• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility analysis ofWDM links for radar applications

    2015-11-08 07:31:10MEENAFREDYFRANCISSARATHDIPINSRINIVAS
    Defence Technology 2015年1期

    D.MEENA*,F(xiàn)REDY FRANCIS,K.T.SARATH,E.DIPIN,T.SRINIVAS

    aApplied Photonics Lab,ECE Department,Indian Institute of Science(IISc),Bangalore,India

    bElectronics and Radar Development Establishment(LRDE),DRDO(Ministry of Defence),Bangalore,India

    cModel Engineering College,Thrikkakara,Cochin,India

    Received 9 May 2014;revised 27 August2014;accepted 10 September 2014 Available online 26 November 2014

    Feasibility analysis ofWDM links for radar applications

    D.MEENAa,b,*,F(xiàn)REDY FRANCISc,K.T.SARATHc,E.DIPINc,T.SRINIVASa

    aApplied Photonics Lab,ECE Department,Indian Institute of Science(IISc),Bangalore,India

    bElectronics and Radar Development Establishment(LRDE),DRDO(Ministry of Defence),Bangalore,India

    cModel Engineering College,Thrikkakara,Cochin,India

    Received 9 May 2014;revised 27 August2014;accepted 10 September 2014 Available online 26 November 2014

    Active phased array antennasenhances the performanceofmodern radarsby usingmultiple low power transmit/receivemodules in placeof a high power transmitter in conventional radars.Fully distributed phased array radarsdemand the distribution of varioussignals in radio frequency(RF)and digital domain for real time operation.This is normally achieved through complex and bulky coaxial distribution networks.In this w ork,w e intend to tap the inherent advantagesof fiber linksw ith w avelength divisionmultiplexed(WDM)technology and a feasibility study to adapt these links for radar applications is carried out.This is done by analysing various parameters like amp litude,delay,frequency and phase variation response of various radarwaveforms overWDM links.Thisalso includesperformanceevaluation of non-linear frequencymodulation(NLFM)signals,known for better signal to noise ratio(SNR)to specific side lobe levels.NLFM waveforms are further analysed using pulse compression(PC)technique.Link evaluation isalso carried outusinga standard simulation environmentand is then experimentally verifiedwith otherwaveforms like RF continuouswave(CW),pulsed RF and digital signals.Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation.During evaluation of digital signals,variable transient effects for differentduty cycles are observed from an amp lifier configuration.A suppressionmethod is proposed to elim inate this transienteffects.Further,the link delay response is investigated using different lengths of fiber spools.It can be inferred from the experimental results thatWDM links are capable of handling various signals significant to radar applications.

    WDM;Radar;RF over fiber;EDFA transient;Delay;CW;Pulsed CW;NLFM

    1.Introduction

    Conventional radar signal distribution networks are designed w ith coaxial cable or space-feeds,which make the system bulky,complex,massive and inflexible[1,2].The inherentadvantagesof optical link is reduced size,weightand loss,low attenuation,immunity to electro-magnetic interference(EM I),and high bandw idth capacity[3].Along w ith the advancem ents in m icrowave photonic device technology,the possibility for distribution of signals in optical domain had been opened up.

    During 1980's,the components capable of working in the microwave domain emerged.Pan[2]describesan optical link capable of working at 5 GHz.By 1984,a Ti:LiNbO3 Mach-Zehnder interferometer type external modulator capable of working at 17-GHz was developed towork in 830 nm[4].In 1987,Stephensetal.[5]described a complete radio over fiber(RoF)link while com paring the performances of directmodulation and external modulation using loss,SNR(signal to noise ratio),linearity,etc.,as the parameters for 4.1-4.7 GHz and 2.0-12.0 GHz.In 1988,the applications of radar X-band signal in fiberoptic linkswere studied by a team in Malibu[6]. They were primarily interested in providing RF delay using fiber optic link for application in radar phase noise testsetandradar repeater test.Link characterisation was also done for AM and FM modulations in direct and externalmodulations using 1300 nm InGaAs laser.Cox et al.[7]described an analytical lumped-element small-signalmodel of directly and externallymodulated analog fiberoptic link.The designed link was described to be superior to others in providing a maximum bandw idth of 22MHz for externallymodulated link(11 dB transducer gain,6 dB noise figure)and 1 GHz bandw idth for directly modulated link(-14 dB transducer gain,33 dB noise margin).They theoretically proved that the efficiency of externally modulated M ach-Zehnder modulator(MZM)operated at moderate bandw idth w ith high optical power is several times higher than that of directmodulation. Due to the versatility and practicality of optical links,soon resultswereavailable in introducing true timedelays in phased array antennas[8].The paper also provides a method to overcome beam squinting and describes the use of fiber delay loops in introducing a phase delay in m icrowave regime,which is expected to have a great impact on phased array antenna construction.It isonly amatter of time that theoptical system finds its way into the avionics industry,where light weight and immunity to EM I are highly desirable.Slaveski et al.[9]discussed the transm ission of analog AM and FM signals over a WDM link along w ith FSK digitalmodulated signalbetween antennasand on-board avionic equipment.The resultswere prom ising w ith insertion loss of-55 dB,carrier to noise ratio(CNR)and SNR of more than 40 dB,total harmonic distortion(THD)of less than 7%and BER ofmore than 1.85e-07.This proves that the link worksasefficiently as coaxial cable in antenna-cockpit link w ith the additional benefits ofWDM optical systems.

