• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Maneuvering target tracking algorithm based on CDKF in observation bootstrapping strategy①

    2017-06-27 08:09:22HuZhentao胡振濤ZhangJinFuChunlingLiXian
    High Technology Letters 2017年2期

    Hu Zhentao (胡振濤), Zhang Jin, Fu Chunling, Li Xian

    (*Instituteof Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China) (**School of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China)

    Maneuvering target tracking algorithm based on CDKF in observation bootstrapping strategy①

    Hu Zhentao (胡振濤)*, Zhang Jin*, Fu Chunling②**, Li Xian*

    (*Instituteof Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China) (**School of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China)

    The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly. Aiming at improving performance of model filters, a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed. The framework of interactive multiple model (IMM) is used to realize identification of motion pattern, and a central difference Kalman filter(CDKF) is selected as the model filter of IMM. Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information, the hardware cost of the observation system for multiple sensors is adopted, meanwhile, according to the data assimilation technique in Ensemble Kalman filter(EnKF), a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise. On that basis, these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way. The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.

    maneuvering target tracking, interacting multiple model (IMM), central difference Kalman filter (CDKF), bootstrapping observation

    0 Introduction

    The key of target tracking is to estimate its motion state by using the priori pattern information of target motion and the latest observation. The availability and reliability of an algorithm depend on two aspects including the matching level between motion model and real motion pattern, and the performance of model filter. According to the pattern and strength of target motion, it is usually divided into non-maneuvering target tracking and maneuvering target tracking[1]. When an observed target moves in the non-maneuvering pattern, it can be described by single model. At this point, it is not related to the model matching problem, and the precision of state estimation mainly relies on the performance of the used filter. When the observed target moves in maneuvering pattern, the structure of multiple models needs to be generally adopted because of the uncertainty of the motion model. For such problem, a group of models usually needs to be designed to describe the different motion behavior. In the model set, each model matches a specific behavior pattern, and the estimation results of more than one parallel filters are organically integrated to constitute state estimation. According to the differences of model switching principle, the structure of multiple models is divided into static multiple models estimation[2]and dynamic multiple models estimation[3]. The hard decision mechanism of binary decision is adopted in the static multiple models estimation, and target motion model is identified by the accumulative result of estimation error. Its weakness is that the threshold value of model decision relies heavily on expert knowledge. Besides, the accumulative process of estimation error results in the delay of model switching time. The typical realization of dynamic multiple models estimation is IMM[4]. A kind of soft decision mechanism of model selection is used in IMM, which adopts the balance strategy between the precision of model identification and the precision of state estimation. So it avoids the dependence for expert knowledge. At present, IMM is considered as the mainstream approach to solve the maneuvering target tracking problem.

    When state model and observation model are linear or weak nonlinear, in order to obtain better performance in the process of model identification and state estimation, Kalman filter (KF)[5]or extended Kalman filter(EKF)[6]are used as a model filter in IMM. However, when they are strong nonlinear, KF and EKF are no longer applicable. Considering that it is much easier to approximate probability density distribution of nonlinear function than nonlinear function itself, meanwhile, accompanied by rapid development of computer performance, the filter design according to sampling strategy becomes the most active research hotspot in nonlinear estimation[7,8]. Recently, some domestic and foreign scholars put forward a series of solutions for the design and optimization of nonlinear filters. Those realizing principles can roughly be divided into deterministic sampling and random sampling. The typical method of deterministic sampling is unscented Kalman filter (UKF)[9]. Its basic idea is that a set of carefully chosen sigma points are used to deliver the statistic characteristics of random variables by UT transform, and then the mean and the covariance can be estimated by the weighted statistical linear regression way. Its advantages are that UKF is insensitive to system nonlinear degree, meanwhile, it avoids the calculation process of Jacobian matrix appearing in EKF. However, the filtering precision of UKF is limited by parameter selection of sigma point and weight, and the non-positive definite problem of estimation error covariance appears easily in filtering iteration. Similar to the implementation of UKF, there are some solutions such as Gauss-Hermite filter(GHF)[10]adopting the numerical integration principle of Gaussian-Hermite, cubature Kalman filtering(CKF)[11]adopting the third-order volume integral principle and so on. The typical methods of random sampling are particle filter(PF)[12]and Ensemble Kalman filter (EnKF)[13], and their common disadvantages are that the filtering precision and computation complexity are limited by the dimension of estimated state and the number of samples. Considering the parallel filtering way used in IMM, many PFs or EnKFs need to be run at the same time. Therefore, the calculation amount will be increased sharply along with the number of target motion models, and real-time is damaged. Aiming at solving the problem, combining with the Stirling interpolation principle, the central difference Kalman filter(CDKF) gives a novel realizing structure of deterministic sampling[14], and it will deals with the contradiction between the estimation precision of nonlinear state and the computational complexity. According to above analysis, through the dynamic combination of IMM and CDKF in observation bootstrap strategy, a novel maneuvering target tracking algorithm is designed in the paper, and the feasibility and efficiency of the algorithm are verified by emulation experiment.

