• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Altitude information fusion method and experiment for UAV①

    2017-06-27 08:09:22XuDongfu徐東甫PeiXinbiaoBaiYuePengChengWuZiyiXuZhijun
    High Technology Letters 2017年2期

    Xu Dongfu (徐東甫), Pei Xinbiao, Bai Yue, Peng Cheng, Wu Ziyi, Xu Zhijun

    (*Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R.China) (**University of Chinese Academy of Sciences, Beijing 100039, P.R.China)

    Altitude information fusion method and experiment for UAV①

    Xu Dongfu (徐東甫)***, Pei Xinbiao***, Bai Yue②*, Peng Cheng*, Wu Ziyi***, Xu Zhijun*

    (*Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R.China) (**University of Chinese Academy of Sciences, Beijing 100039, P.R.China)

    Altitude regulation is a fundamental problem in UAV (unmanned aerial vehicles) control to ensure hovering and autonomous navigation performance. However, data from altitude sensors may be unstable by interference. A digital-filter-based improved adaptive Kalman method is proposed to improve accuracy and reliability of the altitude measurement information.A unique sensor data fusion structure is designed to make different sensors switch automatically in different environment. Simulation and experimental results show that an improved Sage-Husa adaptive extended Kalman filter (SHAEKF) is adopted in altitude data fusion which means that altitude error is limited to 1.5m in high altitude and 1.2m near the ground. This method is proved feasible and effective through hovering flight test and three-dimensional track flight experiment.

    unmanned aerial vehicles (UAV), altitude information fusion, multi-sensor, adaptive Kalman filter

    0 Introduction

    In the last two decades, great efforts have been made for the research and development of multiple rotor UAVs driven by the significant progress of sensing and mechatronics technology[1-3]. This sort of aircrafts has shown its promising applications in both civic and military aspects. Compared with the traditional helicopters, they have the advantages of simplicity in mechanical construction, ease in modeling, control and maintenance[4-7].

    The accuracy and uniformity are very important for UAVs. However, due to the small structure and low cost, UAVs commonly use low cost sensors, such as MEM’s based acceleration, barometer and GPS (global positioning system). Suffered from severe drift and noise, the obtained estimation is unfeasible in practice. The attempt on this regard has been made by many researchers, by means of applying Kalman filter based techniques.

    Normally, Kalman filter is the acknowledged rule of technology for data fusion, which requires that measure noise and system noise are known[8]. However, when the Kalman filter is used in UAVs, measure noises and system noises are unknown and time-varied. The Kalman filter is no longer optimal and its convergence cannot be guaranteed.

    The SHAKF (Sage-Husa adaptive Kalman filter) can solve the above problems, which estimates system noises and measure noises in theory adaptively[9,10]. When estimating the altitude in UAVs, the SHAKF could not separate the system noises and the measure noises accurately, let alone the high accuracy estimation variance values. There is a constant error between estimations of the system noises and the measure noises[11]. The variance of the system noises is deviated, which result in wrong judgment of estimation, such as, increasing weight of barometer in the altitude estimation, decreasing precision of altitude and causing misconvergence. It cannot meet the need of UAVs autonomous flight.

    An improved Sage-Husa adaptive extended Kalman filtering (SHAEKF) is designed, aiming at the development of estimation for altitude. The improved SHAEKF uses the noise variance of MEMS accelerometer by real-time estimating the system noises variance of altitude[11], which not only reduces the estimation error of the system noises, but also guarantees the convergence. At the same time, united with the enhanced Kalman filter[12,13], the improved SHAEKF can inhibit the divergence of filter. Combined with the estimation structure based on the feature of different sensors, the sensor defects can be made up and accurate status information of the altitude can be obtained. At last, experiments were carried out to verify the feasibility and effectiveness of the method.

    1 Altitude system structure

    1.1 Brief introduction of UAV platform

    The UAV used in this paper, shown in Fig.1, is an electric-powered multi-rotor UAV, which is named Hex-rotor[14].

    Fig.1 UAV experimental platform

    The UAV’s structure is shown in Fig.2. Six equal-length, long light rods are placed evenly around the center of the UAV. On the tip of each rod there are two coaxial rotors with driving units. In clockwise direction the upper six rotors are numbered 1~6, while the lower six are numbered 7~12. Among them, rotor No.1, 3, 5, 8, 10, 12 rotate clockwise, while rotor No.2, 4, 6, 7, 9, 11 rotate counterclockwise. The angle between the rotor’s shaft and the body plane isγ(0<γ<90°),andtwoadjacentrotor’sshaftpointsoppositedirection.ThegeographiccoordinatesystemandthebodycoordinatesystemarealsoshowninFig.2.

    1.2 Altitude measurement unit

    Altitude measurement unit consists of MEMS-based accelerometers, barometer, GPS module and laser module.