    In 2007,the researchers at Thales reported about the feasibility study of using RF photonics for radar applications[1],which proved that the commercial optical components are matured enough to carry radar signals.They tested the linkw ith local oscillator(LO)and pulsed RF signalsand,they designed the directmodulated narrow band and wide band links using active and reactive matching networks.In this work they brought the results fordirectmodulated and externalmodulated link performance in termsof frequency response,noise spectral density curve vs RF frequency curve.They used CWDM(coarse WDM)optical link as part of a demonstrator architecture.The experiments prove w ithout doubt that the optical com ponents havem atured enough to be used in m ilitary.

    Ballal et al.performed a comparative study of analog and digital RoF links in terms of their merits and demerits[10]. They mentioned that various disadvantages,such as nonlinearity and chromatic dispersion,of analog RoF link can bemitigated by use of digital RoF link.Bit error rate(BER)and SNR for various inputschemes,such asBPSK,QPSK and 16 QAM,were analysed for analog and digital links,and their comparison was presented.Digital RoF link shows improved performance in terms of BER parameters.

    More studies followed as in Ref.[11],which characterized a direct modulated optical link for X-Band chirp modulated radar signal.Further,the link was inserted w ithin Salex-Galileo LPI radar and the results were obtained w ithout any performance degradation.Yao[12]described the possibility of RoF distribution along w ith photonic true time delay beam forming.Ghelfi et al.[13]proposed a fully photonics-based coherent radar,exploring usage of optical components to the maximum extent,rather than using photonic componentsonly for distribution of signals.This is achieved by generating of stable radio frequency signalshaving arbitrary waveformsand detecting the signals by direct digitization w ithout downconversion.Xu et al.[14]described about the advantage of using photonic techniques to generate and distribute the m icrowave signals and also addressed various challenges in system realization.

    In thispaper,webring outothermeasurementresultswithRF signals in termsof amplitude,delay,frequency and phasevariationsoccurring inWDM links.As thephased array antennahas large number of transmit/receivemodules,a splitterw ith large splitting ratio isused to distribute thesignals.To compensate for thissplitter loss,anopticalamplifier is required in theWDM link configuration.Modern multifunction radar uses variable duty cycle signals for itsnormalmode of operation.Wealso analyse the effectsof digital signals in amplifier basedWDM linksand observed the transient effects w ith variable duty cycle digital signals.We also discuss a transient suppressionmethod for the transm ission ofvariableduty cycledigitalsignalsover fiber links. During experimentalevaluation,the differentsignalssignificant to radar,such asCW,pulsed CW and NLFM waveforms,are fed through theWDM link.Themeasurementsare repeatedbyusing differentfiberspool lengthstomeasuresignaldelay,which tallies w ith the mathematically computed signal delay value.Even though the experiments are carried out for measurement of various parameters,we mainly focus on amplitude and delay variationsw ithin the scope of this paper.Butsome of themeasurement results,such as frequency vs.time and phase vs.time plots,are considered to ensure the link adaptability to different waveforms.

    2.Experiment

    In a radar system,the echo signals are converted to intermediate frequency(IF)signals during receive operation.This down conversion process requires different local oscillator(LO)signals at each receiver module.Additionally,active phased array requires the distribution of digital signalsof a bitrate<1 M bit/s for control and m onitoring purpose.A phase reference signal,having a stringent inter-element phase error requirement,isalso presented to ensuresynchronousoperation amongmultiple transmit/receivemodules.

    Fig.1 showsan experimental setup.RF signal isexternally modulated using a CW laser operating at1550 nm and Mach-Zehndermodulator(MZM),while the digitalsignal isdirectly modulated using a DFB laser.

    The digital signals in differential format are normally used in a radar system to reduce the commonmode noise occurring in the transm ission line.Therefore,in order to test this kind of signal,a single ended digital signal is first converted to differential signal format using a RS422 transm itter module.A differential optical transmittermodule then directlymodulatesa DFB laser to produce themodulated optical output.These signals are then multiplexed using a 2:1 arrayed waveguide grating(AWG)typemultiplexer.Finally at the receiver stage,the signals are demultiplexed and retrieved using respective detector modules.The different parameters associated with WDM link are listed in Table 1.

    Fig.2 shows an experimental set-up.A radar transm itter operating in 2-4 GHz is used as the RF signal source.A digital signal sim ilar to synchronization signal in a real time radar system is generated using the digital signal source.The spectra of differentwaveforms are observed using a real time spectrum analyser(RTSA).This configuration helped in measuring the attenuation valuesassociated w ith transmission of RF signals over a WDM link.The delay occurring in the link wasmeasured using a digital storage oscilloscope(DSO). The experiment was repeated using different kinds of radar waveforms like continuous wave(CW),pulsed continuous wave and NLFM waveforms.Other RTSA plots used for the m easurement include normal spectral plot,digital phosphor technology(DPX)[15]waveforms,amp litude vs.time(envelope)p lot,frequency vs.time p lot,and phase vs.time plot.

    Fig.1.Block diagram ofWDM link-experimental set-up.

    Fig.2.Measurementalset-up.1-differentialsignal-opticalsignal converter;2-differentialsignalgenerator;3-digitalsignalsource;4-DSO;5-RF over fiber receiver;6-spectrum analyzer;7-radar transmitter;8-mux/demux;9-RFover fiber transm itter.

    Fig.3.Waveform spectrum of continuous input signal.

    Table 1 Parameters of optical link.

    3.Resu lts

    A RF signal w ith a frequency of 3.1 GHz and amplitude -12.43 dBm is used as the source signal in WDM link for measuring CW-RFwaveform parameters.Figs.3 and 4 show thewaveform spectra for a continuouswave input and output signals,respectively.It can be observed from Fig.3 that the input spectra is reproduced at the receiver end,retaining the critical central frequency and bandw idth criteria.As the critical waveform parameters are retained at the receiver end,we now focus on other parameters like amp litude,delay,frequency and phase for furtheranalysis.A few of theexperiment results are included in the follow ing sections.