    1 The central difference Kalman filter in observation bootstrapping strategy

    1.1 Central difference Kalman filter

    CDKF is considered as a classic nonlinear filter based on the Stirling interpolation principle. In realization of CDKF, sigma points are sampled according to state prior distribution of observed system, and its posterior distribution is expressed by sigma points using linear regression transformation[15]. LetLdenotethestatedimensionoftheobservedsystem,thenumberofsigmapointsis2L+1.Inordertomakesigmapointshavethesamemeanvalue,varianceandhigher-ordercenterdistancewithrealstate,sigmapointsandtheircorrespondingweightareexpressedas

    (1)

    (2)

    1) Initialization

    (3)

    (4)

    2) Time update

    (5)

    (6)

    (7)

    3) Observation update

    (8)

    (9)

    (10)

    (11)

    Kk=Pxz(Pzz)-1

    (12)

    (13)

    Pk|k=Pk|k-1-KkPzz(Kk)Τ

    (14)

    1.2 CDKF in observation bootstrapping strategy

    n=1,2,…,N(15)

    (16)

    (17)

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    (24)

    2 Maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy

    2.1 Interacting multiple model

    The key of IMM is that multiple models working in parallel are respectively used to match different modes of maneuvering target. Among models, they are transferred according to probability matrix. Based on cutting and merging the hypothesis of each model, the estimation of multiple parallel filters is synthesized. IMM overcomes the influence of error caused by the mismatch between motion state and model when single model is used to describe the estimated system. Considering the following multi-model system with model switching characteristics

    xk=f(xk-1,γk, uk-1)

    (25)

    zk=h(xk, vk)

    (26)

    γk~p(γk|γk-1)

    (27)

    (28)

    (29)

    2.2 Interacting multiple model based on cubature Kalman filter with observation iterated update

    Considering that CDKF-OBS has high estimation precision, CDKF-OBS is selected as the model filter in IMM. The objective is to improve the overall performance of IMM by promoting the state estimation of each pattern. On the basis of that, the IMM algorithm based on CDKF in observation bootstrapping strategy (IMMCDKF- OBS) is proposed. In order to facilitate understanding the concrete implementation of IMMCDKF-OBS, the form of pseudo code is given.

    Initialization:^xi0|0=x0,Pi0|0=P0,πij=π0,μi0=μ01)Inputinteraction μik-1,μijk-1|k-1,xik-1|k-1andPik-1|k-1arecalculatedby μik-1=∑Ji=1πijμjk-1 μijk-1|k-1=πijμjk-1/μik-1 xjk-1|k-1=∑Ji=1^xik-1|k-1μijk-1|k-1 Pjk-1|k-1=∑Ji=1[Pik-1|k-1+(^xik-1|k-1-xjk-1|k-1) (^xik-1|k-1-xjk-1|k-1)Τ]μijk-1|k-1 μjk-1denotesthemodelprobabilityofmodeljattimek-1,andπijdenotesthetransitionprobabilityfrommodelitomodelj.2)ModelfilteringTakingxik-1|k-1andPik-1|k-1as^xk-1|k-1andPk-1|k-1inEq.(1),calculate^xk|k-1andPk|k-1canbecalculatedinac?cordancewithEq.(2)toEq.(7).Combiningwiththeboot?strappingobservation,^xn,ik|kandPn,ik|konthebasisofΘnk,modelicanbesolvedbyEq.(8)toEq.(10)andEq.(18)toEq.(21).Then,accordingtoEq.(22)toEq.(24),^xik|kandPik|kcanbeobtainedforeachmodel.3)Modelprobabilityupdatinglikisfirstlycalculatedbyfollowingequations.ln,ik=|(2π)Pn,izz|-12 exp{-[(Θn,ik-^zik|k-1)Τ(Pn,izz)-1(Θn,ik-^zik|k-1)]/2} lik=∑Nn=1n,ikln,ikAndthenmodelprobabilityμikafterupdatingisexpressedas μik=μik-1lik/∑Jj=1(μjk-1ljk)4)OutputinteractionCombiningwithEq.(28)andEq.(29),^xk|kandPk|kcanbecalculated.5)Letk=k+1,returntostep1).

