• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existenceofweightedpseudoanti-periodicsolutionstosomeneutraldifferentialequationswithpiecewiseconstantargument*

    2017-06-19 15:59:24,
    關(guān)鍵詞:數(shù)學(xué)系國家自然科學(xué)基金惠州

    ,

    (1. Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming 525000, China; 2. Department of Mathematics, Huizhou University, Huizhou 516007, China)

    Existenceofweightedpseudoanti-periodicsolutionstosomeneutraldifferentialequationswithpiecewiseconstantargument*

    LINQuanwen1,ZHUANGRongkun2

    (1. Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming 525000, China; 2. Department of Mathematics, Huizhou University, Huizhou 516007, China)

    By means of weighted pseudo anti-periodic solutions of relevant difference equations, the existence for weighted pseudo anti-periodic solutions of differential equations with piecewise constant argument is studied. The conditions of existence and uniqueness for the weighted pseudo anti-periodic solutions are presented.

    pseudo anti-periodic solutions; pseudo anti-periodic sequences; neutral delay equation; piecewise constant argument

    In this paper we consider the following first order neutral delay differential equations with piecewise constant argument of the forms

    (1)

    (2)

    wherep(≠0),a0,a1areconstants, [·]denotesthegreatestintegerfunction.Tostudytheexistenceofweightedpseudoω-anti-periodic solutions to Eqs. (1) and (2), we will assume that the following assumptions hold:

    (H1)f: R→R is weighted pseudoω-anti-periodic function.

    (H2)g: R×R2→ R is jointly continuous and satisfiesg(t+ω,x,y) =-g(t,x,y) for allt∈ R and (x,y)∈R2. Moreover, the functiongis uniformly Lipschitz with respect tox,yin the following sense: there existsη> 0 such that

    (3)

    for all (xi,yi)∈ R2,i=1, 2andt∈R.

    A functionx: R → R is called a solution of Eq. (1) if the following conditions are satisfied:

    (i)xis continuous on R;

    (ii) the derivative ofx(t) +px(t-1)existsonR except possibly at the pointst=n,n∈Z, where one-sided derivatives exist;

    (iii)xsatisfies Eq. (1) on each interval (n,n+ 1) , with integern∈Z.

    The existence of anti-periodic solutions to differential equations is an attractive topic in the qualitative theory of differential equations due to its applications in control theory or engineering and others, see [1-4] and references therein. Motivated by the study of existence of pseudo almost periodic solutions, and weighted pseudo almost solution to differential equations[5-7], Al-Islam[8]et al. introduced the weighted pseudo anti-periodic functions, which is a natural generalization of the classical pseudo almost periodic functions, and has been used in the investigation of a certain non-autonomous second-order abstract differential equation.

    Differential equations with piecewise constant arguments are usually referred to as a hybrid system (a combination of continuous and discrete). These equations have the structure of continuous dynamical systems within intervals and the solutions are continuous, and so combine properties of both differential and difference equations. The equations are thus similar in structure to those found in certain sequential-continuous models of disease dynamics as treated by by Busenberg and Cooke[9]. Therefore, there are many papers concerning the differential equations with piecewise constant argument (see [10-19] and the references therein).

    We note that there is no results on the weighted pseudo anti-periodic solution for Eq. (1) (or (2) ) still now. The main purpose of this work is to establish an existence and uniqueness result of weighted pseudo anti-periodic solutions of Eqs. (1) and (2).

    1 Preliminary definitions and lemmas

    For the sake of convenience, we now state some of the preliminary definitions and lemmas. we always denote byBC(R, R) the space of bounded continuous functionsu: R → R,C(R, R) the space of continuous functionsu: R → R, and denote by |·| the Euclidean norm.

    Definition 1 A functionf∈C(R,R) is said to beω-anti-periodic function for someω> 0, iff(t+ω)=-f(t) for allt∈R. The least positiveωwith this property is called the anti-period off.DenotebyAPω(R) the set of all such functions.

    Proposition 1 Iff(t) is anω-anti-periodic function, thenf(t) is also (2ω+1) -anti-periodic and 2ω-periodic.

    LetUbe the collection of functions (weights)ρ: R → (0, +∞), which are locally integrable over R. Ifρ∈U, we set

    and

    Obviously,UB?U∞?U,withstrictinclusions.

    Letρ1,ρ2∈U∞,ρ1issaidtobeequivalenttoρ2,denotingthisasρ1ρ2, ifρ1/ρ2∈UB.ThenisabinaryequivalencerelationonU∞(see [7]). Letρ∈U∞,c∈R, defineρcbyρc(t)=ρ(t+c)fort∈R. We denote

    UT{ρ∈U∞:ρρcfor eachc∈R}

    It is easy to see thatUTcontainsplentyofweights,say, 1, et, 1 + 1/(1 +t2), 1 + |t|nwithn∈N, etc.

    Forρ∈U∞,theweightedergodicspacePAP0(R,ρ)isdefinedby

    Lemma 1[14]PAP0(R,ρ)withρ∈UTistranslationinvariant,i.e.φ∈PAP0(R,ρ)ands∈Rimplythatφ(·-s)∈PAP0(R,ρ).

