• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust adaptive beamforming for constant modulus signal of interest①

    2017-06-27 08:09:22XuYougen徐友根YinBingjieLiuZhiwen
    High Technology Letters 2017年2期

    Xu Yougen (徐友根), Yin Bingjie, Liu Zhiwen

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, P.R.China)

    Robust adaptive beamforming for constant modulus signal of interest①

    Xu Yougen (徐友根)②, Yin Bingjie, Liu Zhiwen

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, P.R.China)

    It is required in the diagonally loaded robust adaptive beamforming the automatic determination of the loading level which is practically a challenging problem. A constant modulus restoral method is herein presented to choose the diagonal loading level adaptively for the extraction of a desired signal with constant modulus (a common feature of the phase modulation signals). By introducing the temporal smoothing technique, the proposed constant modulus restoral diagonally loaded robust adaptive beamformer provides increased capability compared with some existing robust adaptive beamformers in rejecting interferences and noise while protecting the signal-of-interest. Simulation results are included to illustrate the performance of the proposed beamformer.

    array signal processing, robust adaptive beamforming, diagonal loading, constant modulus

    0 Introduction

    Adaptive beamforming is widely used in many practical applications such as radar, sonar, seismology, wireless communications, space science, and medical imaging[1]. However, unlike the traditional sum-and-delay beamforming, adaptive beamforming is known to be much sensitive to even a small model error, for instance, mismatch in steering vector of the signal-of-interest (SOI) caused by imperfect array calibration look direction error and/or the presence of finite data samples[1]. For this reason, developing robust adaptive beamformers is of great interest.

    Early typical robust schemes include gain or derivative linear constraint, signal plus interference subspace projection, and norm constraint[1]. Recently established robust techniques include uncertainty-set constraint[2-4], covariance matrix enhancing or fitting[5-7], power matching[8], steering vector estimation[9], interference and noise covariance matrix reconstruction[10]. Other robust methods can be found in Ref.[11] and the references therein. The above mentioned approaches can be used conditionally to prevent cancellation of SOI while rejecting interferences and noise.

    Some of the above methods can also be interpreted as a special diagonal loading technique which is itself a popular robust approach. However, the adaptive determination of diagonal loading factor is very difficult[12]. Recently, automatic determination of diagonal loading level has been fulfilled from a SOI property restoral point of view. In Refs[13,14], the robustness of diagonally loaded beamformers is achieved by taking into account the noncircularity of SOI. In Refs[15,16], two robust beamformers termed the minimum constant modulus errors and the constant modulus diagonal loading (COMDIAL) are proposed, respectively, wherein the diagonal loading level is determined by exploiting the constant modulus feature of SOI. The purpose of this contribution is to enhance the performance of the COMDIAL beamformer via temporal smoothing without any user parameters or training procedures.

    The rest of the paper is outlined as follows. Section 1 introduces the constant modulus feature of a signal, the array signal model and the Capon beamformer. Section 2 describes the diagonally loaded beamformers and proposes a method exploiting the constant modulus feature of the SOI to determine the diagonal loading level automatically. Section 3 verifies the effectiveness of the proposed beamformer by simulations. Conclusions are drawn in Section 4.

    1 Problem formulation

    Consider a zero-mean complex-valued SOI, says0(t),whosemodulusisconstantandthus

    (1)

    (2)

    where a0is the steering vector of the SOI, amis the steering vector of them-th interferencesm(t),andn(t) is the noise vector. Throughout the paper, SOI interferences and noise are assumed to be independent zero-mean stationary random processes. The noise process is further assumed to be spatially white and circular.

    The output of the beamformer is given by

    yw(t)=wHx(t)

    (3)

    where w is the beamformer weight vector, and superscript “H” denotes Hermitian transpose. In the popular minimum variance distortion less response (MVDR) beamformer, weight vector w is designed as

    (4)

    where Rxx=E{x(t)xH(t)} is the array output covariance matrix. The solution to Eq.(4) can be determined by using the Lagrange multiplier technique, as

    (5)

    The practical counterpart of the above MVDR beamformer is the sample matrix inversion (SMI) beamformer wherein the presumed value of a0and the sample estimate of Rxxare used instead.