    3 Simulation result and analysis

    To verify the feasibility and availability of the proposed algorithm, the simulation scenario is set as the maneuvering target tracking by using the observations of two-coordinate radar. The sampling intervalτis1sandthesamplingstepsare35.ThenumberofMonteCarlosimulationis100.TheexperimentplatformadoptsPC,Pentium4 (CPU), 3.26GHzdominantfrequency, 2Gmemory,Windows7,andtheprogramminglanguageisMatlab2012b.Themodeoftargetmotioninradarscanningareaisasfollows.Theestimatedtargetmoveinuniformcircularmodeinthefirst10samplingperiods,anditsturningangularvelocityis+0.3rad/s.Inthesamplingperiodsfrom10to25andfrom11to35,itsturningangularvelocitiesare-0.15rad/sand+0.3rad/s,respectively,where“+”and“-”denotethattheestimatedtargetmovethedirectionofanticlockwiseandclockwise,respectively.Combiningwiththedynamiccharacteristicsofmaneuveringtargetmotionandthephysicalcharacteristicofradarsensors,thesystemstateequationandtheobservationequationofestimatedtargetareasfollows.

    Results from Fig.1 to Fig.5 show the model matching probability of five algorithms. In total, it is easy to see the model matching probability of IMMCDKF and IMMCDKF-OBS are superior to IMMUKF, IMMEKF and IMMCKF, furthermore, IMMCDKF-OBS is better than IMMCDKF. The reason is that the pros and cons of model filter selection directly effect the reliability of model identification in IMM. Because of introducing observation bootstrapping strategy in IMMCDKF-OBS, the performance of CDKF-OBS is superior to CDKF. When the feature is introduced into IMM, it reflects the improvement of real-time, precision and stability of models identification. Fig.6 and Fig.7 show the RMSE comparison of five algorithms. It is clear that the RMSE of IMMCDKF-OBS is less than other four algorithms, that is, the precision of IMMCDKF-OBS is the highest. From the figures one can also know that RMSE of IMMCDKF-OBS always keeps at low level and relatively stabilized. Table 1 quantitatively gives the mean of RMSE and the average time over 100 independent runs. It can be clearly found that the data of mean of RMSE describing algorithm filtering precision verifies the above analyzed results. The time cost is used to assess the computational complexity of these algorithms. The above results are conducive to reasonable selection of filters in practical engineering applications. It can be seen that the run time of IMMEKF is minimum, but its precision is also the lowest. The run time of IMMCDKF-OBS is slightly increased relative to IMMCDKF. However, its precision is certainly superior to the other algorithms. According to the above results shown in this paper, the five types of maneuvering target tracking algorithms provide guidance significance in the practical engineering application. The significance of above results gives the reasonable selection direction of model filter in the maneuvering target tracking system.

    Fig.1 IMMUKF

    Fig.2 IMMEKF

    Fig.3 IMMCKF

    Fig.4 IMMCDKF

    Fig.5 IMMCDKF-OBS

    Fig.6 Horizontal direction

    Fig.7 Vertical direction

    AlgorithmHorizontaldirection(km)Verticaldirection(km)Timecost(s)IMMUKF0.06480.11650.0096IMMEKF0.06150.11180.0025IMMCKF0.06050.11230.0138IMMCDKF0.04330.07210.0096IMMCDKF?OBS0.02890.03790.0352

    4 Conclusions

    The method of interactive multiple model solves the model matching problem by sacrificing filtering precision, a maneuvering target tracking algorithm based on CDKF in observation bootstrapping strategy is proposed. In process of IMMCDKF-OBS, through the dynamic connection among observation bootstrapping strategy, central difference Kalman filter and interacting multiple model, the valid identification and estimation of the mode and state for maneuvering target tracking are realized. Compared with the existing processing method, the advantages of the new algorithm are as follows: Firstly, based on the method of interacting multiple model, the problem of state estimation in multi-model system is solved in the process of IMMCDKF-OBS. Secondly, observation bootstrapping strategy is used to simulate observation information of multiple sensors and the information will be extracted and utilized by weight fusion strategy. New algorithm improves filtering precision on condition that hardware cost of the system is of no growth.