    Definition 2[7]Letρ∈U∞. A functionf∈BC(R, R) is called weightedω-anti-periodic function (orρ-pseudoω-anti-periodic function) for someω> 0, iffcanbewrittenasf=fap+fe, wherefap∈APω(R), andfe∈PAP0(R,ρ).fapandfeare called theω-anti-periodic component and the weighted ergodic perturbation, respectively, of the functionf. Denote byPAPω(R,ρ)thesetofallsuchfunctions.

    Definition 3 Letρ∈U∞.Afunctiong∈BC(R×R)is called weighted pseudoω-anti-periodic function (orρ-pseudoω-anti-periodic function) intuniformly on R2,ifgcan be written asg=gap+ge, wheregapisω-anti-periodic in t uniformly for R2, and for any compact setW?R2,geiscontinuous,boundedandsatisfies

    uniformlyin(x,y)∈W,gapandgearecalledtheω-anti-periodic component and the weighted ergodic perturbation, respectively, of the functiong.DenotebyPAP(R×R,R,ρ)thesetofallsuchfunctions.

    Definition 4 A sequencex: Z → R, denoted by {x(n)}, is called aω-anti-periodic sequence ifx(n+ω)=-x(n) for alln∈Z.We denote the set of all such sequences byAPωS(R).

    LetUsdenote the collection of sequences (weights)Q:Z→(0,+∞).ForQ∈UsandT∈Z+={n∈ Z:n≥ 0}, set

    Denote

    and

    UsB

    LetQ1,Q2∈Us∞,Q1issaidtobeequivalenttoQ2,denotingthisasQ1Q2,if{Q1(n)/Q2(n)}n∈z∈UsB.ThenitiseasytoseethatisabinaryequivalencerelationonUs∞.LetQ∈Us∞,k∈Z,defineQkbyQk(n)=Q(n+k)forn∈Z.Wedenote

    ForQ∈Us∞,theweightedergodicsequencesspacePAP0S(R,Q)isdefinedby

    PAP0S(R,Q)

    Definition 5 LetQ∈Us∞.Asequencex:Z→R, is called a weighted pseudoω-anti-periodicsequence(orQ-pseudoω-anti-periodicsequence)ifxcanbewrittenasx(n)=xap(n)+xe(n),n∈Zwherexap∈APωS(R), andxe∈PAP0S(R,Q).xapandxearecalledtheω-anti-periodiccomponentandtheweightedergodicperturbation,respectively,ofthesequencex.DenotethesetofallsuchsequencesbyPAPωS(R,Q).

    Proposition 2 Iff∈APω(R),ω∈Z+,then{f(n)}n∈Z∈APωS(R).

    Proof Sincef(t) is anω-anti-periodic function, then for allt∈ R, we havef(t+ω) +f(t) = 0 and

    From definition, it follows that {hn}n∈Zisanω-anti-periodic sequence. This completes the proof of Lemma 2.

    Lemma 3 Letρ∈UT, and denote

    forn∈Z

    (4)

    ThenQ∈UsT. Moreover, givenc∈R, there exist positive constantsC1,C2such that, for sufficiently largeT,

    (5)

    Proof Without loss of generality, we assume thatc≥ 0. Sinceρ∈UT,thereexistsM> 0 such thatρc+1(t) ≤Mρ(t) andρ-(c+1)(t) ≤Mρ(t) fort∈ R and

    (6)

    Notice that

    ForT>c+2,i.e.,-T+2c+3

    (7)

    Similarly,wecanprovethatthereexistsM′> 0 such that, forTlarge enough,

    (8)

    Thus by (6)-(8), we have

    forTlarge enough. This leads to (5), and from which we can get easily thatQ∈UsT. The proof is complete.

    Proposition 3PAP0S(R,Q)withQ∈UsTis translation invariant.

    This implies that {x(n-k)}n∈Z∈PAP0S(R,Q).Theproofiscomplete.

    Itisclearthat|hn|≤‖f‖forn∈Zand

    isω-anti-periodic.Let

    ForT∈ Z+, we get

    ForT∈Z+,s∈ [1, 1], let

    Lemma 5[11]Letx:R→R is a continuous function, andw(t)=x(t)+px(t-1).then

    t≥t0

    Where|p|<1,a=log (1/|p|),b=1/(1-|p|),or

    t≤t0

    Where|p|>1,b=1/(|p|-1).

    2 Main results

    Now,wecanformulateourmaintheorems.

    Theorem 1 Suppose that

    (9)

    Then for anyf∈PAPωS(R,ρ), the following results hold:

    (i) Ifω=n0∈Z+, Eq. (5) has a uniqueρ-pseudoω-anti-periodic bounded solution.

    Theorem 2 Suppose that conditions (H2) and (9) hold. Then there existsη*>0,suchthatifη<η*,thatfollowingresultshold:

    (i)Ifω=n0∈ Z+,Eq. (5)hasauniqueρ-pseudoω-anti-periodic bounded solution.