    In the presence of SOI steering vector mismatch and finite data samples, SOI may be misinterpreted by the SMI beamformer as an interfering signal to be suppressed, which causes signal cancellation problem. The purpose of this paper is to tackle this problem on the basis of diagonal loading and SOI temporal structure restoral.

    2 Proposed beamformer

    The weight vector of the diagonally loaded robust beamformer is determined as

    (6)

    (7)

    The solution to Eq.(6) can be also determined by using the Lagrange multiplier technique, as

    (8)

    Note that SOI is assumed to have a constant modulus, to suppress significantly the interferences and noise while preserving SOI, the diagonal loading level should be selected such that the output of the beamformer would be as close as possible tos0(t)and,thus

    (9)

    More precisely, regularization parameterαcanbedeterminedasfollows:

    (10)

    IfJ=1,thenschemeinEq.(10)reducestotheCOMDIALmethodinRef.[16]:

    (11)

    ItcanbeobtainedfromEq.(9):

    (12)

    whereL=KJ-(J-1)J/2.Therefore,regularizationparameterαcanbealternativelydeterminedas

    αCRDL=

    (13)

    The scheme for the determination ofαinEq.(13)ispreferablesincetheconstantmodulusrestoreisexploitedaftertheeffectoftheresidualnoisecontainedinthebeamformeroutputisreducedbythetemporalsmoothingprocess,whereasαdeterminedineitherEq.(10)orEq.(11)ismoresensitivetothenoiseresidueinthebeamformeroutput.

    Inaddition,notethat

    (14)

    The scheme in Eq.(13) thus can be simplified as

    αCRDL=

    (15)

    where

    (16)

    The above method is called the constant modulus restoral diagonal loading (CRDL) beamformer. The computational complexity of the proposed beamformer is composed of the complexity in the iterative optimization of regularization parameterαandthecomplexmultiplications.Acomplexmoduluscalculationrequirestwotimesofmultiplicationswhileacomplexmultiplicationrequiresfourrealmultiplications.Thewholeiterativeoptimizationprocessfordeterminingregularizationparameterαthusneeds6KJ+3J(1-J)multiplications.NotealsothatthemaincomputationalcomplexityoftheproposedCRDLruleisconsistedinthedeterminationofthediagonalloadinglevelanditisaboutΟ(9J2).

    3 Simulationresults

    Inthissection,severalnumericalexamplesarepresentedtoillustratetheperformanceoftheproposedCRDLbeamformer.AuniformlineararraywitheightsensorsspacedhalfwavelengthapartisusedtoextractaconstantmodulusBPSKSOIfromadditivewhiteGaussiannoiseandtwointerferences,oneisaBPSKsignal,andtheotherisaGaussianrandomprocess.ThepresumedSOIDOAis0°.TheinterferenceDOAsare30°and-40°,respectively.Thesignal-to-interferenceratio(SIR)is-10dB.Allthecurvesshownaretheaveragedresultsof500Monte-Carlosimulationtrials.

    Inthesimulations,theoutputsignal-to-interference-plus-noiseratio(OSINR)oftheproposedCRDLbeamformerisexaminedcomparedwiththeexistingCOMDIALbeamformer[16],robustCaponbeamformer(RCB)[3],generalizedlinearcombination(GLC)beamformer[7],midway(MW)beamformer[8],andalsothemaximallyattainableOSINR:

    (17)

    whereRi+nis the interference plus noise covariance matrix defined as

    Ri+n=E{[i(t)+n(t)][i(t)+n(t)]H}

    (18)

    Example 1: The curves of the beamformers’ OSINR versus the input signal-to-noise ratio (ISNR), snapshot number and look direction error.

    The results shown in Fig.1 and Fig.2 are the OSINR curves of beamformers against ISNR, where the look direction errors are 1° and 3°, respectively. The signal-to-noise ratio (SNR) is varied from 0dB to 20dB. In all the simulations, the ideal user parameter for RCB is chosen to ensure its best performance. The OSINR curves shown in Fig.3 and Fig.4 are for the same simulation conditions except that the snapshot number is 300. It can be seen from Fig.1 and Fig.2 that CRDL outperforms other beamformers in the presence of short data samples, especially when the ISNR is equal to 20dB. Nearly 3dB is gained in OSINR of CRDL than COMDIAL. From Fig.3 and Fig.4, it is that CRDL has a superior OSINR over the other beamformers regardless of the ISNR values.