    [ 1] Pan Q, Liang Y, Yang F, et al. Modern Target Tracking and Information Fusion. Beijing: National Defence Industry Press, 2009,14-16

    [ 2] Lan J, Li X X. Equivalent-model augmentation for variable-structure multiple-model estimation.IEEETransactionsonAerospaceandElectronicSystems, 2013, 49(4): 2615-2630

    [ 3] Jin B, Jiu B, Su T, et al. Switched Kalman filter-interacting multiple model algorithm based on optimal autoregressive model for manoeuvring target tracking.IETRadar,Sonar&Navigation, 2015,9(2): 199-209

    [ 4] Fu X Y, Shang Y Y, Yuan H M. Improved diagonal interacting multiple model algorithm for manoeuvering target tracking based on H∞filter.IETControlTheory&Applications, 2015, 9(12): 1887-1892

    [ 5] Simon D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms.IETControlTheory&Applications, 2010, 4(8):1303-1318

    [ 6] Guo H Y, Chen H, Xu F, et al. Implementation of EKF for vehicle velocities estimation on FPGA.IEEETransactionsonIndustrialElectronics, 2013, 60(9):3823-3835

    [ 7] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking.IEEETransactionsonSignalProcessing, 2002, 50(2): 174-188

    [ 8] Daum F. Nonlinear filters: beyond the Kalman filter.IEEEAerospaceandElectronicSystemsMagazine, 2005, 20(8): 57-69

    [ 9] Chang L B, Hu B Q, Li A, et al. Unscented type Kalman filter:limitation and combination.IETSignalProcessing, 2013, 7(3): 167-176

    [10] Dey A, Sadhu S, Ghoshal T K. Adaptive Gauss-Hermite filter for non-linear systems with unknown observation noise covariance.IETScience,Observation&Technology, 2015, 9(8): 1007-1015

    [11] Arasaratnam I, Haykin S. Cubature Kalman filters.IEEETransactionsonAutomaticControl, 2009,54(6): 1254-1269

    [12] Hu Z T, Liu X X, Hu Y M. Particle filter based on the lifting scheme of observations.IETRadar,SonarandNavigation, 2015, 9(1): 48-54

    [13] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations.IEEETransactionsonSignalProcessing, 2010, 58(10): 4977-4993

    [14] Wang Y F, Sun F C, Zhang Y A, et al. Central difference particle filter applied to transfer alignment for SINS on missiles.IEEETransactionsonAerospaceandElectronicSystems, 2012,48(1): 375-387

    [15] Das M, Dey A, Sadhu S, Ghoshal T K. Adaptive central difference filter for non-linear state estimation.IETScience,Observation&Technology, 2015,9(6): 728-733

    10.3772/j.issn.1006-6748.2017.02.005

    ①Supported by the Postdoctoral Science Foundation of China (No. 2014M551999) and the Open Foundation of Key Laboratory of Spectral Imaging Technology of the Chinese Academy of Sciences (No. LSIT201711D).