    3 Proofs of theorems

    Proof of Theorem 1 (i) Letx(t)beasolutionofEq.(1)onR, integrating (1) fromntot, we have that forn≤t

    (10)

    In view of the continuity of a solution at a point, we obtain that fort→(n+1)-0,

    (11)

    ThecorrespondinghomogeneousequationofEq. (11)is

    (12)

    Following[10],weseektheparticularsolutionsasx(n)=λnforhomogeneousdifferenceequation(12),thenwehavethefollowingcharacteristicequationof(12):

    (13)

    Eq. (13)hastwonontrivialsolutions

    Inviewof(9),wehavethat|λ1,2|≠1andλ1≠λ2,then

    (14)

    isthegeneralsolutionsofEq.(12),wherek1,k2are any constants.

    We define a sequence {cn} by

    (15)

    wherek1,k2will be determined later. We put Eq.(15) into Eq.(11) and compare the coefficients ofhn’s.

    For |λ1|<1, |λ2|<1,weobtainalinearsystemink1andk2

    (16)

    Solving system (16), we have

    (17)

    is a solution of the difference equation (11).

    For other cases we can similarly write out the expression for the solution of Eq.(11).

    (ii) Sincef∈PAPωS(R,ρ),itfollowsfromLemma4that{hn}n∈Z∈PAPωS(R,Q),sothat{hn} can be written as a sum

    It is easy to see that

    Indeed, it is easy to see that forT∈ Z+,

    Form∈Z+,let

    FromProposition1,weget

    (18)

    Givenε> 0, it is clear that there exists an integerK>0suchthat

    (19)

    Thenby(18),thereexistsT0> 0 such that forT>T0,

    for0≤m≤K

    (20)

    Now by (18)-(20), forT>T0we have

    withx(s)=φ(s),-1≤s≤0.

    (21)

    Letw(t)=x(t)+px(t-1),weclaimthatw(t)∈PAP0(R,Q).Letf=fap+fe,wherefap∈APω(R),fe∈PAP0(R,ρ),let

    Wehave

    Itfollowsfromdefinitionthatwap(t)isω-anti-periodic. Denote

    Then {ηn}∈PAP0(R,Q).ByanargumentthesameastheproofLemma4wegetthat

    Meanwhile,itfollowsfromLemma3thatthereexistssomeM> 0 such thatμs([T] + 1,Q) ≤Mμ(T,ρ) forTlarge enough. Then forTlarge enough we have

    asT→∞

    Thisimpliesthatwe∈PAP0(R,ρ),andhencew∈PAPω(R,ρ).

    Nextweexpressxin terms ofwand then prove thatx∈PAPω(R,ρ).From

    Onehasforalln∈Z+

    (22)

    hence,

    It follows

    Conversely, if we put

    xis well defined andwis bounded and |p|<1,xisboundedwith|x(t)| ≤ ‖w(t)‖∞/(1-|p|),moreoveronehas

    For|p|<1,rewriting(22)as

    wededuceinasimilarmannerthat

    If|p|<1,givenε> 0, there exists an integerK> 0 such that

    (23)

    Let

    By a standard argument we can get thatxap∈APω(R). SincePAP0(R,ρ)withρ∈UTis translation invariant, namelyφ∈PAP0(R,ρ)ands∈Rimplythatφ(·-s)∈PAP0(R,ρ) (see[14,Lemma4.1]),wegetthatwe(· -n)∈PAP0(R,ρ)forn∈Z+. So there existsT0> 0 such that forT>T0,

    for0≤n≤K

    (24)

    Now by (23) and (24), forT>T0,

    This implies thatxe∈PAP0(R,ρ), andx∈PAPω(R,ρ). If |p|>1,let

    Similarlytotheabove,wecanprovethatx∈PAPω(R,ρ).

    ?t∈R

    Clearly,wehave

    Fromtheboundednessoftheρ-pseudoω-anti-periodic function, it follows that

    This means that theρ-pseudoω-anti-periodic solution of Eq. (1) is unique.

    Proof of Theorem 2 (i) It is easy to seen that the spacePAPω(R,ρ)isaBanachspacewithsupremumnorm‖φ‖=supt∈R|φ(t)|.Foranyφ∈PAPω(R,ρ),usingboth(H2)andthecompositionoffunctionsinPAP0(R,ρ) (seeDiagana[19]),itfollowsthatg(t,φ(t),φ([t]))∈PAPω(R,ρ).

