• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trajectory tracking control of the bionic joint of the musculoskeletal leg mechanism①

    2017-06-27 08:09:22LeiJingtao雷靜桃ZhuJianminWuJiandong
    High Technology Letters 2017年2期

    Lei Jingtao (雷靜桃), Zhu Jianmin, Wu Jiandong

    (*School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China) (**College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China)

    Trajectory tracking control of the bionic joint of the musculoskeletal leg mechanism①

    Lei Jingtao (雷靜桃)②*, Zhu Jianmin**, Wu Jiandong*

    (*School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China) (**College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R.China)

    Pneumatic artificial muscles (PAMs) have properties similar to biological muscles, which are widely used in robotics as actuators. It is difficult to achieve high-precision position control for robotics system driven by PAMs. A 3-DOF musculoskeletal bionic leg mechanism is presented, which is driven by PAMs for quadruped robots. PAM is used to simulate the compliance of biological muscle. The kinematics of the leg swing is derived, and the foot desired trajectory is planned as the sinusoidal functions. The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion of joints. A proportional integral derivative (PID) algorithm is presented for controlling the flexion/extension of the joint. The trajectory tracking results of joints and the PAM gas pressure are obtained. Experimental results show that the developed leg mechanism exhibits good biological properties.

    musculoskeletal leg mechanism, swing, bionic joint, trajectory tracking, proportional integral derivative (PID) control

    0 Introduction

    Four-legged creatures have advanced mobility in natural environment, which is the long-term evolution result of the biological adapting to the natural environment. Better mobility mainly depends on the structure of flexible body and legs, which is a musculoskeletal system, and the muscles and skeletal could move coordinatedly to adapt to different locomotion velocity and terrains[1,2].

    Various bionic leg mechanisms have been developed for quadruped robots worldwide. The biological structure consists of many bones connected with muscles and ligaments that work antagonistically and synergistically. A musculoskeletal system is required to produce animal-like motions, and researchers have carried out investigations[3]. PAM has been widely adopted as an actuator in musculoskeletal system, and similar to a biological muscle in shape and working principles, thus can meet the relevant flexibility requirements.

    PAMs have many desirable characteristics, such as flexibility similar to biological muscles, high power to weight ratio, high power to volume ratio, and inherent compliance therefore have been widely used in various robotic systems[4]. Hosoda[5]developed a biped robot with a bio-mimetic muscular-skeleton system driven by McKibben PAM which realises stable bouncing. Takuma[6]presented a bipedal robot and a feedforward controller to achieve multi-modal locomotion by tuning appropriate leg compliance on individual locomotion. The rotational joints were driven by McKibben pneumatic muscles. Niiyama[7]presented a pneumatically actuated bipedal robot called “Mowgli”, with an artificial musculoskeletal system consisting of six McKibben pneumatic muscle actuators. The robot could achieve vertical jumping with disturbance. Aschenbeck[8]developed a canine-inspired quadruped robot in which PAMs were used to actuate the robot. Kenichi[9]developed a quadruped robot with the minimalistic and light-weight body for achieving fast locomotion and McKibben PAMs were used as actuators to provide high frequency and wide stride motion, and also to avoid problems of overheating. A central pattern generator-based open loop controller was adopted to realise the bouncing gait of the robot. Andre[10]presented a hopping mechanism driven by seven PAMs. The hopping direction of the robotic hind-limb could be controlled by using a non-linear curve fitting from experimental results. Keisuke[11]developed a one-leg jumping robot driven by 9 PAMs that could mimic the muscular and skeletal system of a human leg. Two kinds of muscles: mono-articular type and bi-articular type were adopted. Motion experiments were conducted to verify the effectiveness of the mechanism and the control system. Niiyama[12]presented a robot with an artificial musculoskeletal system driven by PAMs. The structure of the robot was similar to an animal for biomechanics study. The robot could achieve vertical jumping, soft landing and postural control during standing. Wang, et al.[13,14]developed a quadruped robot driven by PAMs who adopted a basic position control method and model-based position control method to control the joint positon. Their experimental investigations showed the variation of joint stiffness with time. Xie, et al.[15]presented a lower limb mechanism driven by PAMs. Based on analyzing the output force model of PAM, a proportional integral derivative (PID) control algorithm was adopted.

    A kind of antagonistic joint driven by two PAMs is presented, and an adaptive recurrent neural networks (ARNN) controller is designed. The joint position control is studied by the experiment and simulation with three different load cases of 0.5kg, 2kg and 10kg, which tracking error is very small less than ±0.5° for a load of 0.5kg and less than ±2° for a load of 10kg[16]. A bionic joint driven by PAMs is presented, where a classic PI controller, an enhanced PID controller, a robust controller and sliding-mode controller are designed. The position control experiments of the bionic joint are performed. Experimental results show that the average trajectory tracking error is less than ±1°[17]. One-dimensional manipulator actuated by two PAMs is presented. A Takagi-Sugeno fuzzy model-based controller is designed. Experimental results show that the proposed controller can achieve excellent tracking performance under different disturbance. The tracking error of the T-S fuzzy model-based control is maintained within 2°[18].

