated in real-time by the altitude of the accelerometer. The improvement not only can solve the problem of big error in estimation of the system noise, but also keep the system stable.

    (2) Exponential fading factor in Eq.(28):

    (28)

    When the UAV is in a state of flight, system in the process of dynamic changes, noise parameter has a weak non-stationary. The fading memory factor is used to raise the innovation in state estimation.

    (3) Combined with the strong tracking Kalman filter, based on the filter convergence criterion, the improved SHAEKF is combined with the strong tracking Kalman filter. If the criterion is established, the filter convergence keeps updating Pk/k-1to calculate filter gain, otherwise , the actual error of filter exceeds expected value in theory and Pk/k-1is updated by the strong tracking Kalman. Meanwhile the weight of each sensor is adaptively adjusted according to the weight coefficient, ensuring the accuracy of estimation in situation of high dynamic in different environment.

    3 Simulation and experimental results

    To validate the estimation of altitude fusion method, simulation and actual experimental were presented. Since UAV usually flies in short time, experiments are carried within 15 minutes. And the low and high altitudes are distinguished by the range of the laser ranging module -25m.

    3.1 Simulation experiment

    The two simulations are as follows: one simulation is in the height of 15m in the case of sudden failure of the GPS, the other simulation is in the height of 35m, simulation of more than 25m in which the fusion algorithm could adjust the weights of the sensors. The output data of each sensor is shown in Fig.8 and Fig.9.

    Fig.8 Altitude data of sensors at 15m

    Fig.9 Altitude data of sensors at 35m

    Simulation results are shown in Fig.10 and Fig.11.

    Fig.10 Result of Information Fusion at 15m

    Fig.11 Result of information fusion at 35m

    As shown in Fig.10, the lines denote the altitude of improved algorithm and the altitude of Kalman filter improved before. When the GPS broke down, the accuracy of Kalman filter reduced while the improved algorithm keeps the accuracy of fusion altitude. In Fig.11 the output of laser ranging module is 0, the fusion effect of the improved algorithm is better than the improvement before.

    3.2 Multipoint hovering flight experiment

    In order to further verify the effectiveness of the altitude in different altitudes and different environments, this section presents experimental results from the multipoint hovering flight. The hovering altitudes are 10m, 22m and 37m. The real time altitudes with no wind recorded within 1000s are shown in Fig.12. Fig.13 is the altitude with winds grade 3. The attitude and altitude control is satisfactory in the sense that the UAV is stable around the desired altitude.

    Fig.12 Spot hovering test with no wind

    Fig.13 Spot hovering test with wind grade 3

    The error at low altitudeel,andtheerrorathighaltitudeehwithnowind:

    Theerroratlowaltitudeel,andtheerrorathighaltitudeehwiththewindgrade3:

    3.3 3-Dtrajectoriesexperiment

    Forfurtherverifyingthereliabilityandhighdynamicofthealtitude,experimentalresultsarepresentedfromtherotorcraftUAVsautonomousflightinJilin,China.Accordingtotherequirementsoftask,flyinginthegroundspeedof4m/s,theUAVtracksthetrajectoryofatriangleatthealtitudefrom5mto25m.TheActualflighttrajectoryisrecordedasFig.14.

    Fig.14 3D trajectory of the UAV

    As can be learned from Fig.14, the UAV can accomplish the trajectory with the altitude error less than 1.5m. The experiment shows that the fusion method could meet the need of high dynamic.

    4 Conclusions

    The paper presents a data fusion approach to the problem of low altitude accuracy in UAVs.

    Adopting a number of different altitude information, a unique data fusion structure is designed according to the characteristics of each sensor.

    Based on the use of rotor aircraft environment, an improved SHAKF-Kalman filter data fusion method is presented. The algorithm can adaptively adjust using the weight of each sensor for ensuring the accuracy of estimation in situation of high dynamic in UAVs.

    As mentioned above, the multi-sensor data fusion based on the improved SHAKF- Kalman filter is positive. The estimation of altitude reaches a precision of 1.5 meter. The algorithm is stable, and much more adaptable to engineering.