    Weconsiderthefollowingequation:

    (25)

    FromTheorem1,itfollowsthatforanyφ∈PAPω(R,ρ), Eq. (25) has a unique weighted pseudo-anti-ω-periodic solution, denote byJφ. Thus, we obtain a mappingJ:φ→xφ,itfollowsthatJis a mapping fromPAPω(R,ρ)intoitself.Foranyφ,ψ∈PAPω(R,ρ),Jφ-Jψsatisfiesthefollowingequation:

    where

    ThisimpliesthatthereexistsK0> 0, such that

    ?n∈Z

    Let

    ThusthereexistsK1> 0 such that

    We easily conclude that

    We typically consider the case when |p|<1.UsingLemma5,wehave

    wherea=log(1/|p|),b=1/(1-|p|). Settingt0→∞,weobtain

    Hence,thereexistsη*>0, such that if 0≤η<η*,J:PAPω(R,ρ)→PAPω(R,ρ)iscontractingmapping.Thisimpliesthatthereexistsφ∈PAPω(R,ρ)suchthatJφ=φthatis,Eq. (1)hasauniqueρ-pseudoω-anti-periodic solution.

    (ii) Ifω=(n0/m0)(n0,m0∈Z+)andgisρ-pseudoω-anti-periodic int, theng(t,φ(t),φ([t]))isaρ-pseudom0ω-anti-periodicfunction,foranyφ∈PAPm0 ω(R,ρ).Atthistime,itfollowsthatEq. (25)hasauniqueρ-pseudom0ω-anti-periodicsolutionJφbyusingTheorem1.Similarly,weknowthatthereexistsη*>0suchthatif0≤η<η*,Eq.(1)hasauniqueρ-pseudom0ω-anti-periodic solution. This completes the proof of Theorem 2.

    [1] OKOCHI H. On the existence of periodic solutions to nonlinear abstract parabolic equations [J]. J Math Soc Japan, 1988, 40 (3): 541-553.

    [2] AIZICOVICI S, MCKIBBEN M, REICH S. Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities [J]. Nonlinear Anal, 2001, 43:233-251.

    [3] CHEN Y, NIETO J J, O’REGAN D. Anti-periodic solutions for fully nonlinear first-order differential equations [J]. Math Comput Model, 2007, 46:1183-1190.

    [4] CHEN T, LIU W, ZHANG J, et al. The existence of anti-periodic solutions for Linard equations [J]. J Math Study, 2007, 40:187-195 (in Chinese).

    [5] ZHANG C Y. Pseudo almost periodic solutions of some differential equations [J]. J Math Anal Appl, 1994, 181: 62-76.

    [6] ZhANG C Y. Pseudo-almost periodic solutions of some differential equations II [J]. J Math Anal Appl, 1995, 192 (2) : 543-561.

    [7] DIAGANA T. Weighted pseudo-almost periodic functions and applications [J]. C R Acad Sci Paris, Ser I, 2006,343 (10): 643-646.

    [8] Al-ISLAM N S, ALSULAMI S M, DIAGANA T. Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations [J]. Applied Mathematics and Computation, 2012, 218: 6536-6548.

    [9] BUSENBERG S, COOK K L. Models of vertically transmitted diseases with sequential-continuous dynamics [M]∥LAKSHMIKANTHAM V, ed. Nonlinear Phenomena in Mathematical Sciences. New York: Academic Press, 1982.

    [10] COOK K L, WIENER J. A survey differential equation with piecewise continuous argument [M]∥BUSENBERG S, MARTELLI, eds. Lecture Notes in mathematics, Vol. 1475. Berlin: Springer, 1991:1-15.

    [11] YUAN R. On the existence of almost periodic solutions of second order delay differential equations with piecewise constant argument [J]. Sci China, 1998, 41(3): 232-241.

    [12] YUAN R. Pseudo-almost periodic solutions of second order neutral delay differential equations with piecewise constant argument [J]. Nonlinear Anal, 2000, 41: 871-890.

    [13] ZHAN R L L, LI H X. Weighted pseudo-almost periodic solutions for some abstract differential equations with uniform continuity [J]. Bull Aust Math Soc, 2010, 82: 424-436.

    [14] ZHANG L L, LI H X. Weighted pseudo-almost periodic solutions of second order neutral differential equations with piecewise constant argument [J]. Nonlinear Anal, 2011,74: 6770-6780.

    [15] ZHUANG R K, YUAN R. The existence of pseudo-almost periodic solutions of third-order neutral differential equations with piecewise constant argument [J]. Acta Math Sin (Engl Ser), 2013,29(5): 943-958.

    [16] ZHUANG R K, YUAN R. Weighted pseudo almost periodic solutions of N-th order neutral differential equations with piecewise constant arguments [J]. Acta Math Sin (Engl Ser), 2014,30(7): 1259-1272.

    [17] ZHANG L, XU Y. Existence of almost periodic solutions for some nonlinear Duffing equations [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(4): 6-10.

    [18] ZHANG L. Almost periodic mild solutions to functional differential equations of neutral type in Banach space [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(1): 30-34.

    [19] DIAGANA T. Pseudo almost periodic functions in Banach spaces [M]. New York: Nova Science Publishers Inc, 2007.