    1.2.1 Accelerometer

    Fig.2 Diagram of Hex-Rotor aircraft structure

    (1)

    where:

    Positioninformationcanbesolvedbyintegrationofspeedva.

    (2)

    Fig.3 Altitude of MEMS ACC

    1.2.2 Barometric altimeter

    The air pressure decreases with the increasing of altitude. Based on this principle, altitude can be determined by measuring pressure with barometer. However, the decrease of altitude is not uniform. Under the standard atmospheric conditions, altimeter formula is expressed as

    (3)

    whereRisthegasconstant,gnistheaccelerationoffreefall.βistheverticalchangerateoftemperature,Ta,Paandhaaretheenvironment’satmospherictemperaturelowerlimit,atmosphericpressureandgeopotentialheightrespectively.Phistheatmosphericstaticpressuremeasuredundercurrentaltitude.Settingthebarometermeasuredaltitudeattake-offpositionasareference,andcomparingwithitscurrentvalue,thealtitudeofUAVwithrespecttothealtitudeofthetakingoffplanecanbeobtained,whichisthealtitudeinformationdesiredinnavigation.

    Inactualmeasurement,theactualatmosphericconditionscannotmeettherequiredstandard;therefore,measurementerrormayoccur.Thismeasurementerrorincreaseswithreducedaltitude.WhenUAVisinflight,barometeroutputaccuracyismainlyaffectedbythehigh-frequencynoiseandconstanterrors.Theerrorcanbeexpressedas

    hb=h0+εb+ωb

    (4)

    where,hbisthemeasuredvalueofthebarometer,h0istheidealaltitude.Constanterrorismainlyrelatedtotemperatureandpressure,andcanbecompensatedbyinitialcalibration.ThereadingsofaltimeterwhentheUAVishoveringareshowninFig.4,intheeffectoftherotor’sdownwash,winddisturbanceandbarometererror.Thereisalsoadriftsothisaltitudesensitivetooutsideinterferencecannotbeusedalone.

    Fig.4 Altitude of barometer

    1.2.3 GPS altitude measure

    The GPS module receives data from three or more satellites whose coordinates are already known, then calculates the coordinates of the measuring points. The altitude obtained from GPS positioning by calculation and conversion can be expressed as

    hg=h0+ωg

    (5)

    wherehgisthemeasuredGPSvalue,h0istheidealaltitude,ωgisthemeasuringnoise(whitenoise).

    Fig.5 Altitude of GPS

    Fig.5 is the GPS altitude of the UAV during hovering. The GPS module output is overall smooth with small volatile. However, the GPS output frequency is 1-10Hz, much smaller than the control frequency of the UAV which reaches 50Hz. So the GPS data cannot meet the requirements of the aircraft’s dynamic response. It can be also seen from Fig.5 that sometimes there is no output because the GPS module is blocked. Therefore, the GPS module cannot be used alone either.

    1.2.4 Laser ranging module

    The laser ranging module of the UAV uses 905nm, near-infrared laser with phase method. The measurement range is 0.1m~25m, while measurement accuracy reaches ±5mm at the frequency of 100Hz. The error of laser ranging module can be expressed as

    hl=h0+ωl

    (6)

    wherehgisthelasermeasuringvalue,h0istheidealaltitude,ωgisthemeasuringnoise(whitenoise).Fig.6isthelasermoduleheightoftheUAVduringhovering.

    AsseeninFig.6,thealtitudedataprovidedbylaserrangingmodulehashighprecisionwithtransition.Consideringitsmeasurementrangeof1m~25m,laserrangingmodulecanonlybeusedatlowaltitudes.

    Fig.6 Altitude of laser module

    2 Altitude data fusions

    As seen from the data above,the error of altitude obtained from accelerometer accumulates over time because of the two integration; The barometer output gave a much wide measuring range due to its sensing mechanism with larger white noise. The GPS module not only has rather big fluctuation and noise with a constant bias, but also has no output when blocked; The laser module reading is rather accurate detection but only in a limited range of 0 to 30m above ground level. Therefore, based on the characteristics of each sensor, a process of SHAEKF is designed as shown in Fig.7.

    Fig.7 Process of SHAEKF

    The process of SHAEKF is divided into two parts: data analysis module and improved SHAEKF which improves the accuracy of altitude in different environment.

    2.1 State and observation models of altitude

    UAVs vertical movement can be described by linear mathematical model:

    (7)

    It can be said by equation of state:

    (8)

    (9)

    Xk=ΦXk-1+Buk-1+ΓWk-1

    (10)

    where:

    (11)

    Xkis the state vector,Tsisthefusiontimecycle,Wk∈R1×1isthesystemnoise,itsvariancestatisticalpropertiesarecompletelydecidedbythestatisticalfeaturesofmodelinput,therefore,thesystemnoisedrivearray: Γ=B.

    The measurement equation of discrete time state model is

    Zk=HXk+Vk

    (12)

    where Zk∈R3×1is the measurement provided from the GPS module, the MEMS accelerometer, the laser module and the barometer. Vk∈R3×1is the measurement noise. H is the quantity measurement matrix.