    Figs.5 and 6 show the DPX waveforms of pulsed continuouswave signal at link inputand output.Again output signal is observed w ith a constant attenuation of 27.52 dB w ithout significant distortion.

    Table 2 summarizes the measured results of different test cases.It should be noted that the link incurred a net loss of approxim ately 27 dB,which is independent of waveforms.

    It can be observed thatboth the optical signals(at1310 and 1550 nm)were continuously present throughout the experiment,confirming that there isno crosstalk between the signals in WDM FOL[9].The measurement results of an intensity modulation-direct detection,linearly frequency-modulated(LFM)signal and X-band radar signal over a single analog link were discussed in Ref.[11].But this paper dealsw ith anexternally modulated WDM link using other waveforms like CW,pulsed CW and NLFM radar signals.

    A fter the evaluation of amp litude variation w ith various radar waveforms,the link is evaluated further for other parameters like phase,frequency and delay.Fig.7 shows the phase variation of continuous signal(3.1 GHz)at link output w ith respect to time.It can be observed that the linear phase relation ismaintained while the signal is transm itted through the link.

    NLFM waveformsare used inmodern radarsow ing to their improved security and better side lobe reduction[16].

    Fig.8 shows output NLFM waveform.It can be seen that the envelope is faithfully reproduced.

    Figs.9 and 10 show the frequency vs.timeofNLFM inputand outputsignals.Thevariation in frequencywith respectto timecan be observed to be nonlinear,and controlled by the non-linear coefficientsused in thegeneration ofwaveform.Non-linear frequency variation of the inputcan be seen to be faithfully reproduced at the link output.But spectrum output alone cannot represent the side lobe level requirements.Therefore a pulse compression(PC)technique isperformed on the captured samples Iand Q(using RTSA)ofWDM outputsignal.

    Fig.4.Waveform spectrum of continuous output signal.

    Fig.6.DPX waveform of pulsed output signal.

    Fig.5.DPX waveform of pulsed input signal.

    Table 2 Measured values.

    3.1.Pulse compression of NLFM waveform

    During measurement of NLFM waveform,the real time samples Iand Q(in phase,quadrature)of output signal are captured using RTSA and processed w ith necessary NLFM coefficients to obtain a pulse compressed output of both the WDM input and the output signals.Figs.11 and 12 show the pulse com pressed results(red(in the web version))of input and output signals along w ith corresponding envelope of NLFM signals(green(in the web version)).Figs.11 and 12 show the expanded view of a single output pulse,whereas the actual transm it signal is a burst of a specific number of continuous pulses.A particular radar application requires a side lobe level of approximately 20 dB to attain a certain level of radar performance.But the resultantoutputsignal side lobe level isapproximately 25 dB(Fig.12),satisfying the required performance level.

    3.2.Simulation results

    The amplitude variation for the sameWDM linkmodel is evaluated in a standard simulation environment(OptiSystem)to substantiate the experimental results(Fig.13).A RF signal in GHz range and a digital signal in MHz range are used as input signals for evaluation purpose.The RF signal is externally modulated using a Mach-Zehnder modulator.Since OptiSystem does notsupport comp lex waveform s like NLFM,LFM,etc.,amathematicalmodelof M ach-Zehndermodulator,which supports the generation and modulation of signalsw ith various controlling parameters,was developed in MATLAB.This model is used as a co-simulation component in Opti-System environment along w ith other components for link evaluation.The modulation part of the sam e component is used for evaluation of CW RF signal.The obtained results show a link loss of~27 dB,tallying w ith the experimental results(refer Table 3)for inputof-12.182 dBm and outputof -39.479 dBm.

    Fig.7.Phase vs.time for outputwaveform of CW radar signal.

    Fig.8.Amplitude vs.time for outputwaveform of NLFM signal.

    Fig.9.Frequency vs.time for inputwaveform of NLFM signal.

    Fig.10.Frequency vs.time for outputwaveform of NLFM signal.

    Fig.11.Envelope of inputRFand pulse compressed output-expanded view.

    Fig.12.Envelope ofoutputRFand pulse compressed output-expanded view.

    3.3.Delaymeasurement for WDM link

    During the measurement of delay,a pulsed RF signal,(pulsew idth of 1msand period of 10ms)is divided into two by using a 2-way power divider and given simultaneously to DSO and WDM input.The WDM output is fed to another DSO channel.The cables used were calibrated prior to experiment.

    Figs.14 and 15 show the DSO outputs for 500 m and 1000 m long optical fiber links,respectively.The pulses are delayed by 2.56 and 5 ms for 500 m and 1000 m long links,respectively.

    Fig.13.WDM co-simulation model in standard optical simulation software environment.

    Fig.14.Delay of pulsed RF signalw ith fiber length of 500 m.

    Table 3 Link loss.

    4.Discussion on results

    4.1.Amplitude measurement

    From Table 2,it isevident that,for the differentkindsof RF signals,theWDM link introduced an attenuation of approximately 27 dB,which can be attributed to the losses at various components,as given in Table 4.This parameter is very important due to the fact that any variation in signal parameters of the output signal affect the performance of the radar when WDM links are used as a part of the distribution networks.Since this attenuation value is determ inistic,it can be compensated either by RF or optical amplifiers as per the requirements.

    The total lossof 27 dB observed w ith analogWDM links is found to be in consistence w ith the results in Ref.[7].Even though the directmodulation is cheaper,simpler and offers a higher conversion efficiency,it can cause frequency modulation at its optical output due to themodulation of refractive index of laser cavity by themodulating signal.This spurious frequencymodulation distorts the frequencymodulation of the signal[1,11].Themeasured results show s that the externallymodulated analog linksare free from these distortions,asalso shown for FM and AM analog links[9]w ith external modulation.