    Fig.1 OSINR versus ISNR: the snapshot number is 50, look direction error is 1°

    Fig.2 OSINR versus ISNR: the snapshot number is 50, look direction error is 3°

    Fig.3 OSINR versus ISNR: the snapshot number is 300, look direction error is 1°

    Fig.4 OSINR versus ISNR: the snapshot number is 300, look direction error is 3°

    In addition, fixing SNR as 15dB, it is considered further the effect of the number of snapshot and the look direction error on the beamformers’ OSINR. The results shown in Fig.5 and Fig.6 are the beamformers’ OSINR versus the snapshot number, where the look direction errors are 1° and 3°, respectively. The results shown in Fig.7 are the OSINR curves against look direction errors, where the snapshot number is 50.

    It is observed that CRDL has a better performance than the other tested beamformers. From Fig.5 and Fig.6, it is seen that CRDL’s OSINR is 5dB higher than other beamformers when the snapshot number is beyond 70. Fig.7 shows that CRDL still outperformers other beamformers. As the look direction error becomes larger, all beamformers’ performances degrade.

    Also, by using the temporal smoothing technique, CRDL outperforms COMDIAL especially for the case of large look direction error. In the presence of short data samples, CRDL still outperforms COMDIAL.

    Fig.5 OSINR versus snapshot number: the ISNR is 15dB, look direction error is 1°

    Fig.6 OSINR versus snapshot number: the ISNR is 15dB, look direction error is 3°

    Fig.7 OSINR versus look direction error: the ISNR is 15dB, snapshot number is 50

    Example 2: The curves of the beamformers’ single experimental running time (SRT) versus the snapshot numberKand the sensor numberN.

    Under the condition of the same hardware and software (Intel i3 dual-core processor, 3.30GHz of faster, 4GB of memory; the Matlab simulation software), the result shown in Fig.8 is the beamformers’ SRT against the sensor number, where the snapshot number is 100, the look direction error is 3° and the ISNR is 20dB. Fig.9 shows the beamformers’ SRT against the snapshot number, where the sensor number is 8 and the other simulation conditions are the same as above. The CRDL beamformer, COMDIAL beamformer and the MW beamformer are compared because all of the three beamformers need iterative computations for the determination of a regularization parameter.

    Fig.8 SRT versus sensor number: the ISNR is 20dB, snapshot number is 50, look direction error is 3°

    Fig.9 SRT versus snapshot number: the ISNR is 20dB, sensor number is 8, look direction error is 3°

    It can be seen from Fig.8 and Fig.9 that the SRTs of all the tested beamformers become longer as the sensor numbers or snapshot numbers increase. Fig.8 also shows that CRDL takes about 0.08s to run a single experiment while MW takes about 0.05s to run. The SRT of COMDIAL is slightly higher than CRDL. From Fig.9, an average single running time of CRDL is about 0.09s while the SRT of COMDIAL is about 0.11s, and MW’ SRT is almost not changed as the snapshot number increases.

    4 Conclusion

    This paper has proposed a diagonally loaded robust beamformer (CRDL) based on constant modulus restoral to extract a constant modulus SOI. By using the constant modulus feature of SOI, the proposed method could determine an appropriate diagonal loading level without any user-parameter and training procedure. Under the tested scenarios, CRDL has been observed to outperform the existing COMDIAL, RCB, MW and GLC against the look direction error. Moreover, by using the temporal smoothing technique, CRDL also has a higher OSINR than other beamformers under scenarios of short data samples. The OSINR of CRDL is about 5dB higher than the others in the case of large look direction error and small snapshot number.