    Above all, the discrete time linear state model (state equation and measurement equation) of UAVS integration system is

    (13)

    The laser module is in a limited range of 0 to 25m above ground level, the laser module is used below 25m and the barometer is used above 25m in the process of SHAEKF, as shown in Eq.(14):

    (14)

    2.2 Data analysis module

    There are many errors on the altitude status from different sensors before the Kalman filter. Fuzzy Kalman filter is used to calculate theoretical and actual variance of innovation. A data analysis is added to the process of data fusion to identify the outputs of sensors and determines weight coefficient.

    The actual variance of innovation is calculated byNsamplingdata:

    (15)

    Thefusionaltitudeistreatedaspredictivevalue,andtheoutputistreatedasmeasurementvalue.vkisthedifferencevaluebetweenpredictivevalueandmeasurementvalue,namelyinnovation.Nisdecidedbythecharacteristicsofeachsensor.Thetheoreticalvarianceofinnovationisdefinedas

    (16)

    UsingfuzzyKalmantomatchvariance,avariantisdefendedtoinspectthedifferenceofpredictivevalueandmeasurementvalue:

    (17)

    Iftheoutputsarestable,theratiooftheoreticalandtheactualvarianceαCxiscloseto1,otherwiseαCxwillbecomebiggerwhentheoutputsmalfunction.InspectingthechangeofαCx,thefuzzyruleisagain:

    (18)

    Measuredbyexperiment,β=[βg,βb,βm,βl]isusedtoadjustweightcoefficient,whichcanadaptivelyadjusttheweightofeachsensor,ensuringtheaccuracyofestimationinsituationofhighdynamicindifferentenvironmentofUAVs.

    2.3ImprovedSHAEKF

    TheimprovedSHAEKFisgivenbythefollowingrecursiveequations:

    ①Firststepofprediction:

    (19)

    ②Updateinnovation:

    (20)

    ③Updatethepredictionsquareerrormatrix:

    (21)

    ④Noiseofmeasurement:

    (22)

    ⑤ Filter convergence criterion:

    (23)

    If Eq.(23) is satisfied, the filter is in convergence and keep the Pk/k-1in ③; Otherwise, update Pk/k-1by strong Kalman filter:

    (24)

    ⑥ Update the filter gain:

    (25)

    State altitude estimation:

    (26)

    whereαistheweightcoefficient.

    ⑦Updatestateestimationsquareerrormatrix:

    (27)

    ⑧Systemnoiseestimation:

    The improved SHAEKF has advantages as follows:

    (1) Estimates system noise and measurement noise

    The top priority of the improved SHAEKF is separating the system noise and the measurement noise while their statistical properties are neither unknown. For altitude fusion system of UAVs, system noise is mainly derived from the integral of MEMS accelerometer error, noise parameters are relatively stable. Therefore, the variance of estimation system noise can be calculated in real-time by the altitude of the accelerometer. The improvement not only can solve the problem of big error in estimation of the system noise, but also keep the system stable.

    (2) Exponential fading factor in Eq.(28):

    (28)

    When the UAV is in a state of flight, system in the process of dynamic changes, noise parameter has a weak non-stationary. The fading memory factor is used to raise the innovation in state estimation.

    (3) Combined with the strong tracking Kalman filter, based on the filter convergence criterion, the improved SHAEKF is combined with the strong tracking Kalman filter. If the criterion is established, the filter convergence keeps updating Pk/k-1to calculate filter gain, otherwise , the actual error of filter exceeds expected value in theory and Pk/k-1is updated by the strong tracking Kalman. Meanwhile the weight of each sensor is adaptively adjusted according to the weight coefficient, ensuring the accuracy of estimation in situation of high dynamic in different environment.

    3 Simulation and experimental results

    To validate the estimation of altitude fusion method, simulation and actual experimental were presented. Since UAV usually flies in short time, experiments are carried within 15 minutes. And the low and high altitudes are distinguished by the range of the laser ranging module -25m.

    3.1 Simulation experiment

    The two simulations are as follows: one simulation is in the height of 15m in the case of sudden failure of the GPS, the other simulation is in the height of 35m, simulation of more than 25m in which the fusion algorithm could adjust the weights of the sensors. The output data of each sensor is shown in Fig.8 and Fig.9.

    Fig.8 Altitude data of sensors at 15m

    Fig.9 Altitude data of sensors at 35m

    Simulation results are shown in Fig.10 and Fig.11.

    Fig.10 Result of Information Fusion at 15m

    Fig.11 Result of information fusion at 35m

    As shown in Fig.10, the lines denote the altitude of improved algorithm and the altitude of Kalman filter improved before. When the GPS broke down, the accuracy of Kalman filter reduced while the improved algorithm keeps the accuracy of fusion altitude. In Fig.11 the output of laser ranging module is 0, the fusion effect of the improved algorithm is better than the improvement before.