    Based on the biological principles of the skeletal and muscle coordinated movement, a musculoskeletal three degrees of freedom (DOF) leg mechanism driven by PAMs for a quadruped robot is proposed in this paper. The configuration of three rotating joints of the leg mechanism is different from other leg mechanisms, which can achieve side swing, forward and backward swing. The kinematics of the leg mechanism is derived to determine the relationship between the joint angular displacement and the foot positon. The foot trajectory is planned as the sinusoidal function. A PID control algorithm is adopted to control the swing of the leg. The experiment on the musculoskeletal leg mechanism is performed to evaluate and assess the performance of joint movement and the control algorithm.

    1 Musculoskeletal leg mechanism

    Based on the design principles of the light weight and bionic, from the point of the mechanism, drive and motion bionic, with reference to biological leg muscle arrangement, elastic tendons, antagonistic drive bionic design concept, using the PAMs similar to biological characteristics of muscle, the musculoskeletal leg mechanism is innovatively designed, which reflects the biological flexible, multi-muscle coordinated movement, and the PAMs are reasonably arranged to achieve large enough rotating range of the bionic leg joints.

    The configuration of the muscles is compatible with four-legged animals. The musculoskeletal bionic leg is based on quadruped animals, such as, dog or cheetah. For the joint rotating range of the hind limb of the cheetah, spine-hip joint has a range of 145 degrees, and the knee joint has a range of 104 degrees, the ankle joint is 95 degrees[19].

    The leg has three DOFs. FESTO-type PAMs are used to provide the non-linear properties of biological muscles. The 3-DOF musculoskeletal leg mechanism is presented in Fig.1, where PAMs play an important role in realising coordinated movements of joints. The leg mechanism has three rotational joints driven by PAMs, and these are side-swing hip joint, forward-swing hip joint and knee joint. The axis of the first joint is perpendicular to the axis of the second joint. The axes of the second and the third joints are parallel, which can increase the motion range of the foot. The 2-DOF hip joint can achieve side-swing and forward/backward swing. The ranges of motion of the joints are designed similar to those of quadruped animals.

    Four muscles are arranged for the leg mechanism. The flexion/extension of the side-swing hip joint or the forward-swing joint are driven by one PAM. The flexion/extension of the knee joint is driven by two PAMs in order to increase its range of rotation. PAM has the tendency of contracting and is hard to elongate. These characteristics are considered in the design of the musculoskeletal leg mechanism to avoid interference of PAMs during rotation of the joints. For the PAMs used in the knee joint, when one is charged with gas, the other end can be moved by the mechanical stretch structure.

    (a) Mechanism structure

    (b) PAMs arrangement

    2 Kinematics

    2.1 Forward kinematics

    Kinematics is not concerned with forces, either internal or external. Swing is the event when the foot is in the air. The kinematics of leg mechanism in the swing phase is analysed here, using the Denavit-Hartenberg (D-H) convention, as shown in Fig.2. The link parameters are shown in Table 1.

    Fig.2 D-Hcoordinate system

    LinkNo.iLinklengthai(mm)Linkangleαi(°)Offsetdi(mm)Jointvariableθi(°)1l1/200-902l200θ23l300θ3

    The position and orientation of the foot with respect to frame {0} can be described by a 4×4 homogeneous transformation matrix:

    (1)

    wheres2=sinθ2,c2=cosθ2,s23=sin(θ2+θ3),c23=cos(θ2+θ3).

    2.2 Inverse kinematics

    According to the planned foot trajectory, angular displacement of each joint can be determined through inverse kinematics of the leg mechanism.

    The joint anglesθ1,θ2,θ3canbedeterminedasbelowusingtheinversetransformationmethod.

    (2)

    2.3Footdesiredtrajectory

    Forthemusculoskeletallegmechanismpresentedabove,therotatingrangeofeachjointhasbeendeterminedbythePAMlength.Theside-swinghipjointcanreach23°,whiletheforward-swinghipjointreaches10°andthekneejointreaches55°.Accordingtotherotatingrangeoftheforward-swingjointandthekneejoint,thefoottrajectoryisplannedwiththesinusoidalfunction.