    4.2.Delaymeasurement

    The delay incurred in an optical link is primary attributed to the refractive index and length of fiber.Component propagation delaysare smalland hence neglected.A singlemode fiber w ith an effective refractive index of 1.5 and carrying a 1550 nm optical signal isused formeasurement.Theexpected delay is

    where l is the length of fiber;v=c/n is the speed of light in optical fiber;c is the speed of light in vacuum(3×108m/s);and n is the effective refractive index of optical fiber. Therefore,

    1)Theoretical delay for 500m long fiber is around 2.5ms.

    2)Theoretical delay for 1000 m long fiber is around 5 ms.

    These values are also found to be comparable to the measured results,asshown in Figs.13 and 14 and summarized in Table 5.The delay parameter is of prim ary importance in radar systems,and any delay could be taken as Doppler shift. As the optical delay is determ inistic,itcan be compensated in an efficientmanner.

    Fig.15.Delay of pulsed RF signalwith fiber length of 1000m.

    Fig.16.Schematic diagram of experimental set-up used for EDFA transient effectmeasurement.

    Table 4 Loss budgetofWDM link.

    Table 5 Delays for various test cases.

    5.Digital signal:m easured resu lts and discussion

    Digital signals are used in radar systems for control and monitoring purpose.These signalsmay vary in their bit-rate and duty cycle.The measured result of direct modulated digital signal(Fig.1)was found to be sim ilar to that of the RF signal,where the insertion loss associated w ith RoF transm it/ receivem odules were replaced w ith the conversion losses of DFB laser and detector.

    Signal distribution in a large array demands the use of optical amplifiers to compensate these losses incurred for splitting a signal to a large number of transmit/receivemodules.These losses increases w ith splitting ratio.The splitting loss can be computed as10 log N,where N being the splitting ratio,i.e.,1:64,can cause a signal attenuation of 18 dB along the link.Thus optical amplifiers are used to boost the signal level.Er-doped fiber am plifiers(EDFA)is comm only used for this purpose.But itwasobserved that the digital signals suffer from transient effectw ith saturated EDFA as reported in Refs.[17,18].Additional linksmay require gain flattening circuits based on the application.Singh etal.[19]presented a Raman-EDFA hybrid optical amplifier configuration.This amplifier configuration provides a flat gain of greater than 10 dB w ithout any gain flattening circuits.But our work focus on variable transients observed with different duty cycle signals. This can degrade the digital signal transmission through fiber link.

    A configuration shown in Fig.16 is used to analyse the transient effect while amplifying the digital signals in the optical links.A 1530 nm laser diode(1mW)ismodulated by a 2 kHz digital signal.Except for EDFA,thisset-up isconsisted by the components available as parts of a commercialWDM test unit,which is capable of generating variable duty cycle pulse signals.The laser output is amplified using an EDFA operating in the saturation region w ith a pump power of 30mW(980 nm).EDFA used is10m in length,Er lifetime is10 ms,Er ion density is 2×1025m-3,numerical aperture is 0.24,core radius is 2.2μm,and Er doping radius is 2.2μm. The output is then passed on to aphoto detectorofWDM unit,and the electrical output is observed using a DSO.

    Fig.17 shows the transient effect observed in the output digital signal.The spikes occurring at the output pulses are due to transient effects.As the digital signals used in radar system are primarily used for control and synchronizing,any change in signal characteristics can seriously degrade the beam formation and radar operation.

    Additionally,the pulsed signals used for synchronization are produced based on a transmitwaveforms that are random in nature and have different duty cycles.The transient effects for differentduty cyclesare simulated and isshown in Fig.18. It can be observed that the transient peaksand slope decrease w ith the increase in duty cycle,which can be explained to be due to greater time available for EDFA gain recovery.These transients are follow ing an exponential curve mentioned in Ref.[13].The m athem atical derivation of the sam e is not included in this paper.

    Fig.19 shows the measured transient result for a digital signalw ith pulsewidth of 300μs and period of 500μs.

    In addition,itwasobserved that the effectof transientscan be reduced by multiplexing an additional signal,w ith a complementary pulse,along the link w ith a nearby wavelength(Fig.20).

    Fig.17.Measured transients for 2 kHz pulsed signal-input(yellow)and output(blue).

    Fig.18.EDFA Transients w ith 10,20 and 50%duty cycle(2 KHz pulsed signals,pump power at 60 mW).

    Fig.19.Transient effect in a digital signal of duty cycle 60%input(blue),output(yellow).

    Fig.20.Transient suppressed output.

    6.Conclusions

    WDM-based optical networks are preferred over the conventional signal distribution schemes ow ing to their physical compactness,low loss,light weight and immunity to EM I. Conventional signal distribution network adds considerably to the system complexity and bulkiness of the active phased arrays.Itmakes the system massive and demandshigh capacity drive mechanisms for rotary joints.This paper explored the feasibility of using optical WDM link for distribution of different types of RF and digital signals,hence making the system light and agile.The RF signals like CW,pulsed CW,and NLFM waveforms generated from a radar transm itterwas used for experimental measurements.The results wereobserved w ith a finite attenuation due to various com ponent losses incurred in the link,irrespectiveof the inputsignalused. The amplitude variations for continuous wave signals were verified using the simulation results.Since the link loss is fixed,fora particularnetwork itcan easily be compensated by using the amplifiers in the electrical or optical domain.