    2017-02-22 基金項目:國家自然科學(xué)基金(11271380,11501238) ;廣東省自然科學(xué)基金(2014A030313641,2016A030313119);廣東省教育廳重大項目基金(2014KZDXM070)

    林全文(1965年生),男;研究方向:微分方程與動力系統(tǒng);E-mail:linquanwen@126.com

    O175

    A

    0529-6579(2017)03-0057-09

    具有分段常變量的中立型微分方程加權(quán)偽反周期解的存在性

    林全文1,莊容坤2

    (1. 廣東石油化工學(xué)院數(shù)學(xué)系,廣東 茂名 525000; 2. 惠州學(xué)院數(shù)學(xué)系,廣東 惠州 516007)

    通過構(gòu)造差分方程的加權(quán)偽反周期解,研究了一類含分段常變量中立型微分方程的加權(quán)偽反周期解的存在性,給出了所論方程的加權(quán)偽反周期解的存在唯一性條件。

    偽反周期解;偽反周期序列;中立型時滯方程;分段常變量

    10.13471/j.cnki.acta.snus.2017.03.009

    猜你喜歡
    數(shù)學(xué)系國家自然科學(xué)基金惠州
    奔跑惠州
    嶺南音樂(2022年4期)2022-09-15 14:03:10
    一個人就是一個數(shù)學(xué)系
    ——丘成桐
    惠州一絕
    常見基金項目的英文名稱(一)
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    論Gross曲線的二次扭
    國家自然科學(xué)基金項目簡介
    “健康惠州”助力幸?;葜?/a>
    不卡av一区二区三区| av国产精品久久久久影院| 国产伦理片在线播放av一区| 亚洲伊人色综图| 欧美成人精品欧美一级黄| 日本欧美国产在线视频| 久久99热这里只频精品6学生| 黑人猛操日本美女一级片| 日韩一卡2卡3卡4卡2021年| av一本久久久久| av片东京热男人的天堂| 亚洲一区二区三区欧美精品| 久久中文字幕一级| 啦啦啦 在线观看视频| 国产真人三级小视频在线观看| 伊人久久大香线蕉亚洲五| 国产精品国产三级国产专区5o| 自拍欧美九色日韩亚洲蝌蚪91| 高清黄色对白视频在线免费看| 黄色一级大片看看| 尾随美女入室| 国产午夜精品一二区理论片| 日韩欧美一区视频在线观看| 在线观看一区二区三区激情| 搡老岳熟女国产| 999久久久国产精品视频| 久久久久国产精品人妻一区二区| a 毛片基地| 亚洲精品成人av观看孕妇| 五月天丁香电影| 久久国产精品人妻蜜桃| 亚洲国产av新网站| 日韩一本色道免费dvd| 99国产精品一区二区蜜桃av | 色婷婷久久久亚洲欧美| 国产一区二区三区综合在线观看| 国产91精品成人一区二区三区 | 午夜久久久在线观看| 两性夫妻黄色片| 国产成人精品无人区| 国产免费福利视频在线观看| 看十八女毛片水多多多| 人人妻人人澡人人爽人人夜夜| 欧美黑人欧美精品刺激| 成人午夜精彩视频在线观看| 在线观看一区二区三区激情| 欧美在线黄色| 少妇精品久久久久久久| 欧美 日韩 精品 国产| 97人妻天天添夜夜摸| 手机成人av网站| 日本欧美国产在线视频| 9热在线视频观看99| 久久国产精品影院| 一级a爱视频在线免费观看| 一二三四在线观看免费中文在| 国产精品一区二区精品视频观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美日韩高清在线视频 | 天天影视国产精品| 国产xxxxx性猛交| av视频免费观看在线观看| 1024香蕉在线观看| 久久久国产欧美日韩av| 女人高潮潮喷娇喘18禁视频| 手机成人av网站| 美国免费a级毛片| 国产精品一区二区精品视频观看| 2021少妇久久久久久久久久久| 91九色精品人成在线观看| 久久精品亚洲熟妇少妇任你| 99国产精品一区二区三区| 婷婷色综合www| 热99国产精品久久久久久7| 久久精品亚洲熟妇少妇任你| 久久精品亚洲熟妇少妇任你| 精品久久久精品久久久| 午夜免费鲁丝| 欧美大码av| 婷婷丁香在线五月| 各种免费的搞黄视频| 国产精品三级大全| 中国美女看黄片| 黄频高清免费视频| 精品一区二区三卡| 亚洲视频免费观看视频| 欧美激情 高清一区二区三区| 久久亚洲国产成人精品v| 亚洲男人天堂网一区| 啦啦啦 在线观看视频| 国产在线免费精品| av有码第一页| 精品国产乱码久久久久久男人| 亚洲欧美精品自产自拍| 日本a在线网址| 欧美日韩成人在线一区二区| 欧美精品一区二区免费开放| 午夜老司机福利片| 成年女人毛片免费观看观看9 | 国产伦人伦偷精品视频| 肉色欧美久久久久久久蜜桃| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久人妻精品电影 | a级毛片在线看网站| 久久免费观看电影| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲欧美在线一区二区| 高清av免费在线| 国产精品一二三区在线看| 久久青草综合色| 美国免费a级毛片| 丰满少妇做爰视频| 