    Thefoottrajectoriesalongthex-axis andz-axis are planned as sinusoidal functions. The side swing of the leg mechanism is not considered, hence the foot trajectory along they-axis is 0.The planned trajectory of the leg mechanism is as follows:

    (3)

    whereSisthestridelength,Histhestepheight,Tswistheswingcycle,andpx,py,pzaredisplacementsofthefootalongcoordinateaxesdirections.

    3 Dynamics

    Formusculoskeletallegmechanismswing,thecontactforcebetweenthefootandtheenvironmentdoesnotneedtobeconsidered.Sothelegcanbeconsideredasaseriesmanipulator.Lagrange’sformulationisusedheretoderivethedynamicsofthenonlinearsystem.Firstly,thePAMisn’tconsidered,thedynamicsofthelegswingcanbederivedinthejointspaceinthefollowingform:

    (4)

    Taking the knee joint as example, the relationship between the joint driving torque and the PAM output force can be derived. Meanwhile, the PAM output force is related to the inner gas pressure. The structure parameters and the force analysis of the antagonistic knee joint are shown in Fig.3.

    Fig.3 Force analysis of antagonistic knee joint

    The relationship between the joint driving torque and the PAM force can be expressed as

    (5)

    whereτ3isthekneejointdrivingtorque.meis the equivalent mass of the external load.megis the equivalent gravity of the external load. F3, F4are the PAM output forces.d3,d4aretheforcearmsofforceF3and F4, respectively.

    The structural and gait parameters are shown in Table 2.

    Table 2 Structural and gait parameters

    4 Leg swing experiments

    The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension/flexion of joints and the leg performance. A PID algorithm is adopted to control the flexion/extension of the joint.

    4.1 Experiment system

    According to the planned foot trajectory of the leg swing, the trajectory tracking experiments of the forward-swing hip joint and the knee joint are performed. The experiment is conducted as shown in Fig.4.

    Fig.4 Experimental platform of the leg swing

    The trajectory tracking of the leg mechanism in swing is considered as the basis of performance criteria to demonstrate the accuracy and effectiveness of the proposed control algorithm. Experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion characteristics of the leg mechanism, and to assess the range of motion of each joint and the control algorithm.

    The experimental system (see Fig.5) is composed of the leg mechanism, industrial PC, data acquisition card, pressure regulating valve, proportional pressure valves, pressure sensor and potentiometer. The hardware used in the experiment is shown in Table 3.

    The NI PCI-6281 data acquisition card is used to obtain the joint position signal and the PAMs gas pressure by real-time collecting. These data are imported into computer. After the control program calculating, the control voltage signals are outputted and imported into the proportional pressure valve, and thus output gas pressure of the proportional valves are regulated and imported into the PAMs. The inner gas pressure of PAMs are controlled within 0.1Mpa and 0.6Mpa.

    4.2 Experimental results

    Precise position/angle control of PAM is not suitable. Instead the force/torque can be controlled relatively with ease by controlling the gas pressure which results in high-precision dynamic real-time compensation for the traditional PID controller.A proportional pressure valve is used to control the inner pressure of the muscles. The pressurized gas is exported by the air compressor and is supplied to the PAMs through the pressure regulating valve and proportional valve. The pressure regulating valve is used to change the system pressure, and the proportional valves are used to transform analogue input signal into a corresponding gas pressure. The proportional valve can be dynamically controlled by the controller, and the gas pressure is controlled at a certain value. A non-contact rotary position sensor is fixed on each joint, and a pressure sensor is used for measuring the gas pressure. Each PAM is supplied with one proportional valve. The maximum shrinkage of the PAMs is 20% of the initial length. The maximum pressure used was 0.6MPa, and the sampling frequency was 100Hz.

    Table 3 Hardware used in the experiment

    Fig.5 Experiment system of the leg swing

    The proposed control method was experimentally tested on the musculoskeletal leg mechanism. The proportional gainkp,integralgainkianddifferentialgainkdareobtainedthroughatrialanderrorprocedure,andthesearegivenasfollows:

    Forjoint2,kp=0.5,ki=8,kd=0.08,

    Forjoint3,kp=3,ki=0.5,kd=0.15.

    Thelegswingisrelatedwiththeforward-swinghipjointandthekneejoint.SothetrajectorytrackingresultsofthistwojointsandthePAMgaspressurecanbeobtained,asshowninFig.6.ThejointtrajectorytrackingresultsareshowninFig.6(a)~Fig.6(d).ThegaspressureofPAMsduringlegswingisshowninFig.6(e).