    The experimental results of NLFM waveform was further verified for side lobe requirementsby using pulse compression(PC)techniques.The experiments were also repeated with various fiber spools.The results were observed w ith a delay proportional to the length of the fiber spool.Therefore,delay and attenuation,being determ inistic parameters,can be compensated based on the application requirements.

    Further,the paper also discussed about the transienteffects associated w ith digital signals of variable duty cycle.This transient effects can be reduced by adding an additional complementary signal in the WDM link.

    This kind of optical distribution helps in the generation of radar signals outside antenna arrays and their distribution through optical rotary joints.Thus it helps in providing a solution free from EM I/EMC related issues.

    [1]Garenaux K,Merlet T,AlouiniM,Lopez J,VodjdaniN,Boula-Picard R,et al.Recent breakthroughs in RF photonics for radar systems.Aerosp Electron Syst M ag IEEE 2007;22(2):3-8.

    [2]Pan J.5-GHzw ideband fiber-optic link.OSATechnicalDigestSeriesOpt Fiber Commun 1983.paper TuK2.

    [3]Capmany Jos'e,Dalma Novak.M icrowave photonics combines two worlds.Nat Photonics 2007;1(6):319-30.

    [4]Gee CM,Thurmond GD,Yen HW.17-GHz bandw idth electro-optic modulator.Appl Phys Lett1983;43(11):998-1000.

    [5]StephensW illiam E,Joseph Thomas R.System characteristics of direct modulated and externallymodulated RF fiber-optic links.Light Technol 1987;5(3):380-7.

    [6]Gee CM,Newberg IL,Thurmond GD,Yen HW.X-Bana Rf fiber optic links.In:Cambridge Symposium-Fiber/LASE'86.International Society for Opticsand Photonics;1987.p.64-8.

    [7]Cox III,Charles H,Betts Gary,Johnson Leonard M.An analytic and experimental comparison of direct and externalmodulation in analog fiber-optic links.M icrow Theory Tech IEEE Trans 1990;38(5):501-9.

    [8]Frigyes Istvan,Seeds AJ.Optically generated true-time delay in phasedarray antennas.M icrow Theory Tech IEEE Trans1995;43(9):2378-86.

    [9]Slaveski Filip,Sluss James,Atiquzzaman Mohammed,Nguyen Hung,Ngo Duc.Transm ission of RF signals over optical fiber for avionics applications.In:21st Digital avionics systems Conference,2002.Proceedings.IEEE,vol.1;2002.4D2-1.

    [10]BallalBeenaR,NemaShikha.Performancecomparisonofanaloganddigital radio over fiber link.Int JComput SciEng Technol(IJCSET)2012;3:6.

    [11]Pardini Rossano,Bruno Umberto,Izzo Roberto.Characterization of a fiber-optic directmodulation analog linkw ith chirp radarsignals.In:Radar Conference,2009.EuRAD 2009.European,IEEE;2009.p.449-52.

    [12]Yao JP.A tutorial on m icrowave photonics.IEEE Photonics Soc New sl 2012;26(3):5-12.

    [13]Ghelfi Paolo,Laghezza Francesco,Scotti Filippo,Serafino Giovanni,Capria Amerigo,Pinna Sergio,et al.A fully photonics-based coherent radar system.Nature 2014;507(7492):341-5.

    [14]Xu K,Wang RX,Dai YT,Yin FF,Li JQ,Ji YF,et al.M icrowave photonics:radio-over-fiber links,systems,and applications[Invited].Photonics Res 2014;2(4):B54-63.

    [15]http://www2.tek.com/cmsw pt/tidetails.lotr?ct=TI&cs=pri&ci=4540[Retrieved on 30.08.2013].

    [16]Vizitiu Iulian-Constantin.Sidelobe reduction in the pulse-compression radarusing synthesis of NLFM laws.Int JAntennas Propag 2013:2013.[17]Kuroda Keiji,Yoshikuni Yuzo.Single wavelength pump-probe technique to measure population recovery in a continuously pumped fiber amplifier.Opt Commun 2013;300:96-9.

    [18]Kuroda Keiji,Sasahira Kohnosuke,Yoshikuni Yuzo.Gain saturation of a CW-pumped erbium-doped fiber amplifier for nanosecond pulses.Opt Fiber Technol 2012;18(1):44-6.

    [19]Singh Sim ranjit,Kaler RS.Flat-gain L-band Raman-EDFA hybrid optical amplifier for densewavelength divisionmultiplexed system.Photonics Technol Lett IEEE 2013;25(3):250-2.

    .Electronicsand Radar Development Establishment(LRDE),DRDO(M inistry of Defence),Bangalore,India.

    E-mail addresses:dmeenasatish@gmail.com,meenad@ece.iisc.ernet.in(D.MEENA).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.09.002

    2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.A ll rights reserved.