    Reference

    [ 1] Zoto V, Gao X G. Intermediate carriers for UAV swarms: problem of fleet composition.JournalofSystemsEngineering&Electronics, 2013, 24(1):101-107

    [ 2] Qian M S, Jiang B, Xu D Z, et al. Robust dynamics surface fault tolerant control design for attitude control systems of UAV.SystemsEngineering&Electronics, 2014, 36(9):1798-1803

    [ 3] Qu Y, Zhang Y. Cooperative localization against GPS signal loss in multiple UAVs flight.JournalofSystemsEngineeringandElectronics, 2011, 22(1): 103-112

    [ 4] Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor.IEEETransactionsonRobotics, 2012, 28(1):90-100

    [ 5] Sebesta K D, Boizot N. A real-time adaptive high-gain EKF, applied to a quadcopter inertial navigation system.IEEETransactionsonIndustrialElectronics, 2014, 61(1): 495-503

    [ 6] Wei G, Li J. Adaptive Kalman filtering for the integrated SINS/DVL system.JournalofComputationalInformationSystems, 2013, 16(9):6443-6450

    [ 7] Chingiz H, Halil E S. Robust adaptive kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults.AerospaceScienceandTechnology, 2013, 28(1): 376-383

    [ 8] Sage A P, Husa G W. Adaptive filtering with unknown prior statist. In: Proceedings of the Joint Automatic Control Conference, Tokyo, Japan, 1969. 760-769

    [ 9] Kownackl C. Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals’ filtering.DigitalSignalProcessing, 2011, 21(1): 31-140

    [10] Zhang C Y. Approach to adaptive filtering algorithm.ChineseJournalofAeronautics, 1998, 19(75): 596-599 (In Chinese)

    [11] Rigatos G. Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles.RoboticsandAutonomousSystems, 2012, 60(7): 978-995

    [12] Hajiyev C, Soken H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults.AerospaceScienceandTechnology, 2013, 28(1): 376-383

    [13] Duan Z S, Han C A. A strong tracking adaptive state estimator and simulation.JournalofSystemSimulation, 2004, 16(5):1020-1023 (In Chinese)

    [14] Liu R H, Wang H. All attitude magnetic deviation compensation for digital magnetic compass.OpticsandPrecisionEngineering, 2011, 19(8): 1867-1873 (In Chinese)

    [15] Gao X X, Jiang R, Gao M M. Control scheme based on the inverse system method online learning BP neural network adaptive compensate. In: Proceedigns of the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), Xiamen, China, 2010. 874-878

    Xu Dongfu, male, born in 1987. He is a Ph.D candidate of the University of Chinese Academy of Sciences, and he received his B.S. degree in Jilin University in 2011. His main research direction is unmanned aerial vehicles integrated navigation and control.

    10.3772/j.issn.1006-6748.2017.02.007

    ①Supported by the National Natural Science Foundation of China (No. 61304017, 11372309), Key Technology Development Project of Jilin Province (No. 20150204074GX), the Project Development Plan of Science and Technology (No. 20150520111zh) and the Provincial Special Funds Project of Science and Technology Cooperation (No. 2014SYHZ0004).