    (a) Angle displacement of joint 2

    (b) Tracking error of joint 2

    (c) Angle displacement of joint 3

    (d) Tracking error of joint 3

    (e) PAM inner pressure

    From Fig.7, the rotating range of the forward-swing joint is 10°, and the knee joint is 15°. As PAMs has highly nonlinear and time-varying behavior, it is difficult to achieve excellent tracking performance. For the musculoskeletal leg mechanism, the trajectory tracking error of joint should be controlled within 2°. It is noted that better effectiveness of the joint trajectory tracking is achieved. The tracking errors are within ±1°. At the beginning position of the leg swing, there is a relatively larger error. This is due to the instantaneous action of the proportional valve and thus leading to the pressure mutation of the PAMs. The experimental results show that the PID controller can be implemented in controlling the swing movement of the musculoskeletal leg mechanism, and the bionic leg could achieve stable swing according to the planned foot trajectory.

    Fig.7 Swing of the musculoskeletal leg mechanism

    5 Conclusions

    A musculoskeletal leg mechanism driven by PAMs is presented, which can be applied to a quadruped robot to improve the flexibility and mobility of the robot. The kinematics of the leg mechanism are derived to determine the angular displacement of joints due to the planned trajectory of foot. The swing experiments of the musculoskeletal leg mechanism is conducted to evaluate its movement performance. A PID control algorithm is used for join trajectory tracking of the leg mechanism. The experimental results show that the required range of joint rotation and the planned movement of the leg mechanism can be achieved. Future work will focus on the jumping planning and control of the musculoskeletal leg mechanism.

    [ 1] Penny E H, Sandra A C, Rachel C P,et al. Functional anatomy of the cheetah (Acinonyx jubatus) hindlimb.JournalofAnatomy, 2011,218(4): 363-373

    [ 2] Ijspeert A J. Biorobotics: Using robots to emulate and investigate agile locomotion.Science, 2014,346(6206):196-203

    [ 3] Nishikawa S, Yamada Y, Shida K, et al. Dynamic motions by a quadruped musculoskeletal robot with angle-dependent moment arms. In: Proceedings of the International Workshop on Bio-Inspired Robots, 2011. 1-3

    [ 4] Andrikopoulos G, Nikolakopoulos G, Manesis S. A survey on applications of pneumatic artificial muscles. In: Proceedings of the 19th Mediterranean Conference on Control and Automation, Corfu, Greece, 2011. 1439-1446

    [ 5] Hosoda K, Takayama H, Takuma T. Bouncing monopod with bio-mimetic muscular-skeleton system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008. 3083-3088

    [ 6] Takuma T, Hayashi S, Hosoda K. 3d bipedal robot with tunable leg compliance mechanism for multi-modal locomotion. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008.1097-1102

    [ 7] Niiyama R, Nagakubo A, Kuniyoshi Y. Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007. 2546-2551

    [ 8] Aschenbeck K S, Kern N I, Bachmann R J, et al. Design of a quadruped robot driven by air muscles. In: Proceedings of the the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006. 875-880

    [ 9] Narioka K, Rosendo A, Sproewitz A, et al. Development of a minimalistic pneumatic quadruped robot for fast locomotion. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 2012. 307-311

    [10] Rosendo A, Narioka K, Kohhosoda. Muscle roles on directional change during hopping of a biomimetic feline hindlimb. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 2012. 1050-1055

    [11] Sayama K, Masuta H, Lim Hum-ok. Development of one-legged jumping robot with artificial musculoskeletal system. In: Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intelligence, Daejeon, Korea, 2012. 608-613

    [12] Niiyama R, Kuniyoshi Y. Pneumatic biped with an artificial musculoskeletal system. In: Proceedings of the 4th International Symposium on Adaptive Motion of Animals and Machines, 2008. 80-81

    [13] Wang X, Li M T, Guo W, et al. Development of an antagonistic bionic joint controller for a musculoskeletal quadruped. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013. 4466-4471

    [14] Li M, Wang X, Guo W, et al. System design of a cheetah robot toward ultra-high speed.InternationalJournalofAdvancedRoboticSystems, 2014, 11(10):707-714

    [15] Xie H, Chen K, Yang Y, et al. Artificial leg design and control research of a biped robot with heterogeneous legs based on PID control algorithm.InternationalJournalBioautomation, 2015, 19(1): 95-106

    [16] Ahn K K, Anh H P H. Design and implementation of an adaptive recurrent neural networks (ARNN) controller of the pneumatic artificial muscle (PAM) manipulator.Mechatronics, 2009, 19(6): 816-828

    [17] Pujana-arrese A, Mendizabal A, Arenas J, et al. Modelling in modelica and position control of a 1-DoF set-up powered by pneumatic muscles.Mechatronics, 2010, 20(5): 535-552

    [18] Chang M K, Liou J J, Chen M L. T-S fuzzy model-based tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles.ControlEngineeringPractice, 2011, 19(12): 1442-1449

    [19] Lewis M A, Bunting M R, Salemi B. Toward ultra high speed locomotors: design and test of a cheetah robot hind limb. In: Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 2011. 1990-1996

    10.3772/j.issn.1006-6748.2017.02.001

    ①Supported by the National Natural Science Foundation of China (No. 51375289), Shanghai Municipal National Natural Science Foundation of China (No.13ZR1415500) and Innovation Fund of Shanghai Education Commission (No.13YZ020).