    ②To whom correspondence should be addressed. E-mail: fuchunling@henu.edu.cn

    on May 26, 2016

    o, born in 1979. He received his Ph.D degrees in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of college of computer and information engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    可以在线观看毛片的网站| 精品国产一区二区久久| 丰满迷人的少妇在线观看| 日韩国内少妇激情av| 男人舔女人的私密视频| 亚洲成人国产一区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产区一区二久久| 国产免费男女视频| 男女午夜视频在线观看| 18禁美女被吸乳视频| 国产极品粉嫩免费观看在线| av天堂久久9| 水蜜桃什么品种好| 18禁国产床啪视频网站| 香蕉国产在线看| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 亚洲熟妇熟女久久| 久久性视频一级片| 我的亚洲天堂| 老汉色∧v一级毛片| 黄片小视频在线播放| 一级,二级,三级黄色视频| 一级片'在线观看视频| 欧美人与性动交α欧美软件| 日本欧美视频一区| 中文字幕人妻丝袜制服| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 91大片在线观看| 99国产精品99久久久久| 亚洲专区中文字幕在线| 精品国产美女av久久久久小说| 波多野结衣高清无吗| 久久性视频一级片| 国产区一区二久久| 最新美女视频免费是黄的| 美女福利国产在线| 激情在线观看视频在线高清| 国产无遮挡羞羞视频在线观看| 亚洲精品一区av在线观看| 91麻豆精品激情在线观看国产 | 久久人妻福利社区极品人妻图片| 视频在线观看一区二区三区| 极品人妻少妇av视频| 男人的好看免费观看在线视频 | 久久伊人香网站| 看片在线看免费视频| 人人妻人人添人人爽欧美一区卜| 757午夜福利合集在线观看| 欧美一区二区精品小视频在线| 午夜a级毛片| videosex国产| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 一级片'在线观看视频| 欧美最黄视频在线播放免费 | 亚洲伊人色综图| 亚洲伊人色综图| 美女午夜性视频免费| 村上凉子中文字幕在线| av欧美777| 在线免费观看的www视频| 欧美日韩亚洲综合一区二区三区_| 一边摸一边抽搐一进一小说| 老司机午夜十八禁免费视频| 国内久久婷婷六月综合欲色啪| 老熟妇乱子伦视频在线观看| 欧美激情 高清一区二区三区| 嫁个100分男人电影在线观看| av天堂久久9| 日本黄色视频三级网站网址| 国产精品一区二区三区四区久久 | 在线免费观看的www视频| 久久性视频一级片| 精品久久久精品久久久| 久久亚洲精品不卡| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 999精品在线视频| 在线天堂中文资源库| 日韩有码中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区激情| 夜夜爽天天搞| 人人妻人人添人人爽欧美一区卜| 婷婷精品国产亚洲av在线| av在线天堂中文字幕 | 亚洲全国av大片| 免费高清在线观看日韩| 成年女人毛片免费观看观看9| 国产精品久久久久成人av| 亚洲国产看品久久| 成人手机av| 免费观看精品视频网站| 91成人精品电影| 久久人妻熟女aⅴ| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 日本黄色日本黄色录像| 性欧美人与动物交配| 岛国在线观看网站| 国产成年人精品一区二区 | 亚洲国产毛片av蜜桃av| av超薄肉色丝袜交足视频| 久久午夜综合久久蜜桃| 97碰自拍视频| 69av精品久久久久久| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 亚洲熟妇中文字幕五十中出 | 日本欧美视频一区| 又大又爽又粗| 在线国产一区二区在线| 久久亚洲精品不卡| 久久久国产成人免费| 亚洲av片天天在线观看| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| av国产精品久久久久影院| 亚洲一区二区三区色噜噜 | 久久亚洲真实| 老司机午夜十八禁免费视频| 国产成人精品久久二区二区免费| 亚洲精品国产区一区二| 另类亚洲欧美激情| 久久天躁狠狠躁夜夜2o2o| 自拍欧美九色日韩亚洲蝌蚪91| 91在线观看av| 999精品在线视频| 久久国产精品男人的天堂亚洲| 91成年电影在线观看| tocl精华| 