    [ 1] Vorobyov S A. Principles of minimum variance robust adaptive beamforming design.SignalProcessing, 2013, 93(12): 3264-3277

    [ 2] Vorobyov S A, Gershman A B, Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem.IEEETransactionsonSignalProcessing, 2003, 51(2): 313-324

    [ 3] Li J, Stoica P, Wang Z S. On robust Capon beamforming and diagonal loading.IEEETransactionsonSignalProcessing, 2003, 51(7): 1702-1715

    [ 4] Lorenz R G, Boyd S P. Robust minimum variance beamforming.IEEETransactionsonSignalProcessing, 2005, 53(5): 1684-1696

    [ 5] Rubsamen M, Gershman A B. Robust adaptive beamforming using multidimensional covariance fitting.IEEETransactionsonSignalProcessing, 2012, 60(2): 740-753

    [ 6] Selen Y, Abrahamsson R, Stoica P. Automatic robust adaptive beamforming via ridge regression.SignalProcessing, 2008, 88(1): 33-49

    [ 7] Du L, Li J, Stoica P. Fully automatic computation of diagonal loading levels for robust adaptive beamforming.IEEETransactionsonAerospaceandElectronicSystems, 2010, 46(1): 449-458

    [ 8] Stoica P, Li J, Tan X. On spatial power spectrum and signal estimation using the Pisarenko framework.IEEETransactionsonSignalProcessing, 2008, 56(10): 5109-5119

    [ 9] Arash K, Vorobyov S A, Hassanien A. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information.IEEETransactionsonSignalProcessing, 2012, 60(6): 2974-2987

    [10] Gu Y J, Leshem A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation.IEEETransactionsonSignalProcessing, 2012, 60(7): 3881-3885

    [11] Li J, Stoica P. Robust Adaptive Beamforming. New York: John Wiley & Sons, Inc., Publication, Wiley, 2005

    [12] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays.IEEETransactionsonAerospaceandElectronicSystems, 1988, 24(4): 397-401

    [13] Xu Y G, Ma J Y, Liu Z W, et al. A class of diagonally loaded robust capon beamformers for noncircular signals of interest.SignalProcessing, 2014, 94: 670-680

    [14] Ma J Y, Xu Y G, Liu Z W, et al. Derivative constrained noncircularity-rate maximization robust beamforming. In: Proceedings of IEEE International Conference of IEEE Region 10, Xi’an, China, 2013. 1-4

    [15] Liu W L, Ding S X. An efficient method to determine the diagonal loading factor using the constant modulus feature.IEEETransactionsonSignalProcessing, 2008, 56(12): 6102-6106

    [16] Gou X M, Liu Z W, Xu Y G. Fully automatic robust adaptive beamforming using the constant modulus feature.IETSignalProcessing, 2014, 24(8): 823-830

    10.3772/j.issn.1006-6748.2017.02.002

    ①Supported by the National Natural Science Foundation of China (No. 61490691, 61331019).

    ②To whom correspondence should be addressed. E-mail: yougenxu@bit.edu.cn

    on Apr. 15, 2016

    , born in 1975. He received the M.S. and Ph.D. degrees from Beijing Institute of Technology (BIT), China, in 2001 and 2004, respectively, all in electronic engineering. Since August 2004, he has been with the Department of Electronic Engineering, BIT, where he is currently the professor. His research focuses on the area of vector array signal processing, wireless sensor network, regularization methods and applications in sensor array processing, biomedical digital signal processing and space-time adaptive processing.