    3.2 Multipoint hovering flight experiment

    In order to further verify the effectiveness of the altitude in different altitudes and different environments, this section presents experimental results from the multipoint hovering flight. The hovering altitudes are 10m, 22m and 37m. The real time altitudes with no wind recorded within 1000s are shown in Fig.12. Fig.13 is the altitude with winds grade 3. The attitude and altitude control is satisfactory in the sense that the UAV is stable around the desired altitude.

    Fig.12 Spot hovering test with no wind

    Fig.13 Spot hovering test with wind grade 3

    The error at low altitudeel,andtheerrorathighaltitudeehwithnowind:

    Theerroratlowaltitudeel,andtheerrorathighaltitudeehwiththewindgrade3:

    3.3 3-Dtrajectoriesexperiment

    Forfurtherverifyingthereliabilityandhighdynamicofthealtitude,experimentalresultsarepresentedfromtherotorcraftUAVsautonomousflightinJilin,China.Accordingtotherequirementsoftask,flyinginthegroundspeedof4m/s,theUAVtracksthetrajectoryofatriangleatthealtitudefrom5mto25m.TheActualflighttrajectoryisrecordedasFig.14.

    Fig.14 3D trajectory of the UAV

    As can be learned from Fig.14, the UAV can accomplish the trajectory with the altitude error less than 1.5m. The experiment shows that the fusion method could meet the need of high dynamic.

    4 Conclusions

    The paper presents a data fusion approach to the problem of low altitude accuracy in UAVs.

    Adopting a number of different altitude information, a unique data fusion structure is designed according to the characteristics of each sensor.

    Based on the use of rotor aircraft environment, an improved SHAKF-Kalman filter data fusion method is presented. The algorithm can adaptively adjust using the weight of each sensor for ensuring the accuracy of estimation in situation of high dynamic in UAVs.

    As mentioned above, the multi-sensor data fusion based on the improved SHAKF- Kalman filter is positive. The estimation of altitude reaches a precision of 1.5 meter. The algorithm is stable, and much more adaptable to engineering.

    Reference

    [ 1] Zoto V, Gao X G. Intermediate carriers for UAV swarms: problem of fleet composition.JournalofSystemsEngineering&Electronics, 2013, 24(1):101-107

    [ 2] Qian M S, Jiang B, Xu D Z, et al. Robust dynamics surface fault tolerant control design for attitude control systems of UAV.SystemsEngineering&Electronics, 2014, 36(9):1798-1803

    [ 3] Qu Y, Zhang Y. Cooperative localization against GPS signal loss in multiple UAVs flight.JournalofSystemsEngineeringandElectronics, 2011, 22(1): 103-112

    [ 4] Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor.IEEETransactionsonRobotics, 2012, 28(1):90-100

    [ 5] Sebesta K D, Boizot N. A real-time adaptive high-gain EKF, applied to a quadcopter inertial navigation system.IEEETransactionsonIndustrialElectronics, 2014, 61(1): 495-503

    [ 6] Wei G, Li J. Adaptive Kalman filtering for the integrated SINS/DVL system.JournalofComputationalInformationSystems, 2013, 16(9):6443-6450

    [ 7] Chingiz H, Halil E S. Robust adaptive kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults.AerospaceScienceandTechnology, 2013, 28(1): 376-383

    [ 8] Sage A P, Husa G W. Adaptive filtering with unknown prior statist. In: Proceedings of the Joint Automatic Control Conference, Tokyo, Japan, 1969. 760-769

    [ 9] Kownackl C. Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals’ filtering.DigitalSignalProcessing, 2011, 21(1): 31-140

    [10] Zhang C Y. Approach to adaptive filtering algorithm.ChineseJournalofAeronautics, 1998, 19(75): 596-599 (In Chinese)

    [11] Rigatos G. Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles.RoboticsandAutonomousSystems, 2012, 60(7): 978-995

    [12] Hajiyev C, Soken H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults.AerospaceScienceandTechnology, 2013, 28(1): 376-383

    [13] Duan Z S, Han C A. A strong tracking adaptive state estimator and simulation.JournalofSystemSimulation, 2004, 16(5):1020-1023 (In Chinese)

    [14] Liu R H, Wang H. All attitude magnetic deviation compensation for digital magnetic compass.OpticsandPrecisionEngineering, 2011, 19(8): 1867-1873 (In Chinese)

    [15] Gao X X, Jiang R, Gao M M. Control scheme based on the inverse system method online learning BP neural network adaptive compensate. In: Proceedigns of the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), Xiamen, China, 2010. 874-878

    Xu Dongfu, male, born in 1987. He is a Ph.D candidate of the University of Chinese Academy of Sciences, and he received his B.S. degree in Jilin University in 2011. His main research direction is unmanned aerial vehicles integrated navigation and control.