    ②To whom correspondence should be addressed. E-mail: baiyueciomp@163.com

    on Mar. 4, 2016

    婷婷色综合大香蕉| 中文字幕人妻丝袜制服| 久热久热在线精品观看| 一区二区三区四区激情视频| 日本av免费视频播放| 两个人免费观看高清视频| 成人二区视频| 丰满少妇做爰视频| 国产成人精品婷婷| 日本与韩国留学比较| 人妻一区二区av| 欧美成人精品欧美一级黄| 免费观看无遮挡的男女| 最近最新中文字幕免费大全7| 精品国产露脸久久av麻豆| 少妇被粗大的猛进出69影院 | 亚洲国产日韩一区二区| 国产av码专区亚洲av| 狠狠婷婷综合久久久久久88av| 亚洲精品中文字幕在线视频| 视频中文字幕在线观看| 欧美精品一区二区大全| 80岁老熟妇乱子伦牲交| 五月天丁香电影| 国产极品粉嫩免费观看在线 | 国产极品天堂在线| videos熟女内射| 大片免费播放器 马上看| av免费观看日本| 91精品三级在线观看| 热re99久久精品国产66热6| 丰满乱子伦码专区| 国产免费一级a男人的天堂| 久久狼人影院| 黄色视频在线播放观看不卡| 欧美国产精品一级二级三级| 国产免费福利视频在线观看| 亚洲图色成人| 精品卡一卡二卡四卡免费| 亚洲美女黄色视频免费看| 蜜桃在线观看..| 亚洲五月色婷婷综合| 美女xxoo啪啪120秒动态图| 如日韩欧美国产精品一区二区三区 | 一本色道久久久久久精品综合| 我的老师免费观看完整版| 精品久久久噜噜| 热99国产精品久久久久久7| 国产成人免费观看mmmm| 亚洲人成77777在线视频| 久久久国产欧美日韩av| 免费观看无遮挡的男女| 亚洲av成人精品一二三区| 观看av在线不卡| 看非洲黑人一级黄片| 人人妻人人澡人人看| 日韩伦理黄色片| av免费观看日本| 国产精品成人在线| 亚洲欧美精品自产自拍| 亚洲中文av在线| 欧美人与善性xxx| 午夜视频国产福利| 国产高清三级在线| 中文字幕亚洲精品专区| 免费看av在线观看网站| 少妇 在线观看| 一区二区三区乱码不卡18| 久久99热这里只频精品6学生| 免费久久久久久久精品成人欧美视频 | 啦啦啦中文免费视频观看日本| 有码 亚洲区| 菩萨蛮人人尽说江南好唐韦庄| 你懂的网址亚洲精品在线观看| 久久这里有精品视频免费| 天天影视国产精品| 亚洲国产精品国产精品| 蜜桃国产av成人99| 亚洲人与动物交配视频| 国产在视频线精品| 亚洲成人手机| 人妻人人澡人人爽人人| 亚洲,一卡二卡三卡| 一二三四中文在线观看免费高清| 成人国语在线视频| 哪个播放器可以免费观看大片| a级毛片在线看网站| 你懂的网址亚洲精品在线观看| 老司机影院毛片| 少妇的逼水好多| 精品亚洲成a人片在线观看| a级毛色黄片| 一本大道久久a久久精品| 免费观看性生交大片5| √禁漫天堂资源中文www| 我的女老师完整版在线观看| 国产熟女午夜一区二区三区 | 一边亲一边摸免费视频| 极品人妻少妇av视频| 日本午夜av视频| 国产极品天堂在线| 边亲边吃奶的免费视频| 人体艺术视频欧美日本| 欧美日本中文国产一区发布| 精品一品国产午夜福利视频| 伊人久久国产一区二区| 亚洲国产欧美日韩在线播放| 国产 精品1| 国产精品熟女久久久久浪| 国产高清国产精品国产三级| 国产精品国产三级国产av玫瑰| 国产精品一国产av| 国产一区二区在线观看av| 亚洲国产日韩一区二区| 人妻 亚洲 视频| 精品99又大又爽又粗少妇毛片| 欧美精品亚洲一区二区| 久久国内精品自在自线图片| av国产精品久久久久影院| 欧美性感艳星| 欧美少妇被猛烈插入视频| 中文精品一卡2卡3卡4更新| 少妇人妻久久综合中文| 日本色播在线视频| 大香蕉久久成人网| 婷婷色麻豆天堂久久| 制服丝袜香蕉在线| 波野结衣二区三区在线| 五月开心婷婷网| 女人久久www免费人成看片| 久久久久国产网址| 久久毛片免费看一区二区三区| 欧美97在线视频| 日本91视频免费播放| 丝瓜视频免费看黄片| 国产欧美日韩一区二区三区在线 | 你懂的网址亚洲精品在线观看| 成人亚洲欧美一区二区av| 亚洲成色77777| 夫妻性生交免费视频一级片| 日本黄色日本黄色录像| 十八禁网站网址无遮挡| 久久精品国产亚洲av涩爱| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看人妻少妇| 免费看av在线观看网站| 最后的刺客免费高清国语| 国产成人精品婷婷| 国产熟女欧美一区二区| 久久久久久久国产电影| 丰满少妇做爰视频| 久久97久久精品| 中文字幕最新亚洲高清| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩视频精品一区| 伊人亚洲综合成人网| 