黑人猛操日本美女一级片| 亚洲自偷自拍图片 自拍| 国产av在哪里看| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 亚洲一区二区三区色噜噜 | 日韩大尺度精品在线看网址 | 欧美日韩亚洲综合一区二区三区_| 成人三级做爰电影| 少妇粗大呻吟视频| 日韩av在线大香蕉| 美女扒开内裤让男人捅视频| 美国免费a级毛片| 国产欧美日韩一区二区三区在线| 国产91精品成人一区二区三区| 日本a在线网址| 国产区一区二久久| 亚洲国产欧美网| 亚洲专区中文字幕在线| 亚洲性夜色夜夜综合| 亚洲一区二区三区欧美精品| 无人区码免费观看不卡| 高潮久久久久久久久久久不卡| 激情在线观看视频在线高清| 男女午夜视频在线观看| 国产av精品麻豆| 午夜老司机福利片| 黄色a级毛片大全视频| 天堂俺去俺来也www色官网| 午夜免费观看网址| 亚洲人成电影观看| 国产高清videossex| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲| 男人操女人黄网站| 久久久久精品国产欧美久久久| 久久国产精品影院| 亚洲片人在线观看| 久久亚洲真实| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 久久天堂一区二区三区四区| 亚洲一区二区三区欧美精品| 一级片'在线观看视频| 757午夜福利合集在线观看| 国产xxxxx性猛交| 大型av网站在线播放| 国产97色在线日韩免费| 99国产精品99久久久久| 久久婷婷成人综合色麻豆| 美女高潮喷水抽搐中文字幕| 亚洲一区二区三区欧美精品| 国产av一区在线观看免费| 97人妻天天添夜夜摸| 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 久久国产精品人妻蜜桃| 亚洲国产精品sss在线观看 | 亚洲国产精品合色在线| 成人亚洲精品一区在线观看| 9色porny在线观看| 亚洲自拍偷在线| 亚洲人成电影观看| 一边摸一边抽搐一进一出视频| www.999成人在线观看| 少妇的丰满在线观看| 日韩中文字幕欧美一区二区| 亚洲av第一区精品v没综合| 我的亚洲天堂| 国产免费av片在线观看野外av| 18禁黄网站禁片午夜丰满| 欧美日韩av久久| 久久香蕉国产精品| 久久影院123| 国产男靠女视频免费网站| 久久精品成人免费网站| 欧美人与性动交α欧美软件| av有码第一页| av天堂久久9| 91成人精品电影| 青草久久国产| 欧美日韩精品网址| 国产伦人伦偷精品视频| 精品高清国产在线一区| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| av中文乱码字幕在线| 99riav亚洲国产免费| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 人妻久久中文字幕网| 国产精品综合久久久久久久免费 | 51午夜福利影视在线观看| 久久久久精品国产欧美久久久| 神马国产精品三级电影在线观看 | 亚洲av成人不卡在线观看播放网| 国产色视频综合| 欧美精品啪啪一区二区三区| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 国产成人系列免费观看| 久久精品亚洲av国产电影网| 脱女人内裤的视频| 国产精品影院久久| 亚洲熟妇中文字幕五十中出 | 亚洲中文字幕日韩| 中文字幕人妻丝袜一区二区| 男人操女人黄网站| 窝窝影院91人妻| 韩国精品一区二区三区| 欧美激情高清一区二区三区| 精品午夜福利视频在线观看一区| 97人妻天天添夜夜摸| 99热只有精品国产| 操美女的视频在线观看| 三上悠亚av全集在线观看| 电影成人av| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 国产人伦9x9x在线观看| 亚洲国产看品久久| 久久草成人影院| 女人被躁到高潮嗷嗷叫费观| 中文字幕另类日韩欧美亚洲嫩草| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 日韩高清综合在线| 国产在线精品亚洲第一网站| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 欧美黄色淫秽网站| 欧美精品亚洲一区二区| 99精品欧美一区二区三区四区| aaaaa片日本免费| 亚洲 欧美 日韩 在线 免费| 中亚洲国语对白在线视频| 亚洲一区二区三区不卡视频| 午夜福利免费观看在线| 国产99久久九九免费精品| 两个人免费观看高清视频| e午夜精品久久久久久久| 老司机靠b影院| av超薄肉色丝袜交足视频| av电影中文网址| 91精品三级在线观看| 男女高潮啪啪啪动态图| 午夜a级毛片| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 久久九九热精品免费| 757午夜福利合集在线观看| 午夜福利在线免费观看网站| 