    10.3772/j.issn.1006-6748.2017.02.007

    ①Supported by the National Natural Science Foundation of China (No. 61304017, 11372309), Key Technology Development Project of Jilin Province (No. 20150204074GX), the Project Development Plan of Science and Technology (No. 20150520111zh) and the Provincial Special Funds Project of Science and Technology Cooperation (No. 2014SYHZ0004).

    ②To whom correspondence should be addressed. E-mail: baiyueciomp@163.com

    on Mar. 4, 2016

    我的老师免费观看完整版| 国产精品一区二区三区四区免费观看 | 日韩 欧美 亚洲 中文字幕| 熟女电影av网| 一二三四在线观看免费中文在| 女人爽到高潮嗷嗷叫在线视频| 狂野欧美激情性xxxx| 男女床上黄色一级片免费看| 日韩精品青青久久久久久| 我的老师免费观看完整版| ponron亚洲| 香蕉久久夜色| 欧美最黄视频在线播放免费| e午夜精品久久久久久久| 久久久久久久精品吃奶| 叶爱在线成人免费视频播放| 欧美午夜高清在线| 国内揄拍国产精品人妻在线| 国产主播在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品夜夜夜夜夜久久蜜豆 | 欧美性猛交╳xxx乱大交人| 日韩精品免费视频一区二区三区| 亚洲人成网站在线播放欧美日韩| 成年版毛片免费区| 精品不卡国产一区二区三区| 韩国av一区二区三区四区| 最近在线观看免费完整版| 国产精品一区二区三区四区久久| 国产精品久久久久久精品电影| 18禁国产床啪视频网站| 国产片内射在线| 亚洲人成77777在线视频| 亚洲精品久久成人aⅴ小说| 亚洲精品在线观看二区| 欧美成人午夜精品| 亚洲自偷自拍图片 自拍| 欧美一级a爱片免费观看看 | 午夜福利高清视频| 国产不卡一卡二| 天堂动漫精品| av天堂在线播放| 757午夜福利合集在线观看| 人妻丰满熟妇av一区二区三区| 国产亚洲欧美98| www.www免费av| 精品久久久久久久毛片微露脸| 国产私拍福利视频在线观看| 亚洲 国产 在线| 婷婷精品国产亚洲av在线| 久久人人精品亚洲av| 中文字幕人成人乱码亚洲影| 日本 av在线| avwww免费| 午夜激情av网站| 精品久久久久久久人妻蜜臀av| 黄色a级毛片大全视频| 夜夜躁狠狠躁天天躁| 国产亚洲精品一区二区www| av福利片在线观看| 日韩国内少妇激情av| 亚洲国产精品合色在线| 窝窝影院91人妻| 欧美中文综合在线视频| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕最新亚洲高清| 午夜久久久久精精品| 97超级碰碰碰精品色视频在线观看| 亚洲七黄色美女视频| 19禁男女啪啪无遮挡网站| 麻豆国产97在线/欧美 | 亚洲精华国产精华精| 禁无遮挡网站| 日韩高清综合在线| 久久人妻福利社区极品人妻图片| 日韩欧美三级三区| 久久天堂一区二区三区四区| 婷婷精品国产亚洲av在线| 日韩成人在线观看一区二区三区| 一区福利在线观看| 亚洲精品美女久久av网站| 亚洲性夜色夜夜综合| 99国产精品一区二区蜜桃av| 国产亚洲欧美在线一区二区| 老汉色av国产亚洲站长工具| 久久久久久国产a免费观看| 久久这里只有精品中国| 香蕉av资源在线| 欧美黑人精品巨大| 97人妻精品一区二区三区麻豆| 两个人免费观看高清视频| 丰满的人妻完整版| 国产欧美日韩一区二区三| 99久久精品热视频| 女人高潮潮喷娇喘18禁视频| 国产高清视频在线播放一区| 男人舔奶头视频| 午夜免费成人在线视频| 日本 av在线| 99国产极品粉嫩在线观看| 日本黄色视频三级网站网址| 欧美精品亚洲一区二区| 亚洲午夜精品一区,二区,三区| 一本综合久久免费| 91在线观看av| 精品高清国产在线一区| 脱女人内裤的视频| 男男h啪啪无遮挡| av免费在线观看网站| 国产精品国产高清国产av| 国产成人av激情在线播放| 午夜福利成人在线免费观看| 97超级碰碰碰精品色视频在线观看| 好男人在线观看高清免费视频| 亚洲国产欧美一区二区综合| 性色av乱码一区二区三区2| 亚洲av日韩精品久久久久久密| 国产91精品成人一区二区三区| 老熟妇乱子伦视频在线观看| 日韩欧美国产在线观看| 国产成人av激情在线播放| 欧美国产日韩亚洲一区| 看免费av毛片| 国产免费男女视频| 亚洲 欧美 日韩 在线 免费| 一区二区三区高清视频在线| 岛国在线观看网站| 欧美乱色亚洲激情| 国产免费男女视频| 国产一区二区三区视频了| 亚洲国产精品sss在线观看| 