    ②To whom correspondence should be addressed. E-mail: jtlei2000@163.com

    on Apr. 26, 2016

    ao, born in 1970. She received her Ph.D degree from Beihang University in 2007. She also received her B.S. and M.S. degrees from Henan University of Science and Technology in 1991 and 1996 respectively. Her research interests include the bionic robot.

    十分钟在线观看高清视频www| 亚洲国产精品999| 男人爽女人下面视频在线观看| 国产免费一区二区三区四区乱码| 一本久久精品| 女人爽到高潮嗷嗷叫在线视频| 黑人欧美特级aaaaaa片| 国产精品亚洲av一区麻豆| 日韩制服骚丝袜av| 狂野欧美激情性xxxx| 日本wwww免费看| 两人在一起打扑克的视频| 中文字幕色久视频| 又粗又硬又长又爽又黄的视频| 亚洲国产欧美在线一区| 女人精品久久久久毛片| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久蜜臀av无| 日韩大片免费观看网站| 亚洲精品日韩在线中文字幕| 国产精品成人在线| 国产极品粉嫩免费观看在线| 亚洲av成人精品一二三区| 成人国产av品久久久| 下体分泌物呈黄色| 亚洲精品日本国产第一区| 欧美乱码精品一区二区三区| a 毛片基地| 一区二区三区激情视频| 欧美精品亚洲一区二区| 欧美亚洲日本最大视频资源| 亚洲少妇的诱惑av| 国产免费又黄又爽又色| 久久天堂一区二区三区四区| 国产欧美亚洲国产| 黑丝袜美女国产一区| 久久精品亚洲av国产电影网| 精品熟女少妇八av免费久了| 少妇的丰满在线观看| 两个人看的免费小视频| 少妇猛男粗大的猛烈进出视频| 欧美国产精品va在线观看不卡| 亚洲国产精品成人久久小说| 国产亚洲av高清不卡| 婷婷色av中文字幕| 伊人久久大香线蕉亚洲五| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 青青草视频在线视频观看| av电影中文网址| 国产亚洲av高清不卡| 国产欧美日韩一区二区三区在线| 搡老岳熟女国产| 人妻一区二区av| 满18在线观看网站| 国产黄色免费在线视频| 日本一区二区免费在线视频| 中文字幕色久视频| 国产高清国产精品国产三级| 丁香六月欧美| 不卡av一区二区三区| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 亚洲精品久久成人aⅴ小说| 岛国毛片在线播放| 国产熟女欧美一区二区| 亚洲精品自拍成人| 欧美亚洲 丝袜 人妻 在线| 性少妇av在线| 免费av中文字幕在线| 91精品伊人久久大香线蕉| 在现免费观看毛片| 久久国产精品影院| 性色av一级| 亚洲 国产 在线| 美女中出高潮动态图| 亚洲第一青青草原| 欧美黑人欧美精品刺激| 视频区欧美日本亚洲| 人成视频在线观看免费观看| 中国美女看黄片| 观看av在线不卡| 一级片'在线观看视频| 两个人看的免费小视频| 欧美日韩国产mv在线观看视频| 不卡av一区二区三区| 一二三四在线观看免费中文在| 国产亚洲一区二区精品| 乱人伦中国视频| 丝袜喷水一区| 欧美老熟妇乱子伦牲交| 国产精品九九99| 中文字幕人妻丝袜制服| 日韩av不卡免费在线播放| 只有这里有精品99| 亚洲av成人精品一二三区| 久久鲁丝午夜福利片| 天天躁夜夜躁狠狠久久av| 亚洲欧美色中文字幕在线| 黑人猛操日本美女一级片| 日韩电影二区| 精品国产乱码久久久久久男人| 亚洲午夜精品一区,二区,三区| av天堂久久9| 午夜免费鲁丝| 老司机在亚洲福利影院| 亚洲专区中文字幕在线| 日韩精品免费视频一区二区三区| 国产成人精品在线电影| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 免费在线观看日本一区| 欧美精品啪啪一区二区三区 | xxxhd国产人妻xxx| 99国产精品一区二区三区| 亚洲精品国产av蜜桃| 男女无遮挡免费网站观看| 女性生殖器流出的白浆| 国产精品一国产av| 国产男女内射视频| 国产成人免费无遮挡视频| 一级黄片播放器| 人人妻,人人澡人人爽秒播 | 国产黄色免费在线视频| 性少妇av在线| 欧美另类一区| 人妻人人澡人人爽人人| 亚洲精品国产区一区二| 精品亚洲乱码少妇综合久久| 午夜免费男女啪啪视频观看| 精品国产乱码久久久久久男人| 别揉我奶头~嗯~啊~动态视频 | av又黄又爽大尺度在线免费看| 久久久久久久精品精品| 狂野欧美激情性bbbbbb| www.