    久久久久九九精品影院| 黄色成人免费大全| av天堂在线播放| 哪里可以看免费的av片| а√天堂www在线а√下载| 在线观看免费午夜福利视频| 免费一级毛片在线播放高清视频| 国产精品1区2区在线观看.| 久久久久亚洲av毛片大全| 久久精品影院6| 免费搜索国产男女视频| 亚洲av电影不卡..在线观看| 岛国在线观看网站| 亚洲国产精品sss在线观看| 90打野战视频偷拍视频| e午夜精品久久久久久久| 九色国产91popny在线| 欧美日韩精品网址| 欧美又色又爽又黄视频| 久久久久久国产a免费观看| 亚洲精品久久国产高清桃花| 一本精品99久久精品77| 午夜福利在线观看免费完整高清在 | 高潮久久久久久久久久久不卡| 在线观看66精品国产| 啦啦啦免费观看视频1| 久久久精品欧美日韩精品| 国产麻豆成人av免费视频| 窝窝影院91人妻| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 久99久视频精品免费| 人妻丰满熟妇av一区二区三区| 熟女电影av网| 亚洲av成人av| 亚洲av免费高清在线观看| 精品久久久久久久久久久久久| 婷婷亚洲欧美| 久久精品国产清高在天天线| 免费观看的影片在线观看| 一本精品99久久精品77| 在线观看免费视频日本深夜| 日本精品一区二区三区蜜桃| 国产成人aa在线观看| 99精品在免费线老司机午夜| 我的老师免费观看完整版| 五月玫瑰六月丁香| 精品一区二区三区视频在线 | 淫秽高清视频在线观看| 美女高潮的动态| 国产伦在线观看视频一区| 国产三级在线视频| 欧美日韩乱码在线| svipshipincom国产片| 国产精品乱码一区二三区的特点| 中文字幕人成人乱码亚洲影| 在线观看午夜福利视频| 日韩欧美国产在线观看| 亚洲成人久久性| 久久精品影院6| 1024手机看黄色片| 一级黄色大片毛片| 欧美黑人欧美精品刺激| 中国美女看黄片| 国产精品永久免费网站| 精品一区二区三区人妻视频| 国产一区二区亚洲精品在线观看| 欧美丝袜亚洲另类 | 久久久久久久亚洲中文字幕 | 岛国视频午夜一区免费看| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 身体一侧抽搐| 亚洲国产欧美人成| 最新在线观看一区二区三区| 一个人看的www免费观看视频| 草草在线视频免费看| 夜夜爽天天搞| 在线播放国产精品三级| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| www国产在线视频色| 老司机深夜福利视频在线观看| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| xxx96com| 中文字幕av成人在线电影| 国产精品日韩av在线免费观看| 亚洲人与动物交配视频| 国产探花极品一区二区| 男女下面进入的视频免费午夜| 久久亚洲真实| 午夜精品一区二区三区免费看| 每晚都被弄得嗷嗷叫到高潮| 国产精品女同一区二区软件 | 一级黄片播放器| 看黄色毛片网站| 在线观看av片永久免费下载| 欧美一区二区亚洲| 日韩欧美在线二视频| 亚洲专区国产一区二区| 亚洲激情在线av| 午夜福利视频1000在线观看| 99热精品在线国产| 日本与韩国留学比较| 日本免费a在线| 色综合欧美亚洲国产小说| 亚洲欧美日韩东京热| 少妇丰满av| 日本 欧美在线| 精品久久久久久久久久久久久| 中文亚洲av片在线观看爽| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 亚洲欧美日韩无卡精品| 十八禁人妻一区二区| 国产探花在线观看一区二区| 在线视频色国产色| 最后的刺客免费高清国语| 两个人看的免费小视频| 午夜福利在线在线| 亚洲精品影视一区二区三区av| www.熟女人妻精品国产| 一区二区三区高清视频在线| or卡值多少钱| 国产精品永久免费网站| 亚洲精品亚洲一区二区| 一个人观看的视频www高清免费观看| 成人18禁在线播放| 国内精品美女久久久久久| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 国产毛片a区久久久久| 一进一出好大好爽视频| 国产精品美女特级片免费视频播放器| 在线观看舔阴道视频| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 亚洲av中文字字幕乱码综合| 99国产极品粉嫩在线观看| 午夜亚洲福利在线播放| 黑人欧美特级aaaaaa片| 我的老师免费观看完整版| 久久久久久久午夜电影| 成熟少妇高潮喷水视频| 国产免费一级a男人的天堂| 一个人免费在线观看的高清视频| 尤物成人国产欧美一区二区三区| 久久精品人妻少妇| 亚洲精华国产精华精| 99热这里只有是精品50| 久久国产乱子伦精品免费另类| 天天躁日日操中文字幕| 波多野结衣巨乳人妻| 