国产男女超爽视频在线观看| 少妇的逼水好多| 精品人妻一区二区三区麻豆| 亚洲五月色婷婷综合| 插阴视频在线观看视频| 亚洲精品av麻豆狂野| 国产亚洲精品久久久com| 美女内射精品一级片tv| 亚洲精品国产av成人精品| 男人爽女人下面视频在线观看| 国产精品嫩草影院av在线观看| 美女国产高潮福利片在线看| 国产精品久久久久久精品电影小说| 少妇人妻精品综合一区二区| 亚洲精品456在线播放app| 内地一区二区视频在线| 国产精品麻豆人妻色哟哟久久| 精品视频人人做人人爽| 人人妻人人爽人人添夜夜欢视频| www.av在线官网国产| 插逼视频在线观看| 伊人亚洲综合成人网| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区视频9| 国产熟女午夜一区二区三区 | 国产成人aa在线观看| 18禁观看日本| 国产色婷婷99| a级片在线免费高清观看视频| 欧美激情极品国产一区二区三区 | 波野结衣二区三区在线| 三级国产精品欧美在线观看| 欧美精品一区二区免费开放| 九九久久精品国产亚洲av麻豆| 国产亚洲午夜精品一区二区久久| 观看美女的网站| 亚洲综合精品二区| 如何舔出高潮| 在线观看一区二区三区激情| 亚洲性久久影院| 亚洲av二区三区四区| 只有这里有精品99| 亚洲精品,欧美精品| 亚洲欧美成人综合另类久久久| 亚洲精品日韩av片在线观看| 久久久久久久久大av| 一级毛片电影观看| 在线观看免费高清a一片| 日韩免费高清中文字幕av| av不卡在线播放| 高清欧美精品videossex| 少妇熟女欧美另类| 成年av动漫网址| 精品一区二区三卡| 熟女av电影| 国产毛片在线视频| 五月天丁香电影| 国精品久久久久久国模美| 男女边吃奶边做爰视频| 一本—道久久a久久精品蜜桃钙片| 亚洲国产av影院在线观看| 一区二区三区精品91| 一区二区三区精品91| 亚洲一区二区三区欧美精品| 母亲3免费完整高清在线观看 | 99九九在线精品视频| 国内精品宾馆在线| 亚洲国产精品专区欧美| 中文欧美无线码| 在线观看免费日韩欧美大片 | 免费高清在线观看视频在线观看| 纵有疾风起免费观看全集完整版| 国产伦理片在线播放av一区| 日韩一区二区视频免费看| 极品少妇高潮喷水抽搐| 亚洲成人一二三区av| 99久国产av精品国产电影| 精品少妇久久久久久888优播| 久久久精品94久久精品| 26uuu在线亚洲综合色| 天堂中文最新版在线下载| 十八禁网站网址无遮挡| 老女人水多毛片| 韩国高清视频一区二区三区| 男人爽女人下面视频在线观看| 久久国内精品自在自线图片| 大香蕉97超碰在线| 2021少妇久久久久久久久久久| 一区二区三区乱码不卡18| 午夜福利影视在线免费观看| 人妻人人澡人人爽人人| 国产视频首页在线观看| 97在线视频观看| 久久久国产一区二区| 各种免费的搞黄视频| av免费在线看不卡| 日日撸夜夜添| 99热网站在线观看| 免费人妻精品一区二区三区视频| 国产男女超爽视频在线观看| 久久精品人人爽人人爽视色| 久久久国产精品麻豆| 高清午夜精品一区二区三区| 久久久午夜欧美精品| 国产熟女午夜一区二区三区 | 国产精品不卡视频一区二区| 18+在线观看网站| 在线精品无人区一区二区三| a级毛片在线看网站| 各种免费的搞黄视频| 男男h啪啪无遮挡| 国产一级毛片在线| 国产淫语在线视频| 亚洲无线观看免费| 夜夜看夜夜爽夜夜摸| 精品国产露脸久久av麻豆| av.在线天堂| 国产精品 国内视频| 在线观看免费日韩欧美大片 | 中文字幕人妻丝袜制服| 成人亚洲欧美一区二区av| 欧美日韩一区二区视频在线观看视频在线| 欧美精品一区二区大全| 日韩人妻高清精品专区| 欧美xxⅹ黑人| 人妻夜夜爽99麻豆av| 两个人的视频大全免费| 国产免费一级a男人的天堂| 国产免费福利视频在线观看| 精品人妻偷拍中文字幕| 亚洲精品日韩在线中文字幕| 免费高清在线观看日韩| 国产成人精品福利久久| 大陆偷拍与自拍| 男女免费视频国产| 交换朋友夫妻互换小说| 成人毛片60女人毛片免费| 看免费成人av毛片| 精品酒店卫生间| 亚洲国产日韩一区二区| 人人妻人人澡人人爽人人夜夜| 欧美最新免费一区二区三区| 国产熟女欧美一区二区| 久久 成人 亚洲| 丝袜美足系列| 我要看黄色一级片免费的| 老司机亚洲免费影院| 下体分泌物呈黄色| 亚洲精品第二区| 国产精品国产三级国产专区5o| 热re99久久精品国产66热6| 曰老女人黄片| 熟女人妻精品中文字幕| 简卡轻食公司| 秋霞在线观看毛片| 三级国产精品片| 色婷婷久久久亚洲欧美| 亚洲精品第二区| 另类精品久久| 精品亚洲成a人片在线观看| 一边摸一边做爽爽视频免费| 久久久久精品性色| 国产片特级美女逼逼视频| 韩国高清视频一区二区三区| 亚洲不卡免费看| 夜夜爽夜夜爽视频| 国产成人午夜福利电影在线观看| 99re6热这里在线精品视频| 久久鲁丝午夜福利片| 岛国毛片在线播放| 最近中文字幕2019免费版| 人成视频在线观看免费观看| 久久免费观看电影| 如日韩欧美国产精品一区二区三区 | 亚洲精品国产av蜜桃| 精品人妻一区二区三区麻豆| 亚洲av免费高清在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品成人av观看孕妇| 国产精品久久久久久久久免| 丁香六月天网| 晚上一个人看的免费电影| 51国产日韩欧美| 丝瓜视频免费看黄片| 精品一品国产午夜福利视频| 蜜桃在线观看..