自偷自拍.com| 80岁老熟妇乱子伦牲交| 亚洲人成77777在线视频| av网站免费在线观看视频| 日韩制服骚丝袜av| 50天的宝宝边吃奶边哭怎么回事| 男人爽女人下面视频在线观看| 国产深夜福利视频在线观看| 久久av网站| 久久精品国产亚洲av高清一级| 99精品久久久久人妻精品| 日韩制服骚丝袜av| 91麻豆av在线| 国产成人av激情在线播放| 中文乱码字字幕精品一区二区三区| 91字幕亚洲| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 中文字幕人妻丝袜制服| 午夜av观看不卡| 一级片'在线观看视频| 中文字幕高清在线视频| 亚洲精品成人av观看孕妇| 日本五十路高清| 尾随美女入室| 国产成人精品久久久久久| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| 亚洲欧美精品综合一区二区三区| 一级a爱视频在线免费观看| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 亚洲国产精品一区二区三区在线| 精品国产乱码久久久久久小说| 国产高清videossex| 2021少妇久久久久久久久久久| 天堂俺去俺来也www色官网| h视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 又大又爽又粗| 大码成人一级视频| 少妇猛男粗大的猛烈进出视频| 久久久精品区二区三区| 男女无遮挡免费网站观看| 国产熟女欧美一区二区| 99香蕉大伊视频| 欧美另类一区| 咕卡用的链子| 丝袜在线中文字幕| 国产欧美日韩一区二区三 | 午夜视频精品福利| 午夜福利一区二区在线看| 黄色视频不卡| 国产成人影院久久av| 国产一区亚洲一区在线观看| 精品高清国产在线一区| 天堂俺去俺来也www色官网| avwww免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩一级在线毛片| 久久午夜综合久久蜜桃| 免费日韩欧美在线观看| 自线自在国产av| 欧美在线黄色| 国产成人精品在线电影| 日本vs欧美在线观看视频| 男男h啪啪无遮挡| 啦啦啦啦在线视频资源| 1024香蕉在线观看| 交换朋友夫妻互换小说| 可以免费在线观看a视频的电影网站| 亚洲成国产人片在线观看| 亚洲精品国产色婷婷电影| 亚洲国产最新在线播放| 亚洲图色成人| 精品国产一区二区三区久久久樱花| 99热国产这里只有精品6| 国产高清videossex| 免费在线观看视频国产中文字幕亚洲 | 国产欧美日韩精品亚洲av| 你懂的网址亚洲精品在线观看| 精品国产一区二区久久| 午夜免费鲁丝| 另类精品久久| 亚洲视频免费观看视频| 男女下面插进去视频免费观看| 日本vs欧美在线观看视频| 欧美日韩视频高清一区二区三区二| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人| 桃花免费在线播放| 亚洲中文日韩欧美视频| 免费看av在线观看网站| 高清视频免费观看一区二区| 久久精品成人免费网站| 欧美日韩亚洲国产一区二区在线观看 | 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| xxx大片免费视频| 国产免费一区二区三区四区乱码| 国产成人欧美| 人妻一区二区av| 国产精品偷伦视频观看了| 久久久久国产一级毛片高清牌| 一区二区三区乱码不卡18| 丝瓜视频免费看黄片| 国产精品.久久久| 亚洲人成电影免费在线| 日本av手机在线免费观看| 久久精品久久久久久久性| 国产主播在线观看一区二区 | 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 精品国产一区二区三区久久久樱花| 精品国产一区二区久久| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 老司机影院毛片| 午夜老司机福利片| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线| 国产在线免费精品| 欧美日韩视频精品一区| 午夜免费鲁丝| 亚洲av成人精品一二三区| 中文字幕av电影在线播放| 狠狠精品人妻久久久久久综合| 久久久国产精品麻豆| 可以免费在线观看a视频的电影网站| 日韩 亚洲 欧美在线| 尾随美女入室| 少妇人妻 视频| 人妻人人澡人人爽人人| 男女午夜视频在线观看| 免费高清在线观看日韩| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 亚洲精品国产区一区二| www.999成人在线观看| 女警被强在线播放| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 免费观看人在逋| 久久九九热精品免费| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美| 九草在线视频观看| 美女主播在线视频| 国产成人a∨麻豆精品| 亚洲国产欧美日韩在线播放| 国产一区二区三区综合在线观看| 精品熟女少妇八av免费久了| 99久久综合免费| 人人妻,人人澡人人爽秒播 | 一本色道久久久久久精品综合| 日本欧美国产在线视频| 精品人妻在线不人妻| 日韩人妻精品一区2区三区| 一级毛片电影观看| 欧美成人午夜精品| 宅男免费午夜| 亚洲五月婷婷丁香| 我的亚洲天堂| 久久人人97超碰香蕉20202| 