一级毛片精品| 99热只有精品国产| 成人18禁高潮啪啪吃奶动态图| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 午夜精品国产一区二区电影| 一级作爱视频免费观看| 黄色 视频免费看| 久久精品91无色码中文字幕| 国产熟女xx| a级片在线免费高清观看视频| 久久久国产成人免费| 免费在线观看日本一区| 精品久久久久久,| 久久久久国内视频| 一区二区三区国产精品乱码| 亚洲国产看品久久| 99riav亚洲国产免费| 亚洲午夜理论影院| 午夜福利免费观看在线| 国产激情欧美一区二区| www.999成人在线观看| 搡老乐熟女国产| 午夜a级毛片| 少妇的丰满在线观看| 婷婷精品国产亚洲av在线| 精品熟女少妇八av免费久了| 999精品在线视频| 十八禁人妻一区二区| av免费在线观看网站| 亚洲一码二码三码区别大吗| 韩国av一区二区三区四区| 欧美在线一区亚洲| 亚洲午夜精品一区,二区,三区| 少妇裸体淫交视频免费看高清 | 岛国视频午夜一区免费看| √禁漫天堂资源中文www| 国产xxxxx性猛交| 女人被狂操c到高潮| 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 大型黄色视频在线免费观看| 女警被强在线播放| 久久人人97超碰香蕉20202| 99在线视频只有这里精品首页| 在线观看www视频免费| 又大又爽又粗| 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| 电影成人av| 免费在线观看视频国产中文字幕亚洲| 亚洲成人精品中文字幕电影 | 啦啦啦在线免费观看视频4| 国产精品香港三级国产av潘金莲| 老司机午夜福利在线观看视频| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 久久人人97超碰香蕉20202| av福利片在线| 伊人久久大香线蕉亚洲五| 免费在线观看黄色视频的| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡免费网站照片 | 免费在线观看黄色视频的| 国产精品98久久久久久宅男小说| 久久99一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 精品日产1卡2卡| 国产一区二区三区视频了| av在线天堂中文字幕 | 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 黄色a级毛片大全视频| 国产成人系列免费观看| 久久久国产成人免费| 激情在线观看视频在线高清| 亚洲精品国产精品久久久不卡| 在线播放国产精品三级| 日韩 欧美 亚洲 中文字幕| 色综合欧美亚洲国产小说| 美女大奶头视频| 可以免费在线观看a视频的电影网站| 村上凉子中文字幕在线| 老司机福利观看| 亚洲第一av免费看| 黑人猛操日本美女一级片| 在线永久观看黄色视频| 正在播放国产对白刺激| 午夜福利,免费看| 午夜成年电影在线免费观看| 神马国产精品三级电影在线观看 | 色尼玛亚洲综合影院| 午夜免费成人在线视频| 久久精品亚洲av国产电影网| 免费日韩欧美在线观看| 日韩三级视频一区二区三区| 亚洲欧洲精品一区二区精品久久久| av天堂在线播放| 久久久国产成人免费| 国产精品国产高清国产av| 欧美日韩中文字幕国产精品一区二区三区 | 免费av毛片视频| 国产亚洲欧美98| 欧美日韩亚洲高清精品| 夜夜爽天天搞| 国产熟女xx| 天堂√8在线中文| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| www.精华液| 91麻豆精品激情在线观看国产 | 俄罗斯特黄特色一大片| 热99国产精品久久久久久7| 满18在线观看网站| 国产精品亚洲一级av第二区| 成人黄色视频免费在线看| 午夜精品国产一区二区电影| 国产av又大| 亚洲专区国产一区二区| 久久人妻熟女aⅴ| 久久 成人 亚洲| 久久中文看片网| 法律面前人人平等表现在哪些方面| av中文乱码字幕在线| 午夜精品在线福利| 777久久人妻少妇嫩草av网站| 日韩视频一区二区在线观看| 脱女人内裤的视频| 亚洲视频免费观看视频| 精品日产1卡2卡| 国产三级在线视频| 日本一区二区免费在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲精品中文字幕一二三四区| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 精品日产1卡2卡| 最好的美女福利视频网| 国产精品美女特级片免费视频播放器 | 欧美一级毛片孕妇| 日韩欧美一区二区三区在线观看| 91老司机精品| 午夜福利在线免费观看网站| 又黄又爽又免费观看的视频| 亚洲五月婷婷丁香| 韩国精品一区二区三区| 成人三级做爰电影| 美女高潮喷水抽搐中文字幕| 亚洲av片天天在线观看| cao死你这个sao货| 999久久久精品免费观看国产| 日本一区二区免费在线视频| 丁香欧美五月| 搡老乐熟女国产| 日韩三级视频一区二区三区| 中文字幕精品免费在线观看视频| av超薄肉色丝袜交足视频| 久久久久久免费高清国产稀缺| 久热爱精品视频在线9| 88av欧美| 午夜免费鲁丝| 国产av精品麻豆| 激情在线观看视频在线高清| 午夜精品在线福利| 最好的美女福利视频网| 国产精品永久免费网站| 亚洲精品粉嫩美女一区| 免费在线观看视频国产中文字幕亚洲| 又大又爽又粗| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| 午夜免费观看网址| 中文字幕高清在线视频| 亚洲,欧美精品.