| 在线播放无遮挡| 国产精品一区二区在线观看99| 制服丝袜香蕉在线| 亚洲精品自拍成人| 欧美日韩在线观看h| 久久99精品国语久久久| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| xxxhd国产人妻xxx| 青青草视频在线视频观看| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区国产| 91精品国产九色| 老熟女久久久| 国产精品久久久久久精品古装| 亚洲少妇的诱惑av| 亚洲精品一二三| 波野结衣二区三区在线| 一区在线观看完整版| 久久精品久久久久久噜噜老黄| 亚洲精品,欧美精品| 免费大片18禁| 一本大道久久a久久精品| 久久99热6这里只有精品| 丝袜喷水一区| 欧美xxxx性猛交bbbb| 一二三四中文在线观看免费高清| 插阴视频在线观看视频| 久久精品国产亚洲网站| 亚洲图色成人| 欧美 日韩 精品 国产| 亚洲av成人精品一区久久| www.av在线官网国产| 日韩一本色道免费dvd| 久久久久久久久大av| 精品一区在线观看国产| 免费观看性生交大片5| 亚洲五月色婷婷综合| 97在线人人人人妻| 国产精品人妻久久久久久| 国产精品麻豆人妻色哟哟久久| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看 | 少妇人妻久久综合中文| 成人18禁高潮啪啪吃奶动态图 | 97在线视频观看| 午夜激情福利司机影院| 尾随美女入室| 日韩人妻高清精品专区| 中文字幕最新亚洲高清| 国内精品宾馆在线| 99热这里只有精品一区| 亚洲精华国产精华液的使用体验| 成年美女黄网站色视频大全免费 | 2022亚洲国产成人精品| 亚洲精品一二三| 久久久久久久久久人人人人人人| 国产精品偷伦视频观看了| 久久久久久久久大av| 亚洲内射少妇av| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| videossex国产| 三级国产精品片| 国产淫语在线视频| 日韩熟女老妇一区二区性免费视频| 久久免费观看电影| 国产伦精品一区二区三区视频9| 久久久久人妻精品一区果冻| 一本一本综合久久| 黑人巨大精品欧美一区二区蜜桃 | 97在线视频观看| 黑人猛操日本美女一级片| 能在线免费看毛片的网站| 另类精品久久| 国产一区有黄有色的免费视频| 波野结衣二区三区在线| 亚洲,欧美,日韩| 成人免费观看视频高清| 国产女主播在线喷水免费视频网站| 哪个播放器可以免费观看大片| av免费在线看不卡| a级毛片免费高清观看在线播放| 久久久久久久精品精品| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 成人二区视频| 欧美精品高潮呻吟av久久| 亚洲性久久影院| 男的添女的下面高潮视频| 草草在线视频免费看| 久久综合国产亚洲精品| 婷婷色综合www| 韩国高清视频一区二区三区| 丝瓜视频免费看黄片| 国产伦理片在线播放av一区| 天堂8中文在线网| 一级爰片在线观看| 久久狼人影院| 看十八女毛片水多多多| 亚洲欧美精品自产自拍| 午夜av观看不卡| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 十八禁网站网址无遮挡| 中文欧美无线码| 啦啦啦在线观看免费高清www| 美女国产视频在线观看| 99久久精品国产国产毛片| 国产午夜精品一二区理论片| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 内地一区二区视频在线| 亚洲久久久国产精品| 亚洲色图 男人天堂 中文字幕 | 精品国产国语对白av| 国产亚洲一区二区精品| 男人添女人高潮全过程视频| 熟女电影av网| 九九久久精品国产亚洲av麻豆| 9色porny在线观看| 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 插逼视频在线观看| 日本wwww免费看| 91久久精品国产一区二区成人| 性色av一级| 