    七月丁香在线播放| 欧美日韩亚洲高清精品| 亚洲最大成人av| 成人高潮视频无遮挡免费网站| 亚洲丝袜综合中文字幕| 午夜免费观看性视频| 联通29元200g的流量卡| 尤物成人国产欧美一区二区三区| 久久久久性生活片| 水蜜桃什么品种好| a级毛色黄片| 久久精品国产亚洲网站| 国产精品国产三级国产专区5o| 午夜爱爱视频在线播放| 午夜激情福利司机影院| 日韩 亚洲 欧美在线| 亚洲国产精品成人久久小说| 亚洲va在线va天堂va国产| 婷婷色综合www| 亚洲四区av| 亚洲国产精品成人久久小说| 国产精品熟女久久久久浪| 老司机影院成人| 一本一本综合久久| 男人爽女人下面视频在线观看| 黄色视频在线播放观看不卡| 水蜜桃什么品种好| 国产乱来视频区| 男人狂女人下面高潮的视频| 亚洲av不卡在线观看| av线在线观看网站| 精品人妻一区二区三区麻豆| 精品一区二区三卡| 新久久久久国产一级毛片| 国产91av在线免费观看| av线在线观看网站| 99热这里只有是精品50| 日韩电影二区| 国产伦精品一区二区三区四那| 日韩电影二区| 国产在线男女| 18+在线观看网站| 日韩在线高清观看一区二区三区| 国产精品不卡视频一区二区| 亚洲国产精品999| 搞女人的毛片| 色网站视频免费| 国产精品一区二区三区四区免费观看| 在线播放无遮挡| 国产成人freesex在线| 国产精品一区二区在线观看99| 看十八女毛片水多多多| 国产高清不卡午夜福利| 国产精品一区二区性色av| 蜜臀久久99精品久久宅男| 在线观看一区二区三区| 麻豆国产97在线/欧美| 视频中文字幕在线观看| 一区二区三区免费毛片| 久久久色成人| 亚洲精品成人av观看孕妇| 国产v大片淫在线免费观看| 国产日韩欧美亚洲二区| 日韩一区二区视频免费看| 高清视频免费观看一区二区| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 成年女人看的毛片在线观看| 午夜福利网站1000一区二区三区| 一区二区三区精品91| 亚洲国产av新网站| 亚洲精品色激情综合| 午夜激情久久久久久久| 偷拍熟女少妇极品色| 国产免费视频播放在线视频| 欧美成人一区二区免费高清观看| 禁无遮挡网站| 精品一区二区三区视频在线| 免费在线观看成人毛片| 亚洲人成网站在线播| 亚洲精品一区蜜桃| 精品久久久噜噜| 中国美白少妇内射xxxbb| 99re6热这里在线精品视频| 国产男女超爽视频在线观看| 纵有疾风起免费观看全集完整版| 国产午夜精品久久久久久一区二区三区| 又大又黄又爽视频免费| 男女边吃奶边做爰视频| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 国产精品伦人一区二区| 在线观看人妻少妇| 国产毛片在线视频| 成人毛片a级毛片在线播放| freevideosex欧美| 亚洲国产精品专区欧美| 精品午夜福利在线看| 久久99热这里只频精品6学生| 最近手机中文字幕大全| 日本黄色片子视频| videos熟女内射| 秋霞伦理黄片| 网址你懂的国产日韩在线| 国产成人精品久久久久久| 日本与韩国留学比较| 中国三级夫妇交换| 日本猛色少妇xxxxx猛交久久| 国产精品国产三级国产av玫瑰| 免费观看a级毛片全部| 七月丁香在线播放| 国产成年人精品一区二区| 丰满乱子伦码专区| av在线播放精品| 午夜福利视频1000在线观看| 又爽又黄无遮挡网站| 国产色爽女视频免费观看| 亚洲精品一二三| 亚洲成人av在线免费| 91久久精品电影网| 久久99蜜桃精品久久| 日日撸夜夜添| 国产精品爽爽va在线观看网站| 国模一区二区三区四区视频| 午夜激情福利司机影院| 亚洲国产精品国产精品| 成人午夜精彩视频在线观看| www.av在线官网国产| av在线蜜桃| 一区二区av电影网| 国产一区二区亚洲精品在线观看| 国产黄片视频在线免费观看| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 国产欧美日韩精品一区二区| 亚洲经典国产精华液单| 国产精品国产三级专区第一集| 七月丁香在线播放| 天美传媒精品一区二区| 日本欧美国产在线视频| 国产精品伦人一区二区| 午夜视频国产福利| 久久这里有精品视频免费| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 精华霜和精华液先用哪个| 亚洲自偷自拍三级| 久久97久久精品| 乱系列少妇在线播放| 久久久久久久久久久丰满| kizo精华| 国内精品美女久久久久久| av免费观看日本| 久久久久久国产a免费观看| 亚洲精品影视一区二区三区av| 亚洲国产色片| 又爽又黄a免费视频| 亚洲精华国产精华液的使用体验| 国产精品一区二区在线观看99| 国产 一区精品| 亚洲国产欧美在线一区| 久久韩国三级中文字幕| 国产乱来视频区| 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 亚洲精品自拍成人| 最近最新中文字幕免费大全7| 久久精品久久精品一区二区三区| 国产视频内射| 国产淫语在线视频| 亚洲经典国产精华液单| 国产午夜精品久久久久久一区二区三区| 777米奇影视久久| 性色avwww在线观看| 久久久久久久国产电影| 另类亚洲欧美激情| 伦精品一区二区三区| 亚洲av成人精品一区久久| 亚洲精品色激情综合| 中文在线观看免费www的网站| 夫妻午夜视频| 午夜福利高清视频| 国产伦理片在线播放av一区| 免费少妇av软件| 日韩国内少妇激情av| 男的添女的下面高潮视频| 美女国产视频在线观看| 久久97久久精品| 欧美xxxx性猛交bbbb| av线在线观看网站| 欧美老熟妇乱子伦牲交| 身体一侧抽搐| 精品国产三级普通话版| 国产亚洲最大av| 久久久久九九精品影院| 女的被弄到高潮叫床怎么办| 国产午夜精品一二区理论片| 国产男女超爽视频在线观看| 成人黄色视频免费在线看| 美女高潮的动态| 成年女人在线观看亚洲视频 | 国产精品一区二区三区四区免费观看| freevideosex欧美| 午夜激情久久久久久久| 国模一区二区三区四区视频| 日韩一区二区三区影片| 在线观看一区二区三区激情| 免费看光身美女| 亚洲激情五月婷婷啪啪| 777米奇影视久久| 成人无遮挡网站| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 国产免费福利视频在线观看| 成人黄色视频免费在线看| 国产一区二区亚洲精品在线观看| 禁无遮挡网站| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 亚州av有码| 亚洲高清免费不卡视频| 亚洲成人一二三区av| 久热这里只有精品99| 制服丝袜香蕉在线| 成人国产av品久久久| 国产精品精品国产色婷婷| 午夜爱爱视频在线播放| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99| eeuss影院久久| 亚洲av一区综合| 久久久久国产精品人妻一区二区| 男女无遮挡免费网站观看| .