成年人午夜在线观看视频| 亚洲精品日本国产第一区| 色播在线永久视频| svipshipincom国产片| 亚洲综合色网址| av天堂久久9| 制服人妻中文乱码| 黄色毛片三级朝国网站| 99九九在线精品视频| av不卡在线播放| 侵犯人妻中文字幕一二三四区| 另类精品久久| 亚洲国产欧美日韩在线播放| 91字幕亚洲| 老熟女久久久| 日韩精品免费视频一区二区三区| 考比视频在线观看| 亚洲九九香蕉| 九草在线视频观看| 久久av网站| 日本黄色日本黄色录像| www.av在线官网国产| 性色av乱码一区二区三区2| 国产精品久久久久久人妻精品电影 | 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 日本欧美视频一区| 日韩欧美一区视频在线观看| 在线精品无人区一区二区三| 国产在线视频一区二区| 亚洲成色77777| 免费观看人在逋| 天天操日日干夜夜撸| 麻豆国产av国片精品| 国产精品三级大全| 国产精品三级大全| av网站在线播放免费| 七月丁香在线播放| 十分钟在线观看高清视频www| 国产一区亚洲一区在线观看| 亚洲国产精品一区三区| 亚洲,一卡二卡三卡| 国产精品久久久久成人av| 国产精品国产三级国产专区5o| 丝瓜视频免费看黄片| 一区二区日韩欧美中文字幕| 在线天堂中文资源库| 国产av精品麻豆| 中文字幕另类日韩欧美亚洲嫩草| 天堂中文最新版在线下载| 青草久久国产| av片东京热男人的天堂| 在线观看国产h片| 亚洲成人手机| 手机成人av网站| 国产亚洲一区二区精品| 国产深夜福利视频在线观看| 人妻 亚洲 视频| 成年人免费黄色播放视频| 亚洲九九香蕉| 久久精品亚洲av国产电影网| 国产成人一区二区三区免费视频网站 | 香蕉丝袜av| 日韩人妻精品一区2区三区| 两性夫妻黄色片| bbb黄色大片| √禁漫天堂资源中文www| 亚洲,一卡二卡三卡| 欧美性长视频在线观看| 免费看av在线观看网站| 在线观看人妻少妇| 国产又爽黄色视频| 亚洲视频免费观看视频| 免费高清在线观看日韩| 天天躁夜夜躁狠狠久久av| 性少妇av在线| 欧美少妇被猛烈插入视频| 91精品国产国语对白视频| 老司机影院成人| 妹子高潮喷水视频| 国产av一区二区精品久久| 成人午夜精彩视频在线观看| 黄色一级大片看看| 国产亚洲精品久久久久5区| 国产精品成人在线| 久久久国产一区二区| 好男人视频免费观看在线| 王馨瑶露胸无遮挡在线观看| 丰满饥渴人妻一区二区三| 日本91视频免费播放| 永久免费av网站大全| 亚洲精品久久久久久婷婷小说| 精品一区二区三区四区五区乱码 | 真人做人爱边吃奶动态| 欧美性长视频在线观看| 又紧又爽又黄一区二区| 伊人久久大香线蕉亚洲五| 久久天堂一区二区三区四区| 中文字幕人妻丝袜制服| 别揉我奶头~嗯~啊~动态视频 | 国产精品免费大片| 久久国产亚洲av麻豆专区| 欧美性长视频在线观看| 嫩草影视91久久| 亚洲av成人不卡在线观看播放网 | 国产一卡二卡三卡精品| 男女午夜视频在线观看| 亚洲少妇的诱惑av| 久久人人爽人人片av| 亚洲五月色婷婷综合| 乱人伦中国视频| 亚洲,欧美精品.| 伊人亚洲综合成人网| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人添人人爽欧美一区卜| 欧美 亚洲 国产 日韩一| 亚洲精品国产av蜜桃| 久久av网站| av网站免费在线观看视频| 国产一区亚洲一区在线观看| 中文字幕精品免费在线观看视频| 久久久久久久国产电影| 亚洲av美国av| 欧美精品人与动牲交sv欧美| 一本—道久久a久久精品蜜桃钙片| 国产1区2区3区精品| 久久精品久久久久久久性| 美女中出高潮动态图| 大香蕉久久网| 视频在线观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 欧美黄色片欧美黄色片| 久久精品成人免费网站| 久久久久精品国产欧美久久久 | 一二三四社区在线视频社区8| 丝袜美腿诱惑在线| 99精品久久久久人妻精品| 久久午夜综合久久蜜桃| 老司机在亚洲福利影院| 男女无遮挡免费网站观看| 欧美激情高清一区二区三区| 麻豆国产av国片精品| 麻豆av在线久日| 各种免费的搞黄视频| 99久久综合免费| 一级a爱视频在线免费观看| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 国产野战对白在线观看| 国产高清不卡午夜福利| 日本wwww免费看| 日日夜夜操网爽| 免费在线观看影片大全网站 | 亚洲精品自拍成人| 在线av久久热| 热re99久久国产66热| 少妇粗大呻吟视频| 亚洲成人国产一区在线观看 | 午夜91福利影院| 男人舔女人的私密视频| 亚洲,欧美精品.| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 夜夜骑夜夜射夜夜干| 乱人伦中国视频| 夫妻性生交免费视频一级片| 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区| 巨乳人妻的诱惑在线观看| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站| 亚洲国产看品久久| 中文字幕另类日韩欧美亚洲嫩草| 日韩av不卡免费在线播放| 成人影院久久| 欧美 亚洲 国产 日韩一| 一区二区av电影网| 国产亚洲精品第一综合不卡| av一本久久久久| 水蜜桃什么品种好| 日韩电影二区| 亚洲国产欧美一区二区综合| 国产人伦9x9x在线观看| www日本在线高清视频| avwww免费| 亚洲黑人精品在线| 欧美精品av麻豆av| 亚洲精品中文字幕在线视频| 精品少妇黑人巨大在线播放| 99精品久久久久人妻精品| 真人做人爱边吃奶动态| 免费在线观看影片大全网站 | 亚洲国产日韩一区二区| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 国产精品久久久久久精品古装| 国产成人一区二区在线| 欧美日韩成人在线一区二区| 黄片播放在线免费| 丝袜在线中文字幕| www.av在线官网国产| 性少妇av在线| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 美女扒开内裤让男人捅视频| 欧美成人午夜精品| 国产不卡av网站在线观看| 国产精品久久久久久人妻精品电影 | 久久综合国产亚洲精品| 亚洲av综合色区一区| 亚洲av日韩精品久久久久久密 | 天天躁日日躁夜夜躁夜夜| 天天躁狠狠躁夜夜躁狠狠躁| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 一区二区三区激情视频| 国产午夜精品一二区理论片| 婷婷色麻豆天堂久久| 亚洲国产精品一区三区| 伊人久久大香线蕉亚洲五| 亚洲成色77777| 国产精品亚洲av一区麻豆| 黄片播放在线免费| 久久久久久久大尺度免费视频| 精品久久久久久久毛片微露脸 | 久久精品国产亚洲av涩爱| 中文字幕人妻熟女乱码| 国产老妇伦熟女老妇高清| 国产欧美日韩精品亚洲av| 亚洲国产av影院在线观看| 97精品久久久久久久久久精品| 精品人妻熟女毛片av久久网站| 久久精品久久久久久噜噜老黄| 国产精品欧美亚洲77777| 国产精品国产三级国产专区5o| av欧美777| 亚洲激情五月婷婷啪啪| 欧美精品av麻豆av| 欧美日韩黄片免| 岛国毛片在线播放| 午夜老司机福利片| 我要看黄色一级片免费的| 免费少妇av软件| 日韩人妻精品一区2区三区| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产精品av久久久久免费| 夫妻午夜视频| 欧美 日韩 精品 国产| 国产av精品麻豆| 亚洲精品国产色婷婷电影| 国产日韩欧美视频二区| 九草在线视频观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品日本国产第一区| 欧美黑人欧美精品刺激| 亚洲av成人精品一二三区| 不卡av一区二区三区| 久久久精品免费免费高清| 一区二区av电影网| 男人爽女人下面视频在线观看| 亚洲成人国产一区在线观看 | 精品福利观看| 99re6热这里在线精品视频| 操美女的视频在线观看| 国产精品一区二区精品视频观看| 国产在线视频一区二区| 首页视频小说图片口味搜索 | 交换朋友夫妻互换小说| 黄色a级毛片大全视频| 韩国精品一区二区三区| 在线看a的网站| 久久久久久久久免费视频了| 91成人精品电影| 国产色视频综合| 一区二区三区乱码不卡18| avwww免费| 99精品久久久久人妻精品| 亚洲精品国产av成人精品| 少妇被粗大的猛进出69影院| 国产精品一国产av| 亚洲欧美清纯卡通| 蜜桃在线观看..| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 亚洲视频免费观看视频| 中文字幕人妻熟女乱码| 女性被躁到高潮视频| 亚洲成av片中文字幕在线观看| 精品国产乱码久久久久久小说| 亚洲精品国产av成人精品| 亚洲国产精品999| 精品久久久久久电影网| 五月天丁香电影| 高清视频免费观看一区二区| 欧美成狂野欧美在线观看| 久久精品国产综合久久久| 欧美黑人精品巨大| 99精品久久久久人妻精品| 国产精品久久久久久精品电影小说| 欧美人与善性xxx| e午夜精品久久久久久久| 一级黄片播放器| 香蕉丝袜av| 午夜免费鲁丝| 午夜精品国产一区二区电影| 满18在线观看网站| 欧美大码av| 极品少妇高潮喷水抽搐| 久久精品成人免费网站| 精品国产国语对白av| 久久av网站| 自拍欧美九色日韩亚洲蝌蚪91| 性色av一级| 丰满迷人的少妇在线观看| 人人妻,人人澡人人爽秒播 | 国产精品.久久久| 精品欧美一区二区三区在线| 黄色 视频免费看| 交换朋友夫妻互换小说| 丝袜美足系列| 赤兔流量卡办理| 亚洲av欧美aⅴ国产| av在线播放精品| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到| www日本在线高清视频| 大香蕉久久网| 大码成人一级视频| 亚洲精品国产av蜜桃| 日韩人妻精品一区2区三区| 亚洲国产欧美网| 亚洲成人国产一区在线观看 | 好男人电影高清在线观看| 亚洲一区二区三区欧美精品| 欧美乱码精品一区二区三区| a级片在线免费高清观看视频| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看| 人人妻,人人澡人人爽秒播 | 在线精品无人区一区二区三| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 