另类亚洲欧美激情| 超色免费av| 国产国拍精品亚洲av在线观看| 亚洲精品国产色婷婷电影| 99热6这里只有精品| 日韩在线高清观看一区二区三区| 亚洲第一区二区三区不卡| 日韩不卡一区二区三区视频在线| 激情五月婷婷亚洲| 日本欧美国产在线视频| 蜜桃久久精品国产亚洲av| 亚洲无线观看免费| 汤姆久久久久久久影院中文字幕| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 国产av一区二区精品久久| 成年美女黄网站色视频大全免费 | 国产亚洲最大av| av不卡在线播放| av专区在线播放| av网站免费在线观看视频| 日本午夜av视频| av在线播放精品| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 高清欧美精品videossex| 少妇 在线观看| 在线观看www视频免费| 不卡视频在线观看欧美| 美女国产视频在线观看| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 欧美人与善性xxx| 一区在线观看完整版| av电影中文网址| 午夜影院在线不卡| 边亲边吃奶的免费视频| xxx大片免费视频| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 搡女人真爽免费视频火全软件| 好男人视频免费观看在线| 在线观看一区二区三区激情| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 国产 精品1| 精品久久久噜噜| 久久免费观看电影| 9色porny在线观看| 在线亚洲精品国产二区图片欧美 | 久久99精品国语久久久| 9色porny在线观看| 精品人妻熟女av久视频| 蜜桃在线观看..| 哪个播放器可以免费观看大片| 午夜福利视频精品| 飞空精品影院首页| 国产av码专区亚洲av| 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频 | 国产黄频视频在线观看| 黑人欧美特级aaaaaa片| 一区二区三区四区激情视频| 女性生殖器流出的白浆| 国产欧美另类精品又又久久亚洲欧美| 飞空精品影院首页| 一级,二级,三级黄色视频| 亚洲欧美中文字幕日韩二区| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性bbbbbb| 男女啪啪激烈高潮av片| 国产精品一二三区在线看| 26uuu在线亚洲综合色| 亚洲成人一二三区av| 26uuu在线亚洲综合色| 18禁观看日本| 久久久久精品久久久久真实原创| 精品亚洲成a人片在线观看| 国产成人91sexporn| 久久精品国产亚洲av天美| 搡女人真爽免费视频火全软件| 久久久久久久久久久丰满| 日日撸夜夜添| 男女无遮挡免费网站观看| 国国产精品蜜臀av免费| 人妻一区二区av| 日日摸夜夜添夜夜爱| 免费看不卡的av| 色哟哟·www| 亚洲精品一二三| 91在线精品国自产拍蜜月| 成人免费观看视频高清| av在线播放精品| 亚洲成色77777| 高清不卡的av网站| 成人毛片a级毛片在线播放| 国模一区二区三区四区视频| 美女中出高潮动态图| 少妇丰满av| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 大码成人一级视频| 在线观看www视频免费| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 国产精品熟女久久久久浪| 亚洲,欧美,日韩| 精品午夜福利在线看| 曰老女人黄片| 久久久久久久久久人人人人人人| 最后的刺客免费高清国语| 国产精品久久久久久久电影| 我要看黄色一级片免费的| 天堂中文最新版在线下载| 日韩亚洲欧美综合| 国产免费一级a男人的天堂| 国产精品一区www在线观看| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 26uuu在线亚洲综合色| 国产不卡av网站在线观看| 一本大道久久a久久精品| 欧美日韩视频精品一区| 在线观看一区二区三区激情| 亚洲色图综合在线观看| 91午夜精品亚洲一区二区三区| 国产在线一区二区三区精| av一本久久久久| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产亚洲网站| 亚洲美女视频黄频| 国产成人精品一,二区| 一级片'在线观看视频| 欧美激情国产日韩精品一区| 熟女人妻精品中文字幕| 黄片无遮挡物在线观看| 成年av动漫网址| 极品人妻少妇av视频| 亚洲欧美色中文字幕在线| 久久久久人妻精品一区果冻| 国产成人freesex在线| 亚洲欧美清纯卡通|