国产精品久久| 在线观看一区二区三区| 色播亚洲综合网| 国产一级毛片在线| 91精品一卡2卡3卡4卡| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久av| 日韩亚洲欧美综合| 成人美女网站在线观看视频| 在线天堂最新版资源| 18禁裸乳无遮挡动漫免费视频 | 国产白丝娇喘喷水9色精品| 街头女战士在线观看网站| 嫩草影院精品99| 国产人妻一区二区三区在| 一级毛片aaaaaa免费看小| 熟女电影av网| 亚洲欧洲国产日韩| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 三级经典国产精品| 精品人妻视频免费看| 激情 狠狠 欧美| 国产视频内射| 欧美老熟妇乱子伦牲交| 国产乱人视频| 国产成人福利小说| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| av免费在线看不卡| 高清欧美精品videossex| 又黄又爽又刺激的免费视频.| 成人免费观看视频高清| 精品国产三级普通话版| 卡戴珊不雅视频在线播放| 国产欧美日韩一区二区三区在线 | 亚洲国产精品999| 自拍偷自拍亚洲精品老妇| 夫妻午夜视频| 欧美xxxx性猛交bbbb| 国产午夜精品一二区理论片| 蜜臀久久99精品久久宅男| 色哟哟·www| 亚洲成人久久爱视频| 亚洲丝袜综合中文字幕| 91久久精品电影网| 丰满乱子伦码专区| 国产精品一区www在线观看| 国产日韩欧美在线精品| 大陆偷拍与自拍| 少妇人妻 视频| 亚洲精品影视一区二区三区av| 成年av动漫网址| 你懂的网址亚洲精品在线观看| 亚洲一级一片aⅴ在线观看| 大香蕉97超碰在线| 中文字幕人妻熟人妻熟丝袜美| 少妇高潮的动态图| 免费播放大片免费观看视频在线观看| 亚洲精品影视一区二区三区av| 直男gayav资源| 看十八女毛片水多多多| 少妇人妻 视频| 一区二区三区免费毛片| 伊人久久国产一区二区| 插逼视频在线观看| 国产成人免费观看mmmm| 欧美日韩国产mv在线观看视频 | 成人亚洲精品av一区二区| 五月开心婷婷网| 亚洲av成人精品一二三区| 能在线免费看毛片的网站| 午夜精品一区二区三区免费看| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 免费在线观看成人毛片| 人人妻人人爽人人添夜夜欢视频 | 成人漫画全彩无遮挡| 性色av一级| 久久精品国产亚洲av涩爱| 深夜a级毛片| 日本爱情动作片www.在线观看| 高清在线视频一区二区三区| 欧美区成人在线视频| 亚洲av福利一区| 在线免费观看不下载黄p国产| 亚洲国产精品999| 精品国产乱码久久久久久小说| 少妇猛男粗大的猛烈进出视频 | av免费观看日本| 亚洲综合精品二区| 国产日韩欧美在线精品| 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 嘟嘟电影网在线观看| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 免费看不卡的av| 欧美日韩精品成人综合77777| 国产亚洲精品久久久com| 久久久精品免费免费高清| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜| 日本wwww免费看| 人妻少妇偷人精品九色| 99re6热这里在线精品视频| 亚洲美女视频黄频| 春色校园在线视频观看| 午夜视频国产福利| 日韩精品有码人妻一区| 久久久久九九精品影院| 久热这里只有精品99| 亚洲欧美精品专区久久| 亚洲av电影在线观看一区二区三区 | 女人十人毛片免费观看3o分钟| av在线app专区| 在线观看av片永久免费下载| 深爱激情五月婷婷| 亚洲精品一区蜜桃| 亚洲av欧美aⅴ国产| 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 国产男女超爽视频在线观看| 少妇的逼好多水| 干丝袜人妻中文字幕| 成年版毛片免费区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 免费av毛片视频| 男人和女人高潮做爰伦理| 亚洲精华国产精华液的使用体验| eeuss影院久久| 国产精品嫩草影院av在线观看| 国产午夜精品一二区理论片| 国产一区二区在线观看日韩| 日韩亚洲欧美综合| 97超碰精品成人国产| 看非洲黑人一级黄片| 99久久精品国产国产毛片| 人妻一区二区av| 国产精品一及| 久久精品国产亚洲网站| 在线播放无遮挡| 少妇丰满av| 亚洲精品日本国产第一区| 一级爰片在线观看| 国产亚洲5aaaaa淫片| 久久6这里有精品| 久久久久久久亚洲中文字幕| 蜜臀久久99精品久久宅男| 性插视频无遮挡在线免费观看| av在线老鸭窝| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 直男gayav资源| 国产女主播在线喷水免费视频网站| 日本爱情动作片www.