看免费成人av毛片| 男女边吃奶边做爰视频| 精品人妻1区二区| 亚洲美女黄色视频免费看| 亚洲一区中文字幕在线| 九草在线视频观看| 激情五月婷婷亚洲| av天堂在线播放| 国产黄频视频在线观看| 欧美国产精品va在线观看不卡| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 亚洲精品国产av蜜桃| 男女下面插进去视频免费观看| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲 | 国产视频一区二区在线看| 成在线人永久免费视频| 日本av手机在线免费观看| 久久国产精品男人的天堂亚洲| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 精品国产乱码久久久久久男人| 久久国产亚洲av麻豆专区| 午夜免费男女啪啪视频观看| 国产97色在线日韩免费| 热re99久久精品国产66热6| 欧美xxⅹ黑人| 热re99久久国产66热| 国产1区2区3区精品| 久久天堂一区二区三区四区| 国产成人啪精品午夜网站| 精品视频人人做人人爽| 成年女人毛片免费观看观看9 | 精品人妻1区二区| 亚洲av成人精品一二三区| 亚洲精品国产av蜜桃| 别揉我奶头~嗯~啊~动态视频 | 精品亚洲成a人片在线观看| 国产一区二区在线观看av| 亚洲 国产 在线| 亚洲av成人精品一二三区| 亚洲专区中文字幕在线| 国产国语露脸激情在线看| 成人国产一区最新在线观看 | 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久5区| 少妇猛男粗大的猛烈进出视频| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 国产成人系列免费观看| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线| 国产精品偷伦视频观看了| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 久久精品国产综合久久久| 十八禁网站网址无遮挡| av天堂久久9| 成人午夜精彩视频在线观看| 少妇的丰满在线观看| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 一区二区三区精品91| 国产视频一区二区在线看| 欧美在线一区亚洲| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 中文字幕高清在线视频| 岛国毛片在线播放| 国产精品一区二区免费欧美 | 亚洲av成人不卡在线观看播放网 | 日韩伦理黄色片| 黄色 视频免费看| 成年人黄色毛片网站| 性色av一级| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| a级毛片在线看网站| 久久精品亚洲熟妇少妇任你| 国产成人精品在线电影| 免费在线观看日本一区| 高清视频免费观看一区二区| 久久午夜综合久久蜜桃| 国产午夜精品一二区理论片| 国产精品 欧美亚洲| 一区福利在线观看| 免费av中文字幕在线| 天天影视国产精品| 日本wwww免费看| 成年av动漫网址| 最黄视频免费看| 婷婷成人精品国产| 久久九九热精品免费| 热re99久久精品国产66热6| 青草久久国产| 蜜桃国产av成人99| 丝袜人妻中文字幕| 欧美日韩黄片免| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 视频在线观看一区二区三区| 欧美日韩精品网址| 天天操日日干夜夜撸| 9热在线视频观看99| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影小说| 国产精品.久久久| 真人做人爱边吃奶动态| 日韩熟女老妇一区二区性免费视频| 脱女人内裤的视频| 看十八女毛片水多多多| 色播在线永久视频| 叶爱在线成人免费视频播放| 欧美乱码精品一区二区三区| 一级毛片黄色毛片免费观看视频| 老司机亚洲免费影院| 亚洲七黄色美女视频| 美女国产高潮福利片在线看| 美女大奶头黄色视频| 亚洲精品成人av观看孕妇| 嫁个100分男人电影在线观看 | 亚洲一码二码三码区别大吗| 国产老妇伦熟女老妇高清| 国产精品久久久久久人妻精品电影 | 久久人人爽人人片av| 欧美日韩成人在线一区二区| 中文字幕精品免费在线观看视频| 精品免费久久久久久久清纯 | 大香蕉久久成人网| 啦啦啦啦在线视频资源| av福利片在线| 久久人人97超碰香蕉20202| 日韩伦理黄色片| 丝瓜视频免费看黄片| e午夜精品久久久久久久| 国产日韩欧美在线精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品视频人人做人人爽| 免费久久久久久久精品成人欧美视频| 久久狼人影院| 国产片内射在线| 亚洲成人国产一区在线观看 | 男女无遮挡免费网站观看| 美女扒开内裤让男人捅视频| 亚洲精品一二三| 亚洲精品久久午夜乱码| 色94色欧美一区二区| 亚洲欧美清纯卡通| 美女大奶头黄色视频| 天堂俺去俺来也www色官网| 婷婷色综合大香蕉| 国产在线一区二区三区精| 91麻豆av在线| 亚洲av美国av|