成人亚洲精品一区在线观看| 国产成人影院久久av| 人人妻人人添人人爽欧美一区卜| 性色av一级| 亚洲中文av在线| 国产成人91sexporn| av不卡在线播放| 久久狼人影院| 亚洲av国产av综合av卡| av国产精品久久久久影院| 纯流量卡能插随身wifi吗| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 天堂俺去俺来也www色官网| 日本黄色日本黄色录像| 亚洲欧洲国产日韩| 免费在线观看视频国产中文字幕亚洲 | 妹子高潮喷水视频| 国产熟女欧美一区二区| 欧美中文综合在线视频| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 91麻豆av在线| 建设人人有责人人尽责人人享有的| 精品人妻熟女毛片av久久网站| 久久这里只有精品19| 下体分泌物呈黄色| 成年人免费黄色播放视频| 国产成人91sexporn| 曰老女人黄片| 美女高潮到喷水免费观看| 电影成人av| 久久综合国产亚洲精品| 嫩草影视91久久| 高清黄色对白视频在线免费看| 国产人伦9x9x在线观看| 晚上一个人看的免费电影| 人体艺术视频欧美日本| svipshipincom国产片| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| 黑人猛操日本美女一级片| 午夜两性在线视频| 90打野战视频偷拍视频| av又黄又爽大尺度在线免费看| 天堂俺去俺来也www色官网| 黄色视频不卡| 成人三级做爰电影| 国产精品一二三区在线看| 午夜福利免费观看在线| 国产成人欧美在线观看 | 国产精品久久久av美女十八| 亚洲七黄色美女视频| 欧美精品av麻豆av| www.自偷自拍.com| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| av在线app专区| 亚洲激情五月婷婷啪啪| 99国产精品99久久久久| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 欧美日韩av久久| 岛国毛片在线播放| 在线av久久热| 少妇 在线观看| 黄色一级大片看看| 午夜激情久久久久久久| 国产成人欧美| 国产成人精品无人区| 黄色怎么调成土黄色| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 不卡av一区二区三区| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看 | 亚洲精品久久午夜乱码| 国产xxxxx性猛交| 操出白浆在线播放| 日本欧美国产在线视频| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 女人被躁到高潮嗷嗷叫费观| 免费观看av网站的网址| 久久青草综合色| 午夜福利一区二区在线看| 久久这里只有精品19| 日韩 亚洲 欧美在线| 女人久久www免费人成看片| 色综合欧美亚洲国产小说| 激情视频va一区二区三区| 肉色欧美久久久久久久蜜桃| 人人妻人人添人人爽欧美一区卜| 男人添女人高潮全过程视频| 国产极品粉嫩免费观看在线| 欧美日韩精品网址| 国产成人精品在线电影| 中文字幕最新亚洲高清| 一个人免费看片子| 国产精品久久久人人做人人爽| 久久久亚洲精品成人影院| av在线播放精品| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 国产黄色视频一区二区在线观看| 九草在线视频观看| 午夜久久久在线观看| 黄网站色视频无遮挡免费观看| 天堂中文最新版在线下载| 国产精品一区二区免费欧美 | 欧美精品高潮呻吟av久久| 两性夫妻黄色片| www日本在线高清视频| 国产91精品成人一区二区三区 | 国产主播在线观看一区二区 | 亚洲av成人不卡在线观看播放网 | 久久精品亚洲av国产电影网| 一本久久精品| 欧美黑人欧美精品刺激| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 亚洲一区二区三区欧美精品| 91九色精品人成在线观看| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 精品高清国产在线一区| 久久亚洲国产成人精品v| 亚洲精品乱久久久久久| 纯流量卡能插随身wifi吗| 亚洲一区二区三区欧美精品| 亚洲精品国产av成人精品| 黄色视频不卡| 欧美另类一区| 天天影视国产精品| 操出白浆在线播放| 亚洲一区中文字幕在线| 日韩精品免费视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 在线 av 中文字幕| 啦啦啦 在线观看视频| 日本猛色少妇xxxxx猛交久久| 9热在线视频观看99| 深夜精品福利| 大码成人一级视频| a 毛片基地| 国产精品.