国产高清视频在线观看网站| 午夜福利免费观看在线| 国产亚洲欧美在线一区二区| 在线观看美女被高潮喷水网站 | 欧美在线黄色| 中文字幕人成人乱码亚洲影| 嫩草影视91久久| 男人舔女人的私密视频| 18禁黄网站禁片免费观看直播| 久久精品影院6| 51午夜福利影视在线观看| 久9热在线精品视频| 日本在线视频免费播放| 亚洲在线自拍视频| 亚洲在线自拍视频| 国产激情欧美一区二区| 精品一区二区三区av网在线观看| 国产99久久九九免费精品| 国产精品一区二区精品视频观看| 人人妻,人人澡人人爽秒播| 欧美黄色片欧美黄色片| 一个人观看的视频www高清免费观看 | 高潮久久久久久久久久久不卡| 一本综合久久免费| 日韩欧美 国产精品| 午夜a级毛片| 宅男免费午夜| 精品久久久久久久毛片微露脸| 丝袜人妻中文字幕| 午夜老司机福利片| 国产人伦9x9x在线观看| 国产探花在线观看一区二区| 久久 成人 亚洲| 一区二区三区国产精品乱码| 亚洲一区二区三区不卡视频| 欧美日韩黄片免| 在线观看免费视频日本深夜| 久久国产乱子伦精品免费另类| 少妇粗大呻吟视频| 一二三四在线观看免费中文在| 国产乱人伦免费视频| 动漫黄色视频在线观看| 久久久久久九九精品二区国产 | 十八禁人妻一区二区| 亚洲欧美日韩高清专用| 久久性视频一级片| 国产视频内射| 国产人伦9x9x在线观看| 国产成+人综合+亚洲专区| 91九色精品人成在线观看| 国产成+人综合+亚洲专区| 天天一区二区日本电影三级| 天天一区二区日本电影三级| 波多野结衣高清无吗| 国产主播在线观看一区二区| 欧美黑人欧美精品刺激| 国产高清视频在线观看网站| 亚洲精品粉嫩美女一区| 制服丝袜大香蕉在线| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 国产亚洲精品综合一区在线观看 | 琪琪午夜伦伦电影理论片6080| 免费在线观看完整版高清| 露出奶头的视频| 啪啪无遮挡十八禁网站| 欧美中文日本在线观看视频| 黄色毛片三级朝国网站| 三级国产精品欧美在线观看 | 婷婷精品国产亚洲av在线| 久久99热这里只有精品18| 国产一区二区三区在线臀色熟女| 91国产中文字幕| √禁漫天堂资源中文www| 特级一级黄色大片| 动漫黄色视频在线观看| 伊人久久大香线蕉亚洲五| 婷婷精品国产亚洲av在线| 日韩精品免费视频一区二区三区| 视频区欧美日本亚洲| 午夜精品在线福利| 欧美大码av| 亚洲专区国产一区二区| 97人妻精品一区二区三区麻豆| 国产精品av视频在线免费观看| 九色成人免费人妻av| 亚洲欧美一区二区三区黑人| 久久九九热精品免费| 国产区一区二久久| 两个人的视频大全免费| 国产精品av视频在线免费观看| 制服丝袜大香蕉在线| 美女 人体艺术 gogo| 国产久久久一区二区三区| 一级毛片女人18水好多| 国产精品98久久久久久宅男小说| 日韩精品免费视频一区二区三区| 欧美黑人欧美精品刺激| 啪啪无遮挡十八禁网站| 操出白浆在线播放| 50天的宝宝边吃奶边哭怎么回事| 老熟妇乱子伦视频在线观看| 亚洲自拍偷在线| 国产精品爽爽va在线观看网站| 欧美黑人巨大hd| 夜夜爽天天搞| 99在线视频只有这里精品首页| svipshipincom国产片| av免费在线观看网站| avwww免费| 日本免费a在线| a级毛片在线看网站| 欧美色视频一区免费| 特大巨黑吊av在线直播| 可以在线观看毛片的网站| 婷婷亚洲欧美| 亚洲专区中文字幕在线| 国产高清激情床上av| 亚洲aⅴ乱码一区二区在线播放 | 身体一侧抽搐| 岛国视频午夜一区免费看| 他把我摸到了高潮在线观看| 99国产精品一区二区蜜桃av| 一级毛片女人18水好多| 丁香欧美五月| 1024手机看黄色片| 好看av亚洲va欧美ⅴa在| 男女做爰动态图高潮gif福利片| 欧美人与性动交α欧美精品济南到| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆 | 91麻豆av在线| 999精品在线视频| 亚洲一码二码三码区别大吗| 国产精品一区二区免费欧美| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 一本精品99久久精品77| 人人妻人人澡欧美一区二区| 亚洲精华国产精华精| 国产精品野战在线观看| 国产主播在线观看一区二区| tocl精华| 一本综合久久免费| 午夜福利高清视频| 制服丝袜大香蕉在线| 国产精品永久免费网站| 亚洲精品在线美女| 精品第一国产精品| 一级黄色大片毛片| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 成人三级做爰电影| 亚洲国产精品合色在线| 国产成人系列免费观看| 麻豆国产97在线/欧美 | 精品国产乱码久久久久久男人| 久久久久九九精品影院| 免费看日本二区| 亚洲av中文字字幕乱码综合| 久热爱精品视频在线9| 精品久久久久久,| 亚洲精品国产精品久久久不卡| 久久天躁狠狠躁夜夜2o2o| 欧美色欧美亚洲另类二区| 男女那种视频在线观看| 