国产成人系列免费观看| 青草久久国产| 久久久久免费精品人妻一区二区| 99久久精品热视频| 欧美日韩一级在线毛片| 国产亚洲精品综合一区在线观看| 免费av毛片视频| 亚洲国产色片| 亚洲专区国产一区二区| av在线天堂中文字幕| 蜜桃久久精品国产亚洲av| 欧美日韩黄片免| 噜噜噜噜噜久久久久久91| 婷婷丁香在线五月| 免费在线观看影片大全网站| 欧美成人a在线观看| 人妻丰满熟妇av一区二区三区| 亚洲精品亚洲一区二区| 天天躁日日操中文字幕| 在线观看舔阴道视频| 久久精品国产亚洲av香蕉五月| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 欧美bdsm另类| 欧美日韩一级在线毛片| 老司机在亚洲福利影院| 淫秽高清视频在线观看| 国产在线精品亚洲第一网站| av中文乱码字幕在线| 午夜福利在线观看吧| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| 精品一区二区三区视频在线 | 久久九九热精品免费| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久天躁狠狠躁夜夜2o2o| a级一级毛片免费在线观看| 91av网一区二区| 一本久久中文字幕| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 级片在线观看| 欧美av亚洲av综合av国产av| 亚洲最大成人手机在线| 91九色精品人成在线观看| 久久久成人免费电影| 成人av在线播放网站| 精品国产三级普通话版| av片东京热男人的天堂| 欧美不卡视频在线免费观看| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 欧美又色又爽又黄视频| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 亚洲精品乱码久久久v下载方式 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩欧美精品v在线| 高清毛片免费观看视频网站| 18+在线观看网站| 国产伦精品一区二区三区视频9 | 国内少妇人妻偷人精品xxx网站| 久久6这里有精品| av专区在线播放| 国产高清激情床上av| 18禁黄网站禁片午夜丰满| 黄色日韩在线| 男女之事视频高清在线观看| 欧美高清成人免费视频www| 久久精品国产清高在天天线| 色综合欧美亚洲国产小说| 国产高潮美女av| 久久6这里有精品| 真人做人爱边吃奶动态| 亚洲熟妇中文字幕五十中出| 午夜福利成人在线免费观看| 亚洲美女黄片视频| 美女cb高潮喷水在线观看| 又黄又粗又硬又大视频| 少妇的逼好多水| 一卡2卡三卡四卡精品乱码亚洲| 1000部很黄的大片| a在线观看视频网站| 香蕉久久夜色| 亚洲av日韩精品久久久久久密| 天堂影院成人在线观看| 男女下面进入的视频免费午夜| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲一级av第二区| 亚洲欧美日韩卡通动漫| 成人精品一区二区免费| 亚洲精品色激情综合| 亚洲av电影不卡..在线观看| 国产真实伦视频高清在线观看 | 一区二区三区免费毛片| 亚洲一区二区三区不卡视频| 丰满乱子伦码专区| 日日夜夜操网爽| 亚洲美女视频黄频| 99久国产av精品| 日韩免费av在线播放| 亚洲五月天丁香| 成人永久免费在线观看视频| 老汉色av国产亚洲站长工具| 国产久久久一区二区三区| 女人高潮潮喷娇喘18禁视频| 一进一出抽搐动态| 国产高清视频在线播放一区| 一本一本综合久久| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 国产免费男女视频| 亚洲国产欧美人成| 国产精品电影一区二区三区| 日本精品一区二区三区蜜桃| 男女那种视频在线观看| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 草草在线视频免费看| 首页视频小说图片口味搜索| 波多野结衣高清无吗| 欧美成狂野欧美在线观看| h日本视频在线播放| 欧美性感艳星| 免费在线观看日本一区| 亚洲国产欧洲综合997久久,| 制服人妻中文乱码| 久久99热这里只有精品18| 免费看日本二区| 91字幕亚洲| 桃红色精品国产亚洲av| av福利片在线观看| 精品久久久久久久末码| 波野结衣二区三区在线 | 午夜日韩欧美国产| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 丁香欧美五月| 欧美丝袜亚洲另类 | 精品国产亚洲在线| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| 九九热线精品视视频播放| 精品一区二区三区av网在线观看| 久久中文看片网| 