| 可以在线观看毛片的网站| 久久中文字幕一级| 国产精品1区2区在线观看.| a级毛片在线看网站| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 三级毛片av免费| 午夜影院日韩av| 国内久久婷婷六月综合欲色啪| 免费高清视频大片| 99国产精品99久久久久| 欧美在线一区亚洲| 老司机靠b影院| 亚洲一区高清亚洲精品| 久久天堂一区二区三区四区| 中文字幕高清在线视频| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲片人在线观看| 一级毛片精品| 69av精品久久久久久| 精品国产亚洲在线| 十分钟在线观看高清视频www| 一区二区日韩欧美中文字幕| 丁香六月欧美| 国产成人精品无人区| 亚洲熟女毛片儿| 亚洲人成伊人成综合网2020| av视频免费观看在线观看| 中文字幕av电影在线播放| 久久精品国产亚洲av高清一级| 久久精品91蜜桃| av片东京热男人的天堂| 久久精品国产清高在天天线| 99久久99久久久精品蜜桃| 日韩人妻精品一区2区三区| 一进一出抽搐gif免费好疼 | a级片在线免费高清观看视频| 看黄色毛片网站| 老鸭窝网址在线观看| 日本免费一区二区三区高清不卡 | 曰老女人黄片| 99精品久久久久人妻精品| 啦啦啦免费观看视频1| 精品久久久久久久久久免费视频 | 一级毛片精品| 免费搜索国产男女视频| 天天躁夜夜躁狠狠躁躁| 日本三级黄在线观看| 国产一区二区在线av高清观看| 欧美日韩瑟瑟在线播放| 国产欧美日韩一区二区精品| 国产一区在线观看成人免费| 日日夜夜操网爽| 国产成人精品久久二区二区91| 国产成人欧美| 国产亚洲欧美精品永久| 啦啦啦 在线观看视频| 亚洲国产精品合色在线| 中文字幕人妻熟女乱码| 国产又色又爽无遮挡免费看| 丁香六月欧美| 久久久久久久久久久久大奶| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 国产成人精品在线电影| 国产精品亚洲一级av第二区| 国产区一区二久久| 欧美黑人欧美精品刺激| 一本综合久久免费| 成年人黄色毛片网站| 亚洲欧美日韩无卡精品| 黄片播放在线免费| 男女之事视频高清在线观看| 黄色 视频免费看| 一级片'在线观看视频| 亚洲精品粉嫩美女一区| 国产精品99久久99久久久不卡| 三级毛片av免费| 国产欧美日韩一区二区三| 欧美乱码精品一区二区三区| 国产色视频综合| 久久国产精品男人的天堂亚洲| 脱女人内裤的视频| 久久亚洲真实| 99国产极品粉嫩在线观看| 最近最新中文字幕大全电影3 | 国产又爽黄色视频| 亚洲 欧美一区二区三区| 啪啪无遮挡十八禁网站| 国产精品影院久久| xxx96com| а√天堂www在线а√下载| 一进一出抽搐gif免费好疼 | 欧美日韩中文字幕国产精品一区二区三区 | 99久久99久久久精品蜜桃| 99riav亚洲国产免费| 精品久久久久久,| 免费观看精品视频网站| 国产精品久久久久久人妻精品电影| 亚洲三区欧美一区| 国产国语露脸激情在线看| 国产av在哪里看| 亚洲国产中文字幕在线视频| 欧美午夜高清在线| 国产在线精品亚洲第一网站| 日本黄色日本黄色录像| 在线国产一区二区在线| 性色av乱码一区二区三区2| 亚洲专区字幕在线| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 久久香蕉激情| 欧美日本亚洲视频在线播放| 高潮久久久久久久久久久不卡| 大型av网站在线播放| 日韩欧美国产一区二区入口| 两个人看的免费小视频| 亚洲av第一区精品v没综合| 精品电影一区二区在线| 国产av一区在线观看免费| 欧美日韩乱码在线| ponron亚洲| 正在播放国产对白刺激| 精品免费久久久久久久清纯| 伊人久久大香线蕉亚洲五| 丰满迷人的少妇在线观看| 高清黄色对白视频在线免费看| 日韩精品青青久久久久久| 亚洲情色 制服丝袜| 交换朋友夫妻互换小说| 波多野结衣高清无吗| 欧美久久黑人一区二区| 亚洲国产精品一区二区三区在线| 伊人久久大香线蕉亚洲五| 两个人看的免费小视频| 人成视频在线观看免费观看| av中文乱码字幕在线| 免费观看精品视频网站| 中国美女看黄片| 久久国产精品男人的天堂亚洲| 色综合婷婷激情| 成人黄色视频免费在线看| 国产蜜桃级精品一区二区三区|