国产精品国产高清国产av| 人人妻,人人澡人人爽秒播| 欧美黄色片欧美黄色片| 18美女黄网站色大片免费观看| 91大片在线观看| 精品国产亚洲在线| 88av欧美| 一个人观看的视频www高清免费观看 | 国产亚洲精品av在线| 日本五十路高清| 成人午夜高清在线视频| 欧洲精品卡2卡3卡4卡5卡区| 免费无遮挡裸体视频| 国产亚洲精品第一综合不卡| 日韩欧美三级三区| 99riav亚洲国产免费| 欧美另类亚洲清纯唯美| 女同久久另类99精品国产91| 黄片小视频在线播放| av福利片在线| 久久精品国产综合久久久| ponron亚洲| 长腿黑丝高跟| 久9热在线精品视频| 中文字幕高清在线视频| 久久人人精品亚洲av| 亚洲av熟女| 久久午夜综合久久蜜桃| 成人特级黄色片久久久久久久| 一a级毛片在线观看| 一个人免费在线观看电影 | 国产精品久久久久久人妻精品电影| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 99久久综合精品五月天人人| 在线a可以看的网站| 亚洲av美国av| 午夜精品在线福利| 91老司机精品| 精品国产超薄肉色丝袜足j| 黄片小视频在线播放| 香蕉国产在线看| 国产三级黄色录像| 在线观看www视频免费| 天天躁夜夜躁狠狠躁躁| 他把我摸到了高潮在线观看| 麻豆av在线久日| 成人18禁在线播放| 国语自产精品视频在线第100页| av国产免费在线观看| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久| 身体一侧抽搐| 叶爱在线成人免费视频播放| 中出人妻视频一区二区| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| a级毛片a级免费在线| 热99re8久久精品国产| 久久 成人 亚洲| 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 久久精品91无色码中文字幕| www.精华液| 国语自产精品视频在线第100页| 午夜福利欧美成人| 大型av网站在线播放| 老司机福利观看| 亚洲专区字幕在线| 亚洲美女黄片视频| 淫秽高清视频在线观看| bbb黄色大片| 岛国在线观看网站| 国产av不卡久久| 亚洲欧美激情综合另类| 黄色成人免费大全| 黄色视频不卡| 老司机福利观看| 亚洲国产精品合色在线| 国产不卡一卡二| 最近最新免费中文字幕在线| 制服人妻中文乱码| 精品国产亚洲在线| 免费看美女性在线毛片视频| 校园春色视频在线观看| 成人av一区二区三区在线看| 亚洲一码二码三码区别大吗| 欧美最黄视频在线播放免费| 国产在线观看jvid| 男插女下体视频免费在线播放| 看免费av毛片| 好男人电影高清在线观看| 精品免费久久久久久久清纯| 中文在线观看免费www的网站 | 这个男人来自地球电影免费观看| 成人精品一区二区免费| 日韩 欧美 亚洲 中文字幕| 日本一二三区视频观看| 日日爽夜夜爽网站| 国产av在哪里看| 亚洲av第一区精品v没综合| 一卡2卡三卡四卡精品乱码亚洲| 777久久人妻少妇嫩草av网站| 国产精品九九99| 99久久综合精品五月天人人| 精品电影一区二区在线| 日本a在线网址| 精品第一国产精品| 精品福利观看| 亚洲精品国产精品久久久不卡| 中出人妻视频一区二区| 日本黄大片高清| 一夜夜www| 亚洲欧洲精品一区二区精品久久久| 成人特级黄色片久久久久久久| 床上黄色一级片| 国产区一区二久久| 国产黄片美女视频| 一二三四社区在线视频社区8| 老司机午夜十八禁免费视频| 亚洲精品一卡2卡三卡4卡5卡| 老汉色av国产亚洲站长工具| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 欧美成人性av电影在线观看| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 国产精品久久久久久人妻精品电影| 中文字幕久久专区| 日本 av在线| 免费在线观看亚洲国产| 欧美日韩精品网址| 国产高清视频在线观看网站| 又爽又黄无遮挡网站| 欧美三级亚洲精品| 国产黄色小视频在线观看| 亚洲欧美日韩高清在线视频| 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 香蕉久久夜色| 在线观看一区二区三区| 毛片女人毛片| 特级一级黄色大片| 色综合站精品国产| 精品第一国产精品| 男女做爰动态图高潮gif福利片| av片东京热男人的天堂| 身体一侧抽搐| 99久久无色码亚洲精品果冻| 香蕉久久夜色| 国产精品免费一区二区三区在线| bbb黄色大片| 激情在线观看视频在线高清| 天堂√8在线中文| 91麻豆av在线| 12—13女人毛片做爰片一| 日本在线视频免费播放| 精品久久久久久久久久免费视频| 日韩精品青青久久久久久| 欧美zozozo另类| 午夜精品一区二区三区免费看| 亚洲精品一区av在线观看| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 