精品日产1卡2卡| 午夜免费成人在线视频| 久久久久性生活片| 亚洲精品亚洲一区二区| 欧美日韩一级在线毛片| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 亚洲成人久久性| 日本一二三区视频观看| 亚洲中文字幕日韩| 18禁裸乳无遮挡免费网站照片| 激情在线观看视频在线高清| 欧美激情在线99| 国产探花极品一区二区| 亚洲av第一区精品v没综合| 18+在线观看网站| 久久香蕉国产精品| 国产av麻豆久久久久久久| 五月玫瑰六月丁香| 一级毛片女人18水好多| 亚洲精品色激情综合| 国产在视频线在精品| 男女下面进入的视频免费午夜| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 欧美色欧美亚洲另类二区| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 波野结衣二区三区在线 | 国产精品亚洲美女久久久| 噜噜噜噜噜久久久久久91| 真人做人爱边吃奶动态| 精品久久久久久久毛片微露脸| 天堂av国产一区二区熟女人妻| 99热只有精品国产| 天堂网av新在线| 丰满人妻一区二区三区视频av | 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 村上凉子中文字幕在线| 很黄的视频免费| 小说图片视频综合网站| 叶爱在线成人免费视频播放| 久久天躁狠狠躁夜夜2o2o| 国产高清有码在线观看视频| 级片在线观看| 国产三级在线视频| 18美女黄网站色大片免费观看| 亚洲成人中文字幕在线播放| 成人永久免费在线观看视频| 久久精品影院6| 丰满人妻熟妇乱又伦精品不卡| 欧美av亚洲av综合av国产av| 国产真实伦视频高清在线观看 | 此物有八面人人有两片| 嫁个100分男人电影在线观看| 国产探花极品一区二区| 久久香蕉国产精品| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 成人鲁丝片一二三区免费| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 又紧又爽又黄一区二区| 国产一区二区三区在线臀色熟女| 国产色婷婷99| 国产欧美日韩一区二区三| 亚洲欧美激情综合另类| 亚洲中文字幕一区二区三区有码在线看| 嫩草影院入口| 色综合婷婷激情| 亚洲精品美女久久久久99蜜臀| 欧美中文综合在线视频| 男女午夜视频在线观看| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 亚洲精品美女久久久久99蜜臀| 最新在线观看一区二区三区| 婷婷亚洲欧美| 久久久久久国产a免费观看| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| aaaaa片日本免费| 国产一级毛片七仙女欲春2| 91在线精品国自产拍蜜月 | 国产精品三级大全| 高清在线国产一区| 亚洲自拍偷在线| 久久久色成人| 国产黄片美女视频| 俄罗斯特黄特色一大片| 啦啦啦观看免费观看视频高清| 热99在线观看视频| 美女高潮的动态| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 欧美激情久久久久久爽电影| a级毛片a级免费在线| 亚洲av中文字字幕乱码综合| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩卡通动漫| 久久香蕉精品热| 日韩亚洲欧美综合| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 国产主播在线观看一区二区| 亚洲av成人精品一区久久| 亚洲熟妇中文字幕五十中出| 亚洲午夜理论影院| 欧美zozozo另类| 国产老妇女一区| 久久久色成人| 女人高潮潮喷娇喘18禁视频| 欧美极品一区二区三区四区| 欧美午夜高清在线| 成人欧美大片| 日韩欧美免费精品| 亚洲专区国产一区二区| 精品一区二区三区视频在线 | 法律面前人人平等表现在哪些方面| 日韩欧美一区二区三区在线观看| eeuss影院久久| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 搡女人真爽免费视频火全软件 | 国产一区二区在线观看日韩 | www日本黄色视频网| 精品久久久久久成人av| 欧美黑人欧美精品刺激| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| av福利片在线观看| 在线观看日韩欧美| 少妇人妻一区二区三区视频| 久久伊人香网站| 岛国视频午夜一区免费看| 国产激情偷乱视频一区二区| 18禁在线播放成人免费| 免费av不卡在线播放| 久久久色成人| 日本与韩国留学比较| 欧美中文综合在线视频| 免费高清视频大片| 