在线观看| 午夜精品一区二区三区免费看| 91aial.com中文字幕在线观看| 国产在视频线精品| 久久亚洲国产成人精品v| 免费av毛片视频| 51国产日韩欧美| 日本免费在线观看一区| 色视频在线一区二区三区| 成人一区二区视频在线观看| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 精品久久久久久久久av| 在线亚洲精品国产二区图片欧美 | 日韩人妻高清精品专区| 丝袜美腿在线中文| 久热这里只有精品99| 日本色播在线视频| 亚洲av免费高清在线观看| 看黄色毛片网站| 国产成人91sexporn| 国产乱来视频区| 国产熟女欧美一区二区| 偷拍熟女少妇极品色| 国产日韩欧美在线精品| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 日韩国内少妇激情av| 国产男人的电影天堂91| 美女视频免费永久观看网站| 日本黄大片高清| 免费观看无遮挡的男女| 日韩视频在线欧美| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 亚洲三级黄色毛片| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 亚洲成人av在线免费| 欧美日韩视频高清一区二区三区二| 精品久久久噜噜| 精品国产乱码久久久久久小说| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美亚洲 丝袜 人妻 在线| 99久久精品国产国产毛片| 九草在线视频观看| av一本久久久久| 国产大屁股一区二区在线视频| 免费看a级黄色片| 亚洲精品日本国产第一区| 波野结衣二区三区在线| 国产精品精品国产色婷婷| 一级爰片在线观看| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 亚洲va在线va天堂va国产| 97精品久久久久久久久久精品| 国产成人精品福利久久| 亚洲精品国产成人久久av| 国产日韩欧美在线精品| 亚洲欧洲国产日韩| 美女高潮的动态| 国产乱人视频| 男插女下体视频免费在线播放| 九草在线视频观看| 日韩强制内射视频| 免费人成在线观看视频色| 国产成人91sexporn| 欧美日韩亚洲高清精品| 免费看a级黄色片| 日韩 亚洲 欧美在线| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 欧美高清成人免费视频www| 97超视频在线观看视频| 亚洲人成网站在线播| 久久99精品国语久久久| 简卡轻食公司| 欧美三级亚洲精品| 国产免费一区二区三区四区乱码| 男人添女人高潮全过程视频| 搡女人真爽免费视频火全软件| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 99久久精品国产国产毛片| 成人免费观看视频高清| 日本爱情动作片www.在线观看| 赤兔流量卡办理| 亚州av有码| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 免费在线观看成人毛片| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 日本免费在线观看一区| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区| 日韩强制内射视频| 亚洲三级黄色毛片| www.色视频.com| 狠狠精品人妻久久久久久综合| 亚洲精品亚洲一区二区| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 亚洲国产精品成人综合色| 不卡视频在线观看欧美| av在线天堂中文字幕| 人妻 亚洲 视频| 麻豆国产97在线/欧美| 成人综合一区亚洲| 亚洲欧洲国产日韩| 国产精品蜜桃在线观看| 国产精品无大码| 免费看日本二区| 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 成年版毛片免费区| 国产精品久久久久久av不卡| 成人亚洲精品一区在线观看 | 欧美bdsm另类| 国产精品久久久久久久久免| 国产午夜精品久久久久久一区二区三区| 韩国av在线不卡| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 国产人妻一区二区三区在| 日本黄大片高清| 国内精品宾馆在线| 三级国产精品欧美在线观看| 2021少妇久久久久久久久久久| 一个人看视频在线观看www免费| 国产亚洲最大av| 美女被艹到高潮喷水动态| 午夜激情久久久久久久| 精品久久久噜噜| 国产亚洲91精品色在线| 黄色欧美视频在线观看| 在线观看三级黄色| 久久久久久久亚洲中文字幕| 亚州av有码| 免费少妇av软件| 在线观看三级黄色| 国产成人a区在线观看| 日韩三级伦理在线观看| 免费少妇av软件| 大片电影免费在线观看免费| 中文字幕久久专区| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 日韩大片免费观看网站| 新久久久久国产一级毛片| 美女国产视频在线观看| 尤物成人国产欧美一区二区三区| 亚洲伊人久久精品综合| videos熟女内射| 日韩大片免费观看网站| 免费黄频网站在线观看国产| 黑人高潮一二区| 国产一区有黄有色的免费视频| 一级片'在线观看视频| 大又大粗又爽又黄少妇毛片口| 国产成人福利小说| 可以在线观看毛片的网站| 男女边吃奶边做爰视频| 少妇的逼水好多| 97在线视频观看| 久久久欧美国产精品| 成人漫画全彩无遮挡| 91狼人影院| 亚洲aⅴ乱码一区二区在线播放| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 成人亚洲欧美一区二区av| 男插女下体视频免费在线播放| 制服丝袜香蕉在线| 国产精品99久久99久久久不卡 | 欧美潮喷喷水| 国产视频首页在线观看| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 国产成人freesex在线| 久久6这里有精品| av福利片在线观看| 99久久精品国产国产毛片| 1000部很黄的大片| 麻豆乱淫一区二区| 亚洲精品日韩av片在线观看| 亚洲美女搞黄在线观看| 久久精品久久久久久噜噜老黄| av线在线观看网站| 亚洲av免费在线观看| 日韩欧美一区视频在线观看 | 精品少妇黑人巨大在线播放| 丝袜美腿在线中文| 欧美日韩一区二区视频在线观看视频在线 | 大片免费播放器 马上看| 国产有黄有色有爽视频| 亚洲国产精品成人久久小说| 日日啪夜夜撸| 国产精品久久久久久久久免| 国产精品av视频在线免费观看| 精品人妻一区二区三区麻豆| 亚洲av福利一区| 国产又色又爽无遮挡免| 久久精品久久精品一区二区三区| 看十八女毛片水多多多| 99久久精品国产国产毛片| 亚洲精品视频女| 一级av片app| 日韩制服骚丝袜av| 国产高清三级在线| 777米奇影视久久| 成人午夜精彩视频在线观看| 一级二级三级毛片免费看| 99久久九九国产精品国产免费|