中文字幕人成人乱码亚洲影| 久99久视频精品免费| 手机成人av网站| videosex国产| 精品第一国产精品| 一a级毛片在线观看| 久久久久久亚洲精品国产蜜桃av| 男人舔女人的私密视频| 成年人黄色毛片网站| 又紧又爽又黄一区二区| 日本免费a在线| 欧美最黄视频在线播放免费| 国产在线观看jvid| 国产精华一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久久久99蜜臀| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 精品国产超薄肉色丝袜足j| 18美女黄网站色大片免费观看| 亚洲欧美日韩东京热| 性色av乱码一区二区三区2| 精品高清国产在线一区| 国产精品一及| 成年免费大片在线观看| 老熟妇仑乱视频hdxx| 午夜福利视频1000在线观看| 国产黄片美女视频| а√天堂www在线а√下载| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 欧美成人免费av一区二区三区| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 91成年电影在线观看| 中文在线观看免费www的网站 | 人成视频在线观看免费观看| 9191精品国产免费久久| 哪里可以看免费的av片| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 国产在线观看jvid| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 亚洲午夜理论影院| 波多野结衣高清作品| 亚洲第一电影网av| 精华霜和精华液先用哪个| 女警被强在线播放| 国产99白浆流出| 亚洲国产欧美一区二区综合| 天天一区二区日本电影三级| 精品国产乱码久久久久久男人| 91九色精品人成在线观看| 九九热线精品视视频播放| 免费观看精品视频网站| 久久久水蜜桃国产精品网| 欧美久久黑人一区二区| 精品久久久久久,| 在线观看免费午夜福利视频| 精品国产亚洲在线| 亚洲成av人片免费观看| av免费在线观看网站| 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 视频区欧美日本亚洲| 亚洲人成网站高清观看| 国产精品久久久久久精品电影| 亚洲男人的天堂狠狠| 国产真人三级小视频在线观看| 女人被狂操c到高潮| 久久人人精品亚洲av| 成人国语在线视频| 精品久久久久久,| 国产成人欧美在线观看| 中文亚洲av片在线观看爽| 亚洲国产欧美人成| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美 日韩 在线 免费| 亚洲av日韩精品久久久久久密| 国产高清videossex| 99久久精品热视频| 精品免费久久久久久久清纯| 午夜精品一区二区三区免费看| 欧美黄色片欧美黄色片| 亚洲天堂国产精品一区在线| 他把我摸到了高潮在线观看| 日韩欧美国产在线观看| 男人舔女人下体高潮全视频| 午夜老司机福利片| 日韩免费av在线播放| 久久久国产成人免费| 三级国产精品欧美在线观看 | 午夜亚洲福利在线播放| 国产亚洲精品一区二区www| 亚洲狠狠婷婷综合久久图片| 一级毛片高清免费大全| 久久久久久久午夜电影| 国产精品野战在线观看| 麻豆国产97在线/欧美 | 亚洲国产精品合色在线| 51午夜福利影视在线观看| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 色在线成人网| 国产区一区二久久| 午夜福利在线在线| 午夜老司机福利片| 亚洲专区中文字幕在线| 欧美人与性动交α欧美精品济南到| 精品国产超薄肉色丝袜足j| 丝袜人妻中文字幕| 日本成人三级电影网站| 18美女黄网站色大片免费观看| 国产黄片美女视频| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| av视频在线观看入口| 亚洲欧美日韩东京热| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 少妇裸体淫交视频免费看高清 | 国产爱豆传媒在线观看 | 午夜两性在线视频| 这个男人来自地球电影免费观看| 黄色成人免费大全| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av| 精品久久久久久久末码| 久久国产精品影院| 十八禁人妻一区二区| 欧美三级亚洲精品| 欧美乱妇无乱码| 色哟哟哟哟哟哟| 欧美日韩一级在线毛片| 18禁观看日本| 三级毛片av免费| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 免费人成视频x8x8入口观看| 免费无遮挡裸体视频| 99riav亚洲国产免费| 亚洲 欧美 日韩 在线 免费| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 两性夫妻黄色片|