久久久| 国产男人的电影天堂91| 国产极品粉嫩免费观看在线| 少妇 在线观看| 欧美精品高潮呻吟av久久| 18禁黄网站禁片午夜丰满| 蜜桃国产av成人99| 中国美女看黄片| 不卡av一区二区三区| 色网站视频免费| 久久青草综合色| 午夜福利,免费看| 啦啦啦在线观看免费高清www| 亚洲伊人色综图| 欧美日韩一级在线毛片| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 国产精品熟女久久久久浪| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 新久久久久国产一级毛片| 日本午夜av视频| 午夜两性在线视频| 亚洲国产欧美一区二区综合| 热99国产精品久久久久久7| 你懂的网址亚洲精品在线观看| 色播在线永久视频| 国产欧美日韩精品亚洲av| 国产男女内射视频| av在线老鸭窝| 成人国产av品久久久| 看免费成人av毛片| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| 人人妻人人澡人人看| 亚洲国产欧美日韩在线播放| 免费高清在线观看视频在线观看| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 国产在视频线精品| 国产精品一区二区在线观看99| 免费在线观看日本一区| 久久天堂一区二区三区四区| 成人国语在线视频| 新久久久久国产一级毛片| 18禁黄网站禁片午夜丰满| 亚洲国产欧美日韩在线播放| 两性夫妻黄色片| 亚洲三区欧美一区| 久久精品成人免费网站| 777久久人妻少妇嫩草av网站| 免费观看人在逋| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 国产日韩一区二区三区精品不卡| 久久精品aⅴ一区二区三区四区| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| 极品人妻少妇av视频| 亚洲国产成人一精品久久久| 观看av在线不卡| 一边摸一边做爽爽视频免费| 久久精品亚洲av国产电影网| 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 无限看片的www在线观看| 90打野战视频偷拍视频| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 青青草视频在线视频观看| 亚洲,欧美精品.| 成人影院久久| 久热这里只有精品99| av网站在线播放免费| 日本91视频免费播放| 国产成人欧美在线观看 | 深夜精品福利| 9色porny在线观看| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 国产亚洲av片在线观看秒播厂| 极品人妻少妇av视频| 人人妻,人人澡人人爽秒播 | 久久精品亚洲av国产电影网| 亚洲精品成人av观看孕妇| 久久久久久久久久久久大奶| 男人爽女人下面视频在线观看| 男女免费视频国产| 老司机亚洲免费影院| 国产成人精品久久久久久| 超碰成人久久| 久久人妻福利社区极品人妻图片 | 精品久久久久久久毛片微露脸 | 欧美另类一区| 国产精品久久久人人做人人爽| 激情五月婷婷亚洲| 国产不卡av网站在线观看| 中国国产av一级| 午夜福利一区二区在线看| 亚洲国产av新网站| 亚洲精品一区蜜桃| 亚洲免费av在线视频| 免费黄频网站在线观看国产| 欧美黄色淫秽网站| 搡老岳熟女国产| 亚洲综合色网址| 日韩 欧美 亚洲 中文字幕| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院| 欧美精品av麻豆av| 午夜福利,免费看| 欧美日韩视频高清一区二区三区二| 国产精品二区激情视频| av在线播放精品| 亚洲人成77777在线视频| 欧美乱码精品一区二区三区| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 国产黄色免费在线视频| 丝袜脚勾引网站| 亚洲九九香蕉| 免费一级毛片在线播放高清视频 | 可以免费在线观看a视频的电影网站| 国产免费又黄又爽又色| 美女扒开内裤让男人捅视频| 午夜福利一区二区在线看| 91老司机精品| 国产精品九九99| 一级毛片我不卡| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合一区二区三区| 成人手机av| 男人舔女人的私密视频| av片东京热男人的天堂| 国产又爽黄色视频| 男女国产视频网站| 欧美黄色片欧美黄色片| 啦啦啦中文免费视频观看日本| 成人免费观看视频高清| 欧美人与性动交α欧美软件| 交换朋友夫妻互换小说| 黄网站色视频无遮挡免费观看| 免费在线观看黄色视频的| 精品亚洲成a人片在线观看| 亚洲综合色网址| 欧美老熟妇乱子伦牲交| 亚洲欧美日韩高清在线视频 | www日本在线高清视频| 美女大奶头黄色视频| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 亚洲国产精品国产精品| 国产亚洲午夜精品一区二区久久| 男女床上黄色一级片免费看| 丁香六月欧美| 男女之事视频高清在线观看 | 国产91精品成人一区二区三区 | 亚洲激情五月婷婷啪啪| 老汉色∧v一级毛片| 又大又黄又爽视频免费| 丁香六月天网| 黑人猛操日本美女一级片| 国产在线视频一区二区| 一级毛片我不卡| 久久天躁狠狠躁夜夜2o2o |