久久精品亚洲精品国产色婷小说| 18美女黄网站色大片免费观看| 身体一侧抽搐| 欧美黄色淫秽网站| 一进一出好大好爽视频| 国产伦精品一区二区三区四那| av在线天堂中文字幕| 免费无遮挡裸体视频| 免费观看的影片在线观看| 中文字幕av成人在线电影| 亚洲精品456在线播放app | www日本黄色视频网| 中文在线观看免费www的网站| 19禁男女啪啪无遮挡网站| 国产精品亚洲美女久久久| 日本 欧美在线| 我的老师免费观看完整版| 99久久精品国产亚洲精品| eeuss影院久久| 男女那种视频在线观看| 舔av片在线| 色老头精品视频在线观看| 国产成人影院久久av| 亚洲专区中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 日本精品一区二区三区蜜桃| 香蕉久久夜色| a在线观看视频网站| 好男人电影高清在线观看| 国产v大片淫在线免费观看| 色吧在线观看| 欧美高清成人免费视频www| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 性欧美人与动物交配| 国产精品久久久人人做人人爽| 成人一区二区视频在线观看| 日本a在线网址| 中文亚洲av片在线观看爽| 在线免费观看不下载黄p国产 | 色在线成人网| 最近最新中文字幕大全电影3| 麻豆国产97在线/欧美| 亚洲欧美日韩东京热| 禁无遮挡网站| 午夜福利18| 欧美大码av| 久久久久久大精品| 婷婷精品国产亚洲av| 国产真实乱freesex| 少妇人妻一区二区三区视频| 久久久久久久亚洲中文字幕 | 免费看日本二区| 97超视频在线观看视频| 欧美乱码精品一区二区三区| 一边摸一边抽搐一进一小说| 男人舔奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品综合一区二区三区| 手机成人av网站| 高清毛片免费观看视频网站| 国产野战对白在线观看| 真实男女啪啪啪动态图| 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女| 精品无人区乱码1区二区| 一区福利在线观看| 国产av麻豆久久久久久久| 99国产精品一区二区蜜桃av| 久久久久久九九精品二区国产| 欧美极品一区二区三区四区| 久久香蕉国产精品| 一个人看的www免费观看视频| 可以在线观看的亚洲视频| 午夜福利欧美成人| 国产av麻豆久久久久久久| 日韩av在线大香蕉| 国产乱人视频| 欧美性感艳星| 久久香蕉精品热| 色视频www国产| 18禁国产床啪视频网站| 亚洲中文日韩欧美视频| 亚洲五月天丁香| 欧美又色又爽又黄视频| 亚洲天堂国产精品一区在线| 免费看美女性在线毛片视频| 亚洲中文字幕日韩| www国产在线视频色| www.999成人在线观看| 国产免费男女视频| 最近在线观看免费完整版| 国产一区在线观看成人免费| 99久久精品一区二区三区| 母亲3免费完整高清在线观看| 又粗又爽又猛毛片免费看| 欧美国产日韩亚洲一区| 国产精品爽爽va在线观看网站| 欧美最新免费一区二区三区 | 亚洲av不卡在线观看| 一二三四社区在线视频社区8| 757午夜福利合集在线观看| 亚洲最大成人手机在线| 中文字幕人成人乱码亚洲影| 天堂av国产一区二区熟女人妻| 久久亚洲真实| 91字幕亚洲| av黄色大香蕉| 欧美性猛交╳xxx乱大交人| 精品国产亚洲在线| 色av中文字幕| 久久久国产精品麻豆| 在线a可以看的网站| 很黄的视频免费| 国产欧美日韩一区二区三| 国产伦在线观看视频一区| 久久亚洲真实| 日韩欧美国产一区二区入口| 久久国产精品人妻蜜桃| 国产高清有码在线观看视频| 好男人电影高清在线观看| 国产在视频线在精品| 亚洲精品国产精品久久久不卡| 国产亚洲精品av在线| 搡老妇女老女人老熟妇| 免费无遮挡裸体视频| 老鸭窝网址在线观看| 成人特级黄色片久久久久久久| 桃红色精品国产亚洲av| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 在线视频色国产色| 欧美国产日韩亚洲一区| 亚洲精品美女久久久久99蜜臀| 麻豆一二三区av精品| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 俺也久久电影网| 又粗又爽又猛毛片免费看| 特大巨黑吊av在线直播| 美女黄网站色视频| 小蜜桃在线观看免费完整版高清| 日本a在线网址| 国产精品久久久久久久电影 | 人妻夜夜爽99麻豆av| 色视频www国产| 国产精品久久久人人做人人爽| 免费人成在线观看视频色| 一个人免费在线观看电影| 变态另类成人亚洲欧美熟女| 精品熟女少妇八av免费久了| 亚洲成人精品中文字幕电影| 精品久久久久久久久久久久久| 久久香蕉国产精品| 天天一区二区日本电影三级| 日本一二三区视频观看| 人人妻人人澡欧美一区二区| 怎么